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Abstract

We first give the existence and uniqueness result and a comparison theorem for backward stochastic
differential equations with Brownian motion and Poisson process as the noise source in stopping time
(unbounded) duration. Then we obtain the existence and uniqueness result for Mly coupled forward-
backward stochastic differential equation with Brownian motion and Poisson process in stopping time
(unbounded) duration. We also proved a comparison theorem for this kind of equation.
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1. Introduction

Nonlinear backward stochastic differential equations with Brownian motion as noise
sources (BSDE in short) have been independently introduced by Pardoux and Peng [11]
and Duffie and Epstein [4]. It was soon discovered by Peng [13] that, coupled with a
forward stochastic differential equation (SDE in short), such BSDE give a probabilistic
interpretation for a large kind of second order quasilinear partial differential equations
(PDE in short). In this paper Peng also gave an existence and uniqueness result of
BSDE in stopping time duration which can take infinite value. And then Darling
and Pardoux [3] proved an existence and uniqueness result for BSDE in stopping
time under different assumptions. They applied their result to construct a continuous
viscosity solution for a class of semilinear elliptic PDE. In [8], El Karoui, Peng and
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Quenez gave a comparison theorem to BSDE and some applications in optimal control
and financial mathematics.

Fully coupled forward-backward stochastic differential equations with Brownian
motion (FBSDE in short) can be encountered in the optimization problem when
applying stochastic maximum principle and mathematical finance considering large
investor in security market. Antonelli [1] first studied this kind of equations and
obtained the local existence and uniqueness results, that is, the time duration on which
the solutions exist (without explosion) has to be sufficiently small. He also gave a
counterexample to show that the Lipschitz condition is not enough for the existence
of FBSDE in an arbitrarily large time duration. Using PDE method, Ma, Protter and
Yong [9] successfully obtained the existence and uniqueness result for an arbitrarily
prescribed time duration. But they needed the forward SDE to be nondegenerate and
the coefficients not to be randomly disturbed. Using probability method, Hu and Peng
[6] obtained the existence and uniqueness result when forward and backward equations
take same dimensions under some monotone assumptions. Hamadene [5] weaken their
monotone assumptions and discussed the application in stochastic differential games.
Peng and the author [17] extend their results to different dimensional FBSDE and
weaken the monotone assumptions so that the results can be used widely. The main
method is to introduce a n n x n full rank matrix G to overcome the difficulty of
the different dimensions. Yong [21] made the above method systematic and called
it 'continuation method'. In [12], Pardoux and Tang also gave the existence and
uniqueness results for FBSDE under some monotone conditions different from [6]
and [17]. Recently, Peng and Shi [16] gave an existence and uniqueness result of
FBSDE with infinite horizon. But the solution is in a square integrable space, the
infinite time value of the solution must be zero.

The BSDE with Poisson process (BSDEP in short) was first discussed by Tang
and Li [19]. The stochastic process in the equation is discontinuous with random
jump. After then Situ Rong [18] obtained an existence and uniqueness result with
non-Lipschitz coefficients for BSDEP. Using this kind of BSDEP Barles, Buckdahn
and Pardoux [2] gave the probabilistic interpretation for a system of parabolic integro-
partial differential equation and proved that there exists a unique viscosity solution
for this kind of PDE systems. In Section 2 we study the BSDEP in stopping time
duration, here the stopping time is unbounded and can take infinite value. Under a
Lipschitz condition suitable for our case, we get the existence and uniqueness result
for BSDEP using fixed point principle and other technique. Further in Section 2, we
give a comparison theorem for BSDEP in stopping time. The conclusion is similar
with that in [8]. We only need to control the height of the jump in BSDEP.

In Section 3, we consider fully coupled forward-backward stochastic differential
equations with Brownian motion and Poisson process (FBSDEP in short) in stopping
time duration. Suitable for the case that the stopping time can be infinite, we prove
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an existence and uniqueness result under a Lipschitz and monotone assumptions, the
infinite time value of the solution not necessarily be required zero.

In Section 4, we give a comparison theorem for FBSDEP in stopping time. The
idea in the proof is to use duality technique and stopping time technique. The duality
technique is usually used in optimal control theory to introduce the adjoint equation
for proving the maximum principle (see [ 14,20]). Another technique is to analyze the
jump height under the limit assumption. This kind of comparison theorem can be used
to connect FBSDEP with a parabolic integro-PDE system and study the existence of
the viscosity solution for this PDE system. The PDE system form should be a PDE
combined by the algebra equation. For no jump case this kind of PDE form can be
seen in [15]. Here the comparison theorem of FBSDEP is established only at time 0,
we cannot get the result in the whole random interval. We also give a counterexample
to show this point.

