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1. Introduction

The results of a planetary theory built by an iterative method are given
here in order to show the relation with the secular variation theories and
the meaning of the mean elements in these latter theories. The general the-
ories have a validity span of several millions years but a weak precision; on
the contrary, the secular variation theories reach a great precision over sev-
eral thousand years. Two applications of the analytical planetary theories
are presented : the relation between the barycentric coordinates and the
geocentric ones; the determination of the terms of precession and nutation
for the rigid Earth.

2. General theories

2.1. FORM OF THE SOLUTION

The general theories represent the motion of the planets in Fourier series :
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Xj, 1;, 0; represent, respectively, the argument of the longitude, the argu-
ment of the Lagrange solution in eccentricity, the argument of the Lagrange
solution in inclination, connected to the planet j. The matrices (A;x) and
(pix) are the matrices of the eigenvectors of the Lagrange solution. In the
expressions (1), * arguments correspond to the case in which all the r; of
the formula (2) are zeros, that is to say to the long period terms.

2.2. LONG PERIOD VARIATIONS OF THE SEMI MAJOR AXIS AND OF
THE LONGITUDE

General theories are usually limited to the second order with respect to
the disturbing masses and the quantities A; g+ of the formula (1) are ze-
ros. In the study of the motion of the four outer planets Jupiter, Saturn,
Uranus and Neptune, (Bretagnon and Simon, 1990), (Bretagnon and Fran-
cou, 1992) have determined, by an iterative method, perturbations of orders
greater than 2 and thus obtained long period terms in the semi major axes.
We find, for instance in the semi major axis of Saturn :
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@Sgturn = 9.554 858 819

+0.000 188 232 cos(¥s — ¥6) 54017
+0.000 022 210 cos(24b5 — 2¢b6) 27009
+0.000 015 287 cos(ve — ¥7) 51 540
++0.000 004 720 cos(24b6 — 266) 11873
+0.000 003 587 cos(%s — ¥7) 1124076

+0.000 003 309 cos(v)5 — 296 + ¥7) 26375
—0.000 002 358 cos(2¢ps — 6 — 7) 56 744
4. (3)

In the formula (3), we have given the period of each term in years. By
the third Kepler law, these terms produce long period terms with very
large amplitude in the longitude. The formula (4) gives the most important
long period perturbations of the longitude of Saturn as well as the most
important short period terms.

ASaturn = 0.927 745 4+ 213.298 190¢
+0.055 714 sin(s — 16)
—0.012999 sin(v)5 — ¥7)
—0.011780 sin(¢5 - 1[)6 - 06 + 07)
—0.004 036 sin(vs — 1)
+0.003 238 sin(2%5 — 2t6)
—0.000 744 sin(245 — g — 1r)
—0.000477 sin(2¢5 - 21/)6 - 06 + 07)
+0.000 462 sin(z/)5 - 2¢6 + ¢7)
—0.000 399 sin(6s — 67)
+-.--
40.014 273 sin(2)5 — 5X6 + 316)
40.003 917 sin(2)5 — 5Ag — 5 + 41bg)
+0002 594 Sin(}\s - Ae)
+0.002 199 sin(2/\5 —5X¢ + V5 + 2¢6)
+0001 172 SiIl(2/\5 - 5)\6 + 1/)5 + 3’(/)6 - ’Iﬁ7)
—0.001 108 sin(2A5 — 56 — Y5 + 396 + ¥7)
—0.001 070 sin()\5 - 2)‘6 + 1/)5)
+0.000 934 sin(As — 2A6 + v6)
+--- (4)

The amplitudes are in radians, time in thousands Julian years from J2000.

These long period perturbations of the longitudes with very large ampli-
tudes are therefore essentially of the third order with respect to the masses.
We give the more important ones, expressed in arcseconds, in table 1 for
the longitudes of Jupiter and of Saturn, in table 2 for the ones of Uranus
and of Neptune.
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TABLE 1. Amplitude of the long period terms in the
longitudes of Jupiter and Saturn. The unit is the arc-

second.
Argument Period B Bs s
s — e 54017 —4653 11492
¥s — Y7 1124076 1606 —2681
s — e — 06 + 07 1996 218 986 —2430
e — Y7 51540 345 —832
295 — 296 27009  —272 668
215 — e — Y7 56 744 62 —154
295 — 296 — 06 + 07 52594 40 —98
s — 296 + U7 26375 -39 95

TABLE 2. Amplitude of the long period
terms in the longitudes of Uranus and Nep-
tune. The unit is the arcsecond.

