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Abstract
When conducting a systematic review, screening the vast body of literature to identify the small set of relevant
studies is a labour-intensive and error-prone process. Although there is an increasing number of fully automated
tools for screening, their performance is suboptimal and varies substantially across review topic areas. Many of
these tools are only trained on small datasets, and most are not tested on a wide range of review topic areas.
This study presents two systematic review datasets compiled from more than 8600 systematic reviews and more
than 540000 abstracts covering 51 research topic areas in health and medical research. These datasets are the
largest of their kinds to date. We demonstrate their utility in training and evaluating language models for title and
abstract screening. Our dataset includes detailed metadata of each review, including title, background, objectives
and selection criteria. We demonstrated that a small language model trained on this dataset with additional metadata
has excellent performance with an average recall above 95% and specificity over 70% across a wide range of
review topic areas. Future research can build on our dataset to further improve the performance of fully automated
tools for systematic review title and abstract screening.

Highlights
What is already known?

- There is an increasing number of fully automated tools for title and abstract screening, but their performance
is suboptimal and varies substantially across review topic areas.

- The vast majority of these tools are not validated across a wide range of topic areas due to a lack of suitable
datasets.

What is new?

- This study compiles two datasets for systematic reviews, including metadata such as the title, background,
objectives and selection criteria of each review. Our dataset is the largest of its kind to date, comprising more
than 8600 systematic reviews and 540000 study abstracts across 51 health and medical research topic areas.

- We demonstrated that a small language model trained on this dataset achieves excellent performance with
average recall above 95% and specificity over 70% across a wide range of review topic areas.

This article was awarded Open Data and Open Materials badges for transparent practices. See the Data availability statement
for details.
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Potential impact for RSM readers outside the authors’ field

- Systematic reviews are the gold standard of evidence synthesis in health and medical research. This study can
contribute substantially to the development of fully automated tools for title and abstract screening, providing
substantial benefits to the broader health and medical research community.

1. Background

In health and medical research, systematic reviews are the gold standard for evidence synthesis.
The systematic review process involves several explicit and reproducible steps1: (1) specifying an
a priori protocol that describe the scope and research question(s) to be reviewed; (2) systematically
searching the literature to identify all potentially relevant publications; (3) distilling the large amount
of potentially relevant publications, often in thousands or even tens of thousands, into a small set of
publications (typically fewer than 50) that meet the criteria defined in an a priori specified protocol; and
(4) extracting data from the included studies and synthesising the evidence.

Conducting systematic reviews is a painstaking process, with researchers often spending hundreds of
hours searching and identifying relevant publications for evidence synthesis. The goal of a systematic
review was to achieve total recall of literature corresponding to a specific research question. To
minimise the risk of missing key publications, researchers start with a very broad search that often
yields thousands of potential publications. It is not uncommon that over ten thousand publications are
retrieved in this process, but on average, only 3% are relevant to the research question.2

Once the search is completed, at least two researchers then independently and manually examine
titles and abstracts of each publication. This process is known as title and abstract screening. The
researchers have to reach consensus on whether a publication is to be included for further full-
text screening, a process where the researchers read the full publication carefully to determine if
a publication is to be included in final evidence synthesis. Both title and abstract screening and
full-text screening are error-prone and extremely time intensive. Recent studies showed that human
screening error rates ranged from 6% to 21% depending on the research topics,3 and estimated that
a systematic review on average takes a team of researchers 67 weeks to complete.4 The exponential
growth of scientific literature and demand for systematic review in recent years has further escalated
this challenge.