2. BSDEP in stopping time duration

Let (Q,^, [&,}t>o, P) be a stochastic basis such that J?o contains all P-null
elements of & and <̂ ",+ = n<r>o^<+« = &*•> * - 0- We suppose that the filtration
{^i)t>o is generated by the following two mutually independent processes:

- a ̂ -dimensional standard Brownian motion {5,},>o and
- a Poisson random measure N on R+ x Z, where Z C R' is nonempty open

set equipped with its Borel field 38(3f), with compensator N(dz,dt) = n(dz)dt,
such that N(A x [0, t]) = (N - N)(A x [0, r]),>0 is a martingale for all A e B8(2T)
satisfying n(A) < oo. n is assumed to be a cr-finite measure on (Z, 38(2f)) and called
the characteristic measure. ^^ = V,>0 &t- Let T = (T (<«>)} be &, stopping time and
take value in [0, oo]. We introduce the following notations:

y1 = {v,, 0 < t < r, is a &, adapted process such that E[supo<,Sl |v,|2] < oo},

je1 = {v,, 0 < t < T, is a &, adapted process such that E[/O
r \v,\2 dt\ < oo},

L2 = {£, £ is a &x measurable random variable such that E|£|2 < oo},

F2 = {&,(•), 0 < t < r, is a &, predictable process such that
£[fifz\k,(z)\2n(dz)dt] <oo}.

We consider the following BSDEP in stopping time duration

(2.1) p,=$+ [ f(s,p,,q,,k,)ds- f q,dB,- [ I ks_(z)N(dzds),[
tAT

where t > 0, £ € L2 and/ is a map from Q. x [0, oo] x Km x Rmxd x Rm onto Rm

which satisfies
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(H2.1) For every (p, q, k) e Rm+m*rf+m, / (., Pt qt k) is progressively measurable
and E(/0°° \f (s, 0,0,0)| ds)2 < oo.
(H2.2) There exist three positive deterministic functions u\ (t), u2(t) and K3(0> such
thatV(p\?\ k'),i = 1,2,

\f(t,pl,q\kl)-f(t,p2,q2,k2)\

and /0°° u\(t)dt < oo, /0°° u\(t)dt < oo, /0°° uj(t)dt < oo.

Then we have

THEOREM 2.1. Assume £ 6 L2 and f satisfies (H2.1)-(H2.2), then there exists a
unique solution (p,q,k) e y2 x Jf?1 x F^ satisfying the BSDEP (2.1).

PROOF. For the uniqueness, let (p, q, k) be another solution, we set p — (p — p),
q = (q — q), k = (k — k). Using Ito's formula to \p,\2, similarly with the proof in
[11] for fixed time T without jump except the Lipschitz constants being replaced by
"i(0» u2(t) and U}(t), t > 0, we can get the conclusion from the assumption (H2.2)
and Gronwall's lemma.

For the existence we want to construct one contraction map for (2.1) and get the
solution. However, the stopping time duration is unbounded and can be infinite, so
we cannot get this in one step. We divide the proof into two steps.

First step. Assume

aoo \ 2 /.oo />oo 1

UiWdt) + / u2
2(t)dt+ u](t)dt<—.

/ Jo Jo 1 : >

For every (p,q,k) e y2 x Jif2 x Fj,, we have

f{t,p,,qt,k,)dt\

r r V
< E l£l+ / (l/"(/,O,O,O)| + M,(Olp,l + ll2(Okrl + K3(OI*il)rfn

and ar \ 2 / f°° V •>

u x { t ) \ p , \ d t ) < ( / u ^ O d t ) \\p (•) ||^,2 < o o ,
/ \Jo /

Adt^j <
u2(t)\q,\dt) < / uZ(t)dt)\\q(-)\\jei <<x>,

< oo.
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Then E[£ + f*f (s, ps, qs, ks) ds | <^,Ar] is a square integral martingale. From mar-
tingale representation theorem, there exists (Qs, Ks) satisfying

EU + j f(s,ps,qs,ks)ds

QsdBs Ks_(z)N(dzds).