Argument Period By,s+ Bnee

s — ¢r7 1124076 —20583 9996

Y7 — s 535721 —431 263
s — Y6 54017 —248 13
s — s 362810 220 —250
07 — 0 562640 159 —43
e — 7 51540 —97 22
25 — 247 562038 -13 —34

2.3. LONG PERIOD VARIATIONS OF THE PLANETARY ORBITS

The general theories are developed at the Bureau des Longitudes for all
the planets since 1970. They take into account the mutual perturbations of
all the planets one another, the relativistic effects, the lunar perturbations.
The long period terms of the variables k, h, ¢, p give the variations of the
planetary orbits over several millions years. These solutions bear a funda-
mental part in paleoclimatology because they allow to date with a great
accuracy the glaciations of the Earth of the quaternary period (Berger,
1973), the climatic variations of Mars (Ward, 1979), (Borderies, 1980).

3. Secular variation theories

The general theories represent the motion of the planets over very large time
spans but with a weak precision. The secular variation theories attempt to
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reach a great precision over time spans restricted to a few thousands of
years. Therefore it is useless to keep the long period terms in a periodic
form. By construction, we directly determine the time polynomial corre-
sponding to the long period part of the formulas (1) and the Poisson series
corresponding to the short period terms. Thus, to the long period terms of
the formula (3) corresponds the time polynomial of the semi major axis of
Saturn :

Saturn = 9.554 9091915 — 21.3896 x 10~5¢ + 444 x 10-1042
+670 x 101043 4+ 110 x 10-10#4 (5)

where t is reckoned in thousands Julian years from J2000.

The first determinations of these secular terms of the semi major axes
were obtained by (Simon and Chapront, 1974). Duriez (1978) has given a
proof of the Poisson theorem and established that these terms are of order
equal or greater than 3 with respect to the planetary masses.

The expansion of the long period terms with respect to time reduces
considerably the size of the series and allows to reach a great precision.
Thus, the longitude of Saturn of the formula (4) becomes :

ASaturn = 0.874 016 284 + 213.299 104 960¢ + 0.000 366 59712
—806 x 10~%¢3 — 557 x 1094

+0.013 944 575 sin(2As5 — 5Ag) + 0.002 196 781 cos(2)5 — 5Ae)
—0.001 590 423¢ sin(2A5 — 5A6) + 0.005 404 368t cos(2)5 — 5Ag)
—0.001 061 109¢2 sin(2As — 5)g) — 0.000 474 470¢2 cos(2)5 — 5Xe)
+ cos

In the formula (6), the coefficients are in radians. (6)

The polynomial part of a variable is the mean element of this variable.
It represents the development with respect to time of the long period part
of the general theories. The mean element contains the most important
variations but it does not represent a good approximation of the solution,
particularly for the outer planets which include very large short period
perturbations as we see in the expression (6).

The present analytical theories VSOP82 (Bretagnon, 1982), TOP82 (Si-
mon, 1983), VSOP87 (Bretagnon and Francou, 1988) have, over one cen-
tury around J2000, an accuracy of about 10~7 for Jupiter and Saturn and
of about 10~8 for the other planets. They include the mutual perturbations
of all the planets one another up to an order with respect to the masses
equal or greater than 3, the relativistic contributions of the Schwarzschild
problem, the perturbations by the Moon and some asteroids. They are
computed using the planetary mass values of IAU (Grenoble, 1976); the
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integration constants are determined by comparison to DE200 numerical
integration of JPL (Standish, 1982).

The precisions of these solutions seem good enough for the two following
applications : the determination of the difference between the barycentric
time T'C'B and the geocentric time TC'G and the computation of the terms
of precession and of nutation for the rigid Earth.

4. Relation between TCB and TCG

The analytical solutions of the motion of the planets and of the Moon
ELP2000/82 (Chapront-Touzé and Chapront, 1983) were used in the com-
putation of the relation between the Barycentric Coordinate Time (T'C B)
and the Geocentric Coordinate Time (TCG) par (Hiramaya et al 1987),
(Fairhead and Bretagnon, 1990).

Restricted to the terms proportional to ¢=2, the relation between T'C' B
and TCG is written :

TCB = TCG + ¢~? /
TCB,

=TCG + LcTCB
+ 1656.674 564 us sin(6 283.075850 TCB + 6.240 054) + - - -

with Lo = 1.480826 8475 x 10~8 and T'C B in thousands Julian years.

Uk