With advancements of artificial intelligence (AI) and natural language processing (NLP), researchers
have been exploring the use of AI systems to automate the screening process.5–8 There are two main
approaches: active learning (e.g.,9) and full automation (e.g.,10). Active learning adopts a “human-in-
the-loop” approach and requires the researchers to label a small initial set of publication as “included”
and “excluded” (or, “relevant” and “irrelevant” to the review scope). The system is then trained on this
small dataset and ranks the remaining studies based on the probability of being included.11 Many of
these systems will adopt a continued training approach, in which the researcher will then label another
small subset from the remaining ranked studies. The system will continue to train on this additional
data and re-rank the remaining studies. This is an iterative process and will be stopped using some
pre-determined cut point or when the researchers subjectively determine that most relevant studies are
identified. Such systems can often achieve a high level of recall (>0.95, a threshold that is considered as
sufficient for systematic review automation), but their performance highly depends on the complexity
of the systematic review’s research questions. This type of system often still requires substantial human
involvement. For example, to achieve a 95% recall, the researchers may need to label over 90% of the
publications,12 defeating the purpose of using automated AI systems.

On the other hand, fully automatic tools classify publications as included and excluded based on
metadata of a systematic review such as the review title, objectives and selection criteria, or based on
a few publications that were known to be included (i.e., using these studies as seed documents). While
these systems hold the promise of greatly reducing researchers’ time in screening, their performance
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is in general lower than active learning systems. The acceptable goal for automated tools is to achieve
at least 95% recall, but most automated screening tools have fallen short of this threshold.6 Recent
research also evaluates the use of general purpose large language models such as GPT4 for automatic
screening classification, but the performance has so far been disappointing.13

Furthermore, another key limitation identified in fully automatic tools is that most existing tools were
trained and evaluated only on a small number of reviews (trained on fewer than 100 and evaluated on
fewer than 106). There is also a limited number of freely available datasets and these datasets often only
have a small number of systematic reviews (<100; e.g.,14,15). This greatly limits the generalisability of
these systems, as the performance of an AI classification system often deteriorates when it is applied
to a domain that is different from training data.16 As demonstrated by another review of existing
tools,7 screening performance varies substantially even when the same tool was applied to different
research areas, with false-positive rate (identifying irrelevant publication as included) ranging from 1%
to 81%.

As a result, despite active research and the availability of many screening automation tools, uptake
of these tools has been slow and has been met with scepticism by the research community. For a
tool to be widely adopted and used by applied researchers, its applicability and performance must be
demonstrated across a wide range of areas.

The first aim of our study was therefore to address this critical lack of comprehensive training
and evaluation data for automation of systematic review screening. We compiled a large systematic
review dataset consisting of more than 8000 systematic reviews, with titles and abstracts of more
than 500,000 individual publications from a wide range of research areas considered in the reviews.
Metadata of each review, such as the review’s title, background, objectives and selection criteria, were
included in the dataset. Each individual study is labelled as ‘included in the final evidence synthesis’,
‘included in title and abstract screening but excluded at full-text screening’ or ‘excluded during title and
abstract screening’. This dataset is an essential resource for training a screening tool and evaluating its
performance across research topic areas. It encompasses research ranging from allergy to mental health
to medical research methodology.

The second aim was to demonstrate the utility of this dataset in training and evaluating AI models for
full automation. Specifically, most existing tools were developed using limited metadata from a target
systematic review. For example, to identify potentially relevant publications, some tools only used the
title of a systematic review as the query (e.g.,17), and some only used the objective and selection criteria
(e.g.,18). Other metadata such as the review’s background information often contains useful information
that can help the screening process. Incorporating all the information about the review, including title of
the review, background, objectives and selection criteria as the query in the training process can likely
improve model performance. In practice, this information is readily available before the searching and
screening process starts because the best practice for performing systematic review is to pre-register all
this information in a protocol before the commencement of the review.19

Another limitation is that many systems were trained based on binary classification using data from
a small number of existing systematic reviews. During training, a publication was either labelled as
included or excluded. However, there could be more nuance in the data that can be used to improve
the model performance. At the title and abstract screening stage, researchers often only excluded
publications that were clearly irrelevant. Publications whose title and abstract were seemingly relevant
or ambiguously written were often included for the next stage – full-text screening. The relevance of the
title and abstract of these publications to the review was variable – some publications were eventually
included in the evidence synthesis and some publications were excluded outright. This information
about ambiguity can be exploited during training to potentially allow an AI model to learn richer
representations that can improve classification. Our research question thus considers whether using
additional metadata from individual systematic reviews and information about the title and abstract
relevance for training can improve screening performance.
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2. Methods

2.1. Dataset preparation

To support the development of an improved automated screening tool, we construct a large dataset
of systematic reviews from the Cochrane Library. Specifically, we searched on 15 December 2023 to
collect data on all systematic reviews published in the Cochrane Library.