We let P,Ar = EK + Ilj is, ps, q,, k,)ds\ftAT], then P(-) e y2 and (P, Q, AT)
is the solution of the BSDEP

(2.2) P,A r=£+/" f(s,p,,q,,ks)ds- f QsdBs- f f Ks_(z)N(dzds).

This equation introduces the map <!> : y2 x ^T2 x F2 -> ^ 2 x ^f2 x F2 by
<P : (p,q,k) ^>- (P, Q, K). We use the following method, which is similar with
that in [1], to get the solution of BSDE in L1 space within the fixed time duration, to
prove the above map is a contraction. Let <1> :.(/?', q', k') -*• (Pl, Q', K'), i = 1, 2,
P = Px - P2, Q = G1 - Q\K = Kx - K2, p=pi-p2,q = ql-q2,k = k1 -k2,
fs =f(s,p\ q\ k1) —f(s,p2, q2, k2). FromDoob's inequality,

E

I2^ = E f /; i d s \ .

We note that SB2 = y2 x Jff2 x F2. So

\\K(-)\\2
Fi < 5E

ux(t)dt

\fs\ds)

\ + I u2
2(t)dt+l u\{i)dt\

From the assumption (/0°° ux{t)dt)2 + j™u\{t)dt + f™u2(t)dt < 1/15, then
<J> : SSl ->• ^ 2 is a strict contraction, BSDEP (2.1) has one unique solution.

Second step. Assume /0°° u\(i)dt < oo, /0°° u\(t)dt < oo, f™ u](t)dt < oo.
Then there exists 7 > 0, such that ( / ~ in(t)dt)2+f™ u2(t)dt+f™ u2(t)dt < 1/15.
We let f\(s,p, q, k) =• /[r,ooi(0/ (t, p, q, k), then / ] satisfies Lipschitz condition
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(H2.2) With M,(0 = IlT.co](t)Ui(t), U2(t) = I[T,oo)(t)u2(t), S3(0 = /[r.oo](f)«3W

and (/0°° M, (r) dtf + /0°° uf (f) rfr + /0°° u\{t) dt < 1/15. So there exists solution
(P (•). 9(0. *(•)) from the first step, such that, for t > T,

(2.3) p w = $ + / / i (* ,P, , ft. *,)<** - ( q,dB,- f f ks_{z)N{dzds).

•//At «/»Ar ./(Ar «/z

Then we consider the following BSDEP,

/
TAZ I-TAZ /.TAT /•

f(s,p,,q,,k,)ds-l qsdBs-l I k,_(z)N(dzds),
t e [0, T A r] . From the result in [10] or the result for fixed time in [19], which only
need minor change suitable for our case, there exists unique solution (p,q,k). Let
US Setp, = IlO,T*T](t)p, + I(TAZ,Z]PI, g, = /[0.7-Ar](0ft + /(TAT.r]ft, k, = I[0,TAz](t)k, +
I(TAz,t]ki, it is easy to check that this is a solution of BSDEP (2.1). The proof is
completed. •

Similarly to the comparison theorem of BSDE in [8], we will give this kind of
theorem for BSDEP in stopping time in the remaining part of this section. But the
appearance of jump process needs one new condition to limit the height of the jump
besides the Lipschitz condition in (H2.2).

We consider the following two BSDEPs in stopping time, here m = 1.

(2.5) p ; = r + f fi(s,pt,,ql
1,k

l,)ds- f q[dBt- f I kl,_(.z)N{dzds),
JlAZ JtAZ JlAZ JZ

where i = 1, 2, f' € L2, f' satisfy (H2.1) and (H2.2). From Theorem 2.1, there exist
(p'•(•). <?'(). *'(•)) e S*2 x Jf?2 x F* which satisfy BSDEP (2.5) respectively. We
also assume

(H2.3) $> > t-2,f \s, p2, q2, k2) > /2(s, p2, q2, k2), s > 0.
(H2.4) -c2(s) < (f1(s,p2,q2,k1)-f2(s,p2,q2,k2))/(ki-k2) < C,(J), when
kl — k2 / 0, ci(s) and c2(s) are two positive deterministic functions which satisfy
f™ c\ (s) ds < oo, /0°° c2(s) ds < oo and c2(s) < 1, s > 0.

Then we have

THEOREM 2.2. For every t > 0, p)AX > p2
AT.