Cochrane reviews are regarded by many as the gold standard of systematic reviews in health and
medical research. Reviews published in the Cochrane Library undergo a rigorous review process and are
scrutinised by peers and the Cochrane editorial team. Each Cochrane review’s abstract has a description
of the background, objectives and selection criteria of individual studies (e.g., randomised controlled
trials, cohort studies, etc), with a list of included studies, excluded studies and additional studies that are
related to the review topic but were not included in the evidence synthesis. Many of the publications in
these lists have hyperlink to their corresponding PubMed record or Google Scholar record, from which
the abstracts of these publications can be retrieved.

The list of included, excluded and additional studies can be used to approximate how publications
are screened during the screening process of a systematic review. A total of 8608 reviews and 544157
titles and abstracts were included in our dataset. It should be noted that the set of included, excluded
and additional studies only approximate the set of publications that were included in the evidence
synthesis, publications that passed through human title and abstract screening but excluded during full-
text screening, and publications that were excluded during the title and abstract screening, respectively.
The set of additional studies in each Cochrane review is (1) much smaller than the set of excluded
publications in an actual systematic review and (2) these studies were still somewhat related to the
review topic.

For our machine learning experiments, we split our dataset into 5 subsets. We withhold all reviews
on the topic of heart and HIV as two test sets (Nreview = 205 and Nreview = 100, respectively). These
two test sets allow evaluation of model performance on out-of-domain topic areas. For the remaining
reviews, we randomly select 90% as the training set (Nreview = 7458). For the remaining 10%, we
randomly split it into a validation set (5%; Nreview = 419) and a test set (5%; Nreview = 426). A list of
the 53 research areas covered by our dataset is presented in Supplementary Table 1.

Table 1 shows the descriptive statistics of our dataset. We have 259460 abstracts from publications
excluded during the title and abstract screening, 191364 abstracts from publications excluded after full-
text screening and 93333 abstracts from included publications.

The advantage of using this dataset for training is that it is a more ‘balanced’ dataset compared to an
actual systematic review, as the vast majority of publications in the initial retrieved sets from an actual
systematic review was publications that excluded during title and abstract screening. However, the
disadvantage of using the Cochrane dataset is that it inflates the false-positive rate (false-negative rate
was unaffected) during model evaluation. To evaluate the screening performance in actual systematic
review, we compiled an additional test set by simulating the searching and screening process of 22
systematic reviews published in the Cochrane Library between 15 December 2023 and 15 May 2024.
To do this, we followed the search strategies of these reviews to construct the set of initial publications
for each review. Given the diverse search strategies used in different reviews, we only replicated the
search in Medline, Embase and Cochrane Central.

The two datasets are available at https://data.mendeley.com/datasets/7sgmg89zb6/1 (DOI:10.17632/
7sgmg89zb6.1).

2.2. Models

Two types of models were trained using our dataset. Classification models aim to classify a publication
into one of three categories: included, excluded during the title and abstract screening, and excluded
after full-text screening. These three categories were treated as mutually exclusive and independent
categories, and information about the ordering of ‘relevance’ was not utilised. On the other hand,
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Table 1. Descriptive statistics for the training set, validation set and the three test sets.