The proof is almost the same as the proof of the comparison theorem [8, Theo-
rem 2.2] for BSDE without jump. We omit it.

When T < T < oo, we can take «,(*), u2(t) and «3(f), 0 < t < T, to be constants,
then the result of BSDEP in bounded time duration is the special case of our result in
this section.
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3. Existence and uniqueness of FBSDEP in stopping time duration

In this section, we discuss the fully coupled FBSDEP in stopping time duration.
We consider

/

I AT ptAZ

b(s,xs,ps,qs,ks)ds + / a(s,xs,ps,qs,ks)dBs
Jo

(3.1)

r'Ar r
+ I / g(s-,xs_,ps_,qs_,ks_(z),z)N(dzds),

Jo Jz
pIAr = <i>(xx)+ f(s,xs,ps,qs,ks)ds- qsdBs

JtAT J tAX

/

'AT r ~
/ ks_(z)N(dzds).
Jz

Here t > 0, (x, p, q, k) take value in I " x I " x M.mxd x Km,

b : n x [0, oo] x Km x Km x Rmxd x l % Rm,

cr : fl x [0, oo] x i m x I m x Rmxd x I " - > Rmxd,

g : Q x [0, T] x R"1 x IT" x R"""' x T x Z ^ I " ,

/
. / " \ v , r / \ T l v^ ftp"i v^ ftp"* \ ^ fEP"ixa ^^ rrpOT . rrptn ff\ . /*^ v - frp"I v ftP"'

We assume the following:

(H3.1) For every (x, p, q, k) e R"'+»'+'"^+m, <p(x) e L2, b, a, g and/ are progres-
sively measurable and

2 / r°° \2

+ E ( / \f (s, 0,0,0, 0)\ds)Ea: s, 0, 0, 0,

\a(s, 0, 0, 0, 0)|2 ds + E / / |£(5, 0, 0, 0, 0, z)\2n{dz) d.
Jo Jz

s < oo.

(H3.2) There exists a positive deterministic bounded function ut(t), such that for
every (*'', p\ q\ k') 6 u.m+m+m*d+m, i = 1, 2,

\l(t,x\ p\ q\kl) - l(t,x2, p\ q2,k2)\

[\xl - - P
2\ + \ql - q2\ + \kl - k2\] , t > 0

I = b,a,f,g respectively, and /0°° ux (t) dt < oo, /0°° u\(t) dt < oo. There exists a
constant C > 0 such that \<t>(xi) - <t>(x2)\ < C\xx - x2\-

We introduce the notations

u = , A(t,u) =
a

8 I

(t, u),
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where a = (px • • • ad). We use the usual inner product and Euclidean norm in W,
Rmxd and assume the following monotone assumptions:

(H3.3) For every u = (x, p, q, k), u = (x, p, q,k), u = (x,p,q,k) = (x — x,

p - p , q - q , k - k ) ,

J (A(t, u) - A(t, «), u) < -fau,{t)\x\2 - fau,(t){\p\2 + \q\2 + \k\2),

where fa, fa and /x( are given nonnegative constants with fa + fa > 0, /Mt + fa > 0.

REMARK 3.1. (i) For notational simplicity, we take the same function u\ (t) in
(H3.2) and (H3.3).

(ii) We only consider the same dimensional case of x and p. When x and p take
different dimensions such as x e R", p € Km, we can introduce a full rank m x n
matrix and deal with it using the method in [17] to get the same result as the following
Theorem 3.1.

THEOREM 3.1. We assume (H3.1), (H3.2) and (H3.3) hold, then FBSDEP (3.1) has
a unique solution (*(•),/>(•). 9(0- *(•)) € y2 x J^2 x Jif2 x F2.

PROOF. For the uniqueness, let us = (xs, ps, qs, ks) and us = (xs, ps, qs, ks) be
two solutions of (3.1). We set u = (x — x, p — p, q — q, k — k) = (x, p, q, k) and
apply Ito's formula to (xs, ps). Using the same technique, which was used to prove
the uniqueness for FBSDE in [17], and the the uniqueness result for BSDEP and for
stochastic differential equation with jump in [7], we can easily get the conclusion. •

To prove the existence, we can consider two cases according to the signs of fa, fa
and fj.i, this makes the proof clear and easy to understand.
First case, fa > 0, (ii > 0 and fa > 0.

We consider the following family of FBSDEP parametrized by a 6 [0, 1].

(3.2)

[ab(s,u"s) + <t>s]ds+ / [aa(s
Jo

a<t>«) +(1-«)<+£ + / [(l-a
JIM

- f qa
sdBs- f f k°_(z)N(dzds),
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where <f>, V> Y a n d X are given processes with values in Km, R"""', Rm and Rm

respectively, £ € L1 and

+ E / |^r,|2d.s + E l / |Aj(z)|2H(<iz)ii.r < oo.

Clearly, when a = 1, the existence of the solution of (3.2) implies this of (3.1).
When a = 0, it is easy to see that there exists a solution of (3.2). So we need the
following lemma.

LEMMA 3.2. We assume that (H3.1), (H3.2) and (H3.3) hold. Then there exists
a positive constant So such that if, apriority, for aQ € [0, 1) there exists a solu-
tion (xao, p°">, q°">, kao) of (3.2), then for each S e [0, <50] there exists a solution
(xao+s, pao+s, qao+s, ka°+s) &y2 xy2 xJif2 x F2 of (3.2) for a = aQ + S.

PROOF. Since for each </>, y,\[r, X, a0 e [0, 1), there exists a solution of (3.2), then,

for each triple

"j = C*J> Psi Qsi ks) € C/ X i7 X jrc X tfj, Xr € L ,

there exists a unique triple Us = (Xs, Ps, Qs, Ks) e y2 x y2 x Jitf2 x F^ satisfying
the following FBSDEP

P/AI

X, = a + / [aob(s, U,) + Sb(s, u.) + fa] ds

/

(AT

[aoa(s, Us) + Sa(s, u.) + i/r,] dBs

/ [aog(s-, Us_,z) + 8g(s_, us_,z) + ks_]N(dzds)
Jz

P, = «0<I>(Xt) + (1 - ao)XT + S(<t>(xT) - xr) + ?

s- f f Ks_
JtAX JZ

QsdBs- f f Ks_(z)N{dzds).
J

We want to prove that the mapping defined by

Iao+S(u x xx) = U x Xt : y2 x y2 x Jf?2 x F2 x L2

F2
NXL2

is a contraction.
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We note that SB2 = y2 x y2 x Jif2 x F2 and let u = (x,p,q,k) e &1,
U x Xr = /Oo+j(« x xr). Using the same notations for u and U as above and applying
Ito's formula to (Xs, Ps),we get

(3.3) [ao/x, + ( l - a o ) ]E |X r |
2 + ^ E f Ul(s)\Xs\

2ds
Jo

< SCi£\xr\
2 + SdE\XT\2

+ & Q \ J u2{s)ds+
(J Ul(s)ds\

Using Ito's formula to | Ps |
2 and then Gronwall's Lemma and the Burkholder-Davis-

Gundy inequality, we get

<C2[~E f ul(.s)\X,\2ds + i\Xx

+ 8C2\j°°u2(s)ds+(^ Ul(s)ds\ \\\u(-)\\0*.

Applying the usual technique to the forward stochastic differential equation and
combining with (3.3), we get

Here the constants Q, C2 and M depend on 0t, fj,t and C.
We now choose So = 1/(2M). It is clear that, for each fixed S e [0, <50], the

mapping lao+s is a contraction and has a unique fixed point
r rao+S /vao+S nflo+5 syto+S iscio+8\
U — (A , r , {£ , A )

which is the solution of (3.2) for a =ao + 8. The proof is complete. •

Second case: /32 > 0, /8, > 0, M, > 0.
We need to consider the following family of FBSDEP parametrized by a € [0, 1].

(3.4)
/•/AT

x" = a + / [ab(s, u") + (I — a)82(— U\(s)pa\ + <t>s]ds
Jo

/

IAX

[aa(s, it") + (1 — a)P2(—U\ (s)q°) + ^ J dBs

+ / [ag(s-, u"s , z) + (1 - a)ft(-Hi (j)ifc" ) + A.,. (z)]N(dz ds)
Jo Jz

pi = acD(xr") + $ + ( [af (s, u"s) + ys]ds - f q° dBs- f jfc" (z)N(dz ds),
JlAT JlAX JlAt
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[11] Fully coupled FBSDE with Brownian motion 259

where 0, \/r, y, X and £ satisfy the same assumptions as that in (3.2). Similarly to
Lemma 3.2, we can show the following result.