Excluded
during Excluded

Number Number title and after
of of topic abstract full-text

reviews areas screening screening Included

Total Mean Median Min Max Total Mean Median Min Max Total Mean Median Min Max

Training set 7458 51 224622 30.2 26 1 1186 161003 23.7 12 1 682 81120 12.9 7 1 506
Validation

set
419 49 12425 29.7 26 1 138 9922 25.4 11 1 273 4545 12.6 6 1 206

Test set –
Random
selection

426 51 13020 30.6 26 2 225 9448 24.2 12 1 209 4583 12.5 6 1 134

Test set –
heart

205 1 7063 34.5 29 1 134 9500 47.5 19.5 1 530 2506 13.4 7 1 285

Test – HIV 100 1 2330 23.3 18 2 133 1491 17.1 11 1 91 579 7.2 4.5 1 38
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Figure 1. Classification model (left) and relevance model (right).

Relevance models involve predicting a score that indicates the degree of relevance of a publication
to a given review scope. We set the relevance of an included publication as 1, those excluded during
the title and abstract screening as 0, and those excluded after full-text screening as 0.5.

Both types of models are developed based on the Siamese Network using BioBERT20,21

(Figure 1), a pre-trained language model based on BERT (Bidirectional Encoder Representations
from Transformer22) specifically optimised for biomedical text. Six custom tokens were added to the
standard special tokens [CLS] and [SEP] in the vocabulary of the models to signify additional aspects,
specifically the beginning of a review’s title [RIT], Background [BG], Objectives [OBJ], Selection
criteria [SEL], and individual publication’s title [TIT] and abstract [ABS].

The classification models were trained using a single softmax layer with a size of 1024 as the head
of the models with cross-entropy loss. The relevance models were trained with a single linear layer of
size 1024 as the head of the models to predict a relevance score of a publication from 0 to 1 with MSE
loss. To allow comparison between these two types of models, we identified a ‘relevance cutoff score’
for classification that matches the false-negative rate of a corresponding classification model with the
softmax layer using the validation set.

All models were trained on the training set for 1 epoch using the Adam optimiser with a learning
rate of 0.00002, 200 warmup steps and a batch size of 32. Example model training codes are available
at https://github.com/gckc123/systematic_review_paper_codes.

2.3. Evaluation metrics

There are two key evaluation metrics, false-positive rate and false-negative rate. False-positive
rate is the percentage of publications that were eventually excluded in a systematic review but were
determined as included by the model; false-negative rate is the percentage of publications that were
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eventually included in a systematic review but were determined as excluded by the model. We conduct
two levels of analyses, publication level and review level. For publication-level analysis, we calculate
the overall rate of false-negative and -positive rates across all publications for different models. Based
on this analysis, we determine the optimal model (relevance model trained with title, background,
objectives and selection criteria as the query; see Results section) for further review-level analysis.
For review-level analysis, we calculate Precision@1, Precision@3 and Precision@5, the mean false-
negative and false-positive rates across reviews, and the proportion of reviews that achieve total recall
and 95% recall, respectively (0% and 5% false-negative). Precision@1, 3 and 5 are the proportion of
‘included’ publications in the top ranked 1, 3 and 5 publications based on relevance.

3. Results

Table 2 shows the results from the two types of models. The top panel shows the results from models
trained using each review’s title, background, objective and selection criteria as the query; the bottom
panel shows the results from models trained using only title, objective and selection criteria. The
columns on the right-hand side show the results from the classification models that used a softmax layer
to predict one of the three categories: included, excluded after full-text screening and excluded during
title and abstract screening. The latter two categories were combined as ‘Excluded’ when calculating
the false-positive and false-negative rates. The columns on the left-hand side show the results from the
relevance models that predicts a relevance score from 0 to 1. For comparison, we identified a cutoff
score using the validation set that matched the false-negative rate of the classification model and using
the cutoff to classify a publication should be included or excluded. Test of proportion was conducted to
compare the sensitivity and specificity across models.

Overall, at a similar level of false negative, the relevance models have a significantly lower level
of false positive in all three test sets compared to the classification models (p < .05). In other words,
at a similar level of sensitivity, the relevance models have a higher level of specificity. This suggests
that training models using information about the relevance of the publications can improve model
performance.