LEMMA 3.3. We assume (H3.1), (H3.2) and (H3.3) hold, then there exists a pos-
itive constant So such that if, apriorily, for an oto € [0, 1) there exists a solu-
tion (xao, pa°, qa°, ka°) of (3.4), then for each S e [0, So] there exists a solution
(xa°+s, p"o+s, qa°+s, ka°+s) e y2 x y2 x Jt?2 x F2 of (3.4) for a = ao + 8.

PROOF OF THEOREM 3.1 (EXISTENCE). From the assumption (H3.3), we know that
either (i) fr > 0, /x, > 0, p\ > 0 or (ii) /3, > 0, /x, > 0, & > 0. In the first
case, we consider (3.2) and when a = 0, (3.2) has a unique solution. It then follows
from Lemma 3.2 that there exists a positive constant So such that for each S e [0, So],
(3.2) has a unique solution for a = a0 + 8. We can repeat this process N-times with
1 < NS0 < 1 + So. It then follows that, in particular, for a = 1 with <ps = 0, ys = 0,
x/rs = 0, Aj = 0 and £ = 0 (3.2) has a unique solution.

In the second case, we consider (3.4) and when a = 0, FBSDEP (3.4) has a unique
solution. It then follows from Lemma 3.3, by repeating the same process as in the first
case, that we get the desired conclusion. The proof is completed. •

REMARK 3.2. If we replace (H3.3) by the following

(H3.4) For every u = (x,p,q,k), u = (x,p,q,k), M = (x,p,q,k) = (x - x,
p -p,q-q,k-k),

j (A(f, u) - A{t, u), u) > /5iUl(t)\x:\2 + P2ui(t)(\p\2 + \q\2 + \k\2)

where fr, f}2 and /ti are given nonnegative constants with /Si 4- yS2 > 0> Mi + Pi > 0-
Using a similar method as in Theorem 3.1, we can also prove that FBSDEP (3.1) has
the unique solution.

REMARK 3.3. When the stopping time r < T < oo, «,(?), 0 < t < T, can be
replaced by the constant, then the existence and uniqueness result of FBSDEP in
bounded time duration is the special case of Theorem 3.1.

4. The comparison theorem of FBSDEP in stopping time duration

In this section, we give a comparison theorem to FBSDEP in stopping time. This
theorem is one of important properties of FBSDEP. We consider the following two
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(4.1)

i=a'+[ b(s,xi
s,p

i
s,q

i
s)ds+ f a(s,x's, pl

s, q\) dBs
Jo Jo

[ g(s_,xl, , p \ ,q[ , z ) N ( d z d s ) , i = 1 , 2 ,

/

tAT /*

Jz
N(dzds).

The coefficients of FBSDEP (4.1), / = 1,2, both satisfy (H3.1), (H3.2) and (H3.3),
then there exists the solution (JC\ p', q', k') e 5?2 x J72 x JF2 x F% respectively.
In the following part, we only consider m = 1, in fact we can also deal with the
case when x takes multidimensional value such as x e W. For that case, we need
to introduce a 1 x n nonzero vector G in the monotone assumptions to ensure the
existence and uniqueness for different dimensional FBSDEP the same as that in [17].

We assume

(H4.1) For every i e l , s > 0 ,

fa1 > a2, <t>\x)><t>2(x), a.s.

\fl(s,x,p,q,k) >f2(s,x,p,q,k), a.s.

The introduction of a random jump let the solutions x and p to be not continuous, so
we also need the following condition to control the jump height.

(H4.2) -1<J ^ W , . * , . « , - 7 l ' . W , . ? , . « , ; t *. _ *> , , 0 . a.s.
/'I h-i,

K V

Then we have

THEOREM 4.1. p0 > pi.

PROOF. For notational convenience, we assume d = 1 and first consider the fol-
lowing FBSDEP:

/./AT /-/AT

x, = al+ b(s,xs,ps,qs)ds + a(s,xs, ps, qs)dBs
Jo Jo

. + / g(s-,xs_,ps_,qs_,z)N(dzds), i = 1,2,
Jo Jz

p, = <I>2(ir) + / / 2 ( 5 , i , , ps, qs, ks) ds - qs dBs
JtAT JlAT

-n
Jo Jz

(4.2)

ks_N(dzds).
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Obviously, the above FBSDEP has a unique solution (x,p,q,k). We set x = x' —x,
p = pl — p, q = q1 — q, ic = kx — k, the quartet (x, p, q, k) satisfies

/

/Ar /.(Ar

(£ft + fe^p^ + fc^j) ds + I (o-j'ij + CT^PJ + 0J3<?J) <^^
Jo

/

(AT ^.

/ (ft' * , . + ft2 P%- + ft3 9,_)A^(dz £/5)
Jz

I, = Oxr + <D'(ir) - <D2(ir) + / (fs
uxs +fs

12ps +fs
uqs

•/(AT

+ fs% + fs) ds- I qsdBs- f f ks_ (z)N(dz ds),
JtAT JtAT JZ

where/, =f\s,x,p, q, k) - f2(s,x, p,q,k),

(4.3)

<!> =

12 =

/ ? = •

; -xz

0, otherwise,

o,

0,

l(s,xs.

plql)-l(
Pl-P,

Ps, q]) ~ /(•

s,xs,ps,q])

s,xs,ps,qs)

qls-~

o,

otherwise,

, Ps ̂  0,

otherwise,

otherwise

I = b,a, g respectively.

/ , " =

12 _

0,

xs ^ 0,

otherwise,

Pl - Ps
0, otherwise,

f\s,xs,ps,ql,k])-fx(.s,xs,ps,qs,k\) „

0, otherwise,
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/ ' ( s , xs, ps, qs, kp —f\s, xs, ps,qs, ks)

0,

[14]

otherwise.

It is easy to check that (4.3) satisfies (H3.1), (H3.2) and (H3.3), thus (x,p, q, k) is
the unique solution of (4.3). We first need to prove that p0 > 0. We use the duality
technique and introduce the dual FBSDEP

M.,= l+ [' X(fs
l2Ms - b]Ns - a] Us - g] Vs) ds

Jo
z

(fs
nMs - b'sNs - al Us - ŝ

3 V,) dBs

(4.4) { + I f fs
HMs_N(dzds),

Jo Jz

*MZ + f ( - / ; Ms + b] Ns + a] Us + g\ Vs) ds

f UsdBs- f f Vs_(z)N(dzds).
i/lAt JlAT JZ

The duality technique is usually used to introduce the adjoint equation in optimal
control theory when we want to get the maximum principle (see [14] and [20]). From
(4.3) satisfying (H3.1), (H3.2) and (H3.3), we can verify that (4.4) satisfies (H3.1),
(H3.2) and (H3.4). Then it follows from Remark 3.2 that there exists a unique quartet
(M, N, U, V) which is the solution of (4.4).

Applying Ito's formula to xsNs + psMs, we have

p0 = E(<t>'(ir) - d>2(ir))Mr + E f MJ5 ds.
Jo

From (H4.1) and Mo = 1 > 0, if we can prove MSAr > 0, a.s. s > 0, then pQ > 0.
Let us define the following stopping time

v = inf{/ > 0; M, < 0} A r.

So v < x, a.s. and Mv_ > 0. In the first equation of (4.4), the noncontinuous part of
M, is only produced by random measure N, from (H4.2),

AMV>-MV., M,=M,

so Mv = 0, when v < r. We can introduce (MM Af,, U,, V,), t e [v, r] , which satisfies
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the following FBSDEP

263

(4.5)

/

/AT

(f,l2M, - b]Ns - o2Vs - g]Vs)ds

+ I (fs
uMs -b*Ns- o* Us - g3

s Vs) dBs
J v

+ I I fs
uMs_N(dzds)

Jv JZ

N, = - $ M t + I (-f,lM, + b]N, + ajU, + gl
s

JlAV

- I UsdBs- f fvs_(z)N(dzds).
JtAX JtAT JZ

Vs)ds

Then it is easy to see that (M,, N,, U,, V,) = (0, 0, 0, 0) is the unique solution. Now
we let

,, N', = ll0.v]{t)N, + llv,T](t)N,

u; = il0M(t)u, + iM(t)u,, v; = ilQM(t)v, + iMwv,, o< / < r.

It is easy to see that (M'r N'n U't, V't) is a solution of (4.4), from Remark 3.2, this is
the unique solution. From M'o = Mo = 1 > 0 and Mv > 0, obviously M^Ar > 0, a.s.
5 > 0, that is, MSAX > 0. So we have p\ > p0.