With regard to including review’s background in addition to the title, objective and selection criteria
as the query, the performance from the classification models trained with and without background are
similar. However, for relevance models, the model trained with review’s background has lower false
positives at a similar level of false negatives for the validation and all three test sets. Supplementary
Figure 1 and 2 show the receiver operating characteristics curve (ROC curve) from the relevant
models with and without background, and the area under the curve from the model with background
was all higher than the corresponding models without, further demonstrating that including review’s
background can improve model performance.

Overall, all models have a false-negative rate below the 5% threshold in the validation set, random
test set and Heart test set. The false-negative rate for the HIV test set falls short of this threshold and is
at around 8%.

These results were publication-level analysis and demonstrated that the relevance model trained with
background in general has lower false positives and false negatives. In Table 3, we present the results
from a review-level analysis using our best performing model – the relevance model trained using
review’s title, background, objectives and selection criteria as query. For example, Precision@1 for the
validation set and test sets ranged from 0.65 to 0.77, indicating that in 65% to 77% of the reviews,
the highest ranked publication is a publication that should be included. The false-negative rates for the
validation set, random test set and heart test set were all below 5%. However, similar to the publication-
level analysis, the false-negative rate for the HIV test set was 8%. The false-positive rate ranged from
67% to 72%; however, it should be noted that these are inflated estimates as per explanation in the
previous section. Overall, around in around 80% of the review, total recall was achieved.

Table 4 shows the descriptive statistics of the smaller systematic review dataset that was compiled by
simulating the search and screening process based on the search strategies documented in the original
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Table 2. Model performance of the 4 models. False negatives are bold and false positives are underlined.

Relevance model Classification model
Model trained using title, background, Model trained using title, background,
objective, Selection criteria objective, Selection criteria

Model decision Model decision
Exclude Include Exclude Include

Validation set N % N % N % N %

Excluded during title and abstract screening 11756 94.62% 669 5.38% 11392 91.69% 1033 8.31%
Excluding after full-text screening 2760 27.82% 7162 72.18% 1354 13.65% 8568 86.35%
Included 114 2.51% 4431 97.49% 114 2.51% 4431 97.49%
Test set (random)
Excluded during title and abstract screening 12166 93.44% 854 6.56% 11666 89.60% 1354 10.40%
Excluding after full-text screening 2416 25.57% 7032 74.43% 1255 13.28% 8193 86.72%
Included 158 3.45% 4425 96.55% 100 2.18% 4483 97.82%
Test set (heart)
Excluded during title and abstract screening 6583 93.20% 480 6.80% 6177 87.46% 886 12.54%
Excluding after full-text screening 2314 24.36% 7186 75.64% 1342 14.13% 8158 85.87%
Included 78 3.11% 2428 96.89% 80 3.19% 2426 96.81%
Test set (HIV)
Excluded during title and abstract screening 1993 85.54% 337 14.46% 1905 81.76% 425 18.24%
Excluding after full-text screening 608 40.78% 883 59.22% 431 28.91% 1060 71.09%
Included 52 8.98% 527 91.02% 42 7.25% 537 92.75%

(continued)
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Table 2. Continued.

Relevance model Classification model
Model trained using Title, Objective, Model trained using Title, Objective,
Selection criteria Selection criteria