Now we try to compare p0 with pi, and then get the desired conclusion. If a1 — a2,
from Theorem 3.1, p0 — pi, then p\ > p\. If a1 > a1, we set

x = (x-x2), p = (p -p2), u = (u-u2)

q = (q- q2), k = (k - k2),

and apply Ito's formula to x,p,,

E(<D(ir) - <i>(x2))xT - (po - Pl)(a* - a2) = E / (A(s, U.) - A(s, u2), us)ds.
Jo

Here we use the notation from Section 3 for u and ,4. From (H3.3), we have

(po-p
2
o)(a

]-a2)>O,

so p0 > p\, and then p\ > pi- The proof is completed. •

Now we give an example of FBSDEP to show the comparison theorem.
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EXAMPLE 4.1. We consider the following two FBSDEPs,

•ds

[16]

(4.6)

K!=2-fPl^t+/Sds-l
Jo Jz (1 +

>Axal-p)
s)2

N(dzds),

dB<

- I q] dBs - f f kl
s(z)N(dzds), t > 0

Jt/\r JIAT JZ

and

(4.7)

• = ' -
(l+s)2

X

ds-
qs — p

(l+s)
s-2dBs

N(dzds),

^ds

Jo Jz U

- f q)dBs - I f k2(z)N(dzds), t > 0 .

.//Ar J/At Jz

It is easy to check that (4.6) and (4.7) satisfy (H3.1), (H3.2) and (H3.3), so accord-
ing to Theorem 3.1, there exist unique solutions (xl,px, qx, k1) and (x2, p2, q2, k2)
respectively. We can check that the above two FBSDEPs satisfy (H4.1) and (H4.2),
so from Theorem 4.1, we know that px

0 > p2.

We notice that the comparison Theorem 4.1 of FBSDEP, which holds only at time
t = 0, is weaker than that of BSDEP, that is, Theorem 2.2. In the forward-backward
case, we cannot easily jump to a conclusion like p\ — &(x\) > <$>2(x2) = p2 from
the assumption that <t>l(x) > <t>2(x) because in the present situation, the forward
solutions x\ and x2 are different if 4>' and <t>2 are. Thus unlike the classical (pure
backward) case, no common comparison theorem can be made even a1 = a2 except
for / = 0. We will give a counterexample to show this point.

EXAMPLE 4.2. For simplicity, we consider the fixed time duration T > 0, the
Lipschitz coefficient being constant, a one dimensional Brownian motion and study
the following two FBSDEPs,

(4.8)

x] = a + f(-pl + q\)ds - l{x] + p\ + q])dBs, 0 < t < T,
Jo Jo

p) =xl
T + 2+J (xl

s - ql + 2) ds -J q] dBs -j j k)(z)N{dz ds),
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2 = a + I (-p2
s + q))ds - I (x2 + p] + q2)dBs, 0 < t < T,

Jo Jo

x2-q2)ds-£ q2dBs- | j^]_{z)N(dzds),
(4.9)

From Theorem 3.1 and Remark 3.3, there exist a unique solution (xl, p\ q\ fc1)
for (4.8) and (x2, p2, q2, k2) for (4.9) respectively. Then, from Theorem 4.1, p\ > p\.
Now we try to check this conclusion for this example.

Firstly, it is easy to know that (x', p', q], kl) is the unique solution of (4.8), where
p] = x] + 2, q) = —x) — 1, Jt,1 = 0 and x) is the solution of the following stochastic
differential equation:

(4.10) \dx} = (-2xl-3)dt-(x}-

Then we get

x] = ae~5«2-B' - e-5"2- ' [' 4e5s/2+B' ds - e'5"2-8' I' e5s/2+B- dBs
Jo Jo

and p) = x] + 2, 0 < t < T. We also can get (x2, p2, q2, k2) is the unique solution
of (4.9), where p2 = xf, qf = —xf, kf = 0 and xf satisfies the following stochastic
differential equation

f = -2xf dt - xfdB,
( 4 - H ) 1.2 _

= a.

Then p2 = xf = ae-5l/2-Bl. So

p) -p] = 2 - e-5"2-*' [' 4e5s/2+B- ds - e~5'/2-B' f e5s/2+B' dBs.
Jo Jo

For t = 0, pi — pi = 2 > 0, but for any t > 0, it can be both positive or negative
with positive probability.
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