Validation set N % N % N % N %

Excluded during title and abstract
screening

11402 91.77% 1023 8.23% 11417 91.89% 1008 8.11%

Excluding after full-text screening 2002 20.18% 7920 79.82% 1460 14.71% 8462 85.29%
Included 128 2.82% 4417 97.18% 130 2.86% 4415 97.14%
Test set (random)
Excluded during title and abstract

screening
11686 89.75% 1334 10.25% 11670 89.63% 1350 10.37%

Excluding after full-text screening 1738 18.40% 7710 81.60% 1270 13.44% 8178 86.56%
Included 99 2.16% 4484 97.84% 92 2.01% 4491 97.99%
Test set (heart)
Excluded during title and abstract

screening
6388 90.44% 675 9.56% 6194 87.70% 869 12.30%

Excluding after full-text screening 1913 20.14% 7587 79.86% 1386 14.59% 8114 85.41%
Included 76 3.03% 2430 96.97% 75 2.99% 2431 97.01%
Test set (HIV)
Excluded during title and abstract

screening
1955 83.91% 375 16.09% 1933 82.96% 397 17.04%

Excluding after full-text screening 537 36.02% 954 63.98% 458 30.72% 1033 69.28%
Included 48 8.29% 531 91.71% 41 7.08% 538 92.92%
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Table 3. Review-level analysis on the relevance model.

False negative Total recall 95% recall False positive

Precision@1 Precision@3 Precision@5 Mean SD % % Mean SD

Validation set 0.772 0.719 0.723 0.04 0.135 0.8116 0.8587 0.7087 0.2947
Test set – Random 0.724 0.718 0.711 0.039 0.119 0.812 0.7474 0.7243 0.2826
Test set – Heart 0.652 0.605 0.589 0.049 0.147 0.7957 0.8387 0.708 0.269
Test set – HIV 0.69 0.712 0.675 0.08 0.187 0.788 0.8125 0.6694 0.262
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Table 4. Descriptive statistics of a small systematic review data by simulating manual search.

Descriptive statistics

Number of reviews 22
Total number of retrieved publications 142504
Number of retrieved publications per review

Mean 6477
Median 3097
Min 690
Max 49162

Analysis results

False-positive rate (specificity)
Mean 29.06% (70.94%)
Median 26.88% (73.12%)
Min 3.48% (96.52%)
Max 77.94% (22.06%)

Maximum false-negative rate 30.82%
Number of reviews with total recall 16 (out of 22; 72.73%)
Number of reviews with 95% recall 19 (out of 22; 86.36%)

reviews. There were 22 reviews in this dataset, with over 142000 titles and abstracts from individual
publications. This is a much more imbalanced dataset with the vast majority of publications being
irrelevant and should be excluded during title and abstract screening. Similarly, we used the relevance
model trained using title, background, objectives and selection criteria, on this dataset to provide better
estimates of the performance (such as specificity) in practice. Although the sample size was small, it
has a similar recall compared to the results in Table 3. For example, in 19 of 22 reviews, 95% recall
was achieved. Two reviews have a false-negative rate over 5% but was still under 10%. There was one
outlier with a very high false-negative rate (30.82%). This was a review of a diagnostic test, which has
been known to be difficult to screen even for human reviewers because of the large variation in study
design. The false-positive rate on average was low (mean and median both below 30%). However, there
was large variability, with the false-positive rate ranging from 3% to 78%. Figures 2 and 3 show the
false-negative and -positive rates for each review, respectively.

4. Discussion

There are some existing tools for systematic review automation, many of which claim to be able to
perform title and abstract screening. There is relatively large variability in performance between these
tools, and even within the tool when it is applied to different systematic review topics. For example,
recent review has shown that the false-positive rate can range from 1% to 81% even when the same
tool was applied on different research areas.7 Many of these tools are only trained on data from a small
number of reviews and the performance of these tools is also not validated across a wide range of topics.
As a result, these tools have not been widely adopted.

In this study, we compiled a large systematic review dataset for training and evaluating tools
that automate title and abstract screening. We demonstrated the clear utility of this dataset. A recent
large review of automated title and abstract screening tools by Feng, Liang, Zhang, Chen, Wang,
Huang, Sun, Liu, Zhu and Pan6 shows that the combined recall and specificity of existing tools were
92.8% and 64.7%, respectively. We trained several small models using this dataset, and our results
demonstrated our model achieved higher recall on average (>95%). At the review level, total recall
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Figure 2. False-negative rate by reviews.

was achieved in most reviews. Furthermore, using a more realistic systematic review dataset created
by simulating actual manual publication search, we demonstrate that our small models also achieved
higher specificity (> 70%).

There are two key findings from the empirical experiments in this study. First, we demonstrated
that training models with richer information as features, including using the review’s title, background,
objectives and selection criteria, improves model performance. At a fixed recall level, the false-positive
rate was lower in models trained with all 4 pieces of information, compared to models trained without
the background section. Second, we demonstrated the value of utilising information derived from those
publications in three distinct groups—those that were excluded outright at title and abstract screening,
those that were excluded after full-text screening and those that were included in the final evidence
synthesis. Many systems are trained using limited metadata of the review as a query, for example,
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Figure 3. False-positive rate by reviews.

only the title,17 or the title, objectives and selection criteria,18 or using a seed publication.23 We have
demonstrated that the background of a review provides important information about the review. Such
information is often available before researchers start the literature search process because the best
practice of systematic review is to pre-register the review protocol in open access platforms such as
PROSPERO.

Although the performance of our models is good on average, there is substantial variability in the
performance. For a complex research question or topic, such as a review of diagnostic test efficacy,
the performance of our models is not sufficient to be used in practice. Reviews on diagnostic tests of a
medical condition are well-known to be difficult to screen, because unlike reviews of interventions for
a medical condition, the design of diagnostic tests can vary substantially between studies. For example,
evaluation of a diagnostic test can be based on the prospective cohort study, retrospective case review,
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laboratory and experimental study. For a medical condition, it is not uncommon that a wide range of
diagnostic tests from urine tests to skin and blood tests are available. In our small but more realistic
dataset, our model achieved good recall in all but one review which focuses on a diagnostic accuracy
of ultrasound screening for foetal structural abnormalities. In this review, 30% of relevant publications
were excluded. The suboptimal performance for reviews on diagnostic tests is likely due to the model
having an insufficient understanding of the study abstract and/or the review’s objective and selection
criteria to accurately determine whether a study should be included.

Future research can build on our dataset to further improve the performance of automated title
and abstract screening systems. For example, we used BioBERT in this study, which has a small
context window of only 512 tokens. Many of the titles and abstracts in our dataset exceed this context
window and were thus truncated. Further, the scaling laws of language models demonstrates that
model performance increases when the model size increases.24 Since BioBERT is relatively small
compared to the state-of-art language models, using larger models with larger context windows will
likely further improve performance. Recent research has demonstrated that larger models generally
perform much better in tasks requiring higher levels of natural language understanding.25 Thus, the
suboptimal performance of BioBERT in reviews on diagnostic tests may be improved by using larger
models. There is also emerging research that uses general generative large language models, such as
GPT-4, for title and abstract screening, but their performance is in general worse than fine-tuned smaller
models.13 With quantisation and low-rank adaptation,26 further pre-training a larger model (e.g., Llama-
3 8B) first on biomedical text and then fine-tuning it using our dataset is likely to reduce both false-
positive and -negative rates further. Another possible avenue to improve model performance is to train
a mixture-of-experts (MoE)27 model based on BioBERT. An MoE model contains several versions of
feed-forward neural networks in the transformer architecture to act as different “Experts” to process the
input. In the context of systematic review screening, such a model can utilise a gating mechanism that
based on the review’s metadata and send the corresponding information to a corresponding “Expert”
for processing. This type of architecture has been shown to enhance language model performance in a
range of language tasks, with performance on par with much larger dense language models.27

5. Conclusion

We have demonstrated that the utility of using a large systematic review dataset for training and
evaluating automated title and abstract screening systems for systematic review. Our results are
promising and our simple models on average have lower false-positive and -negative rates than most
existing systems. We have demonstrated the value of finer-grained consideration of the relevancy of
publications to a review question, as well as the use of more background context about the review to
support improved screening. Future research can build upon the dataset we compiled in this study to
further improve the performance of automated title and abstract screening systems.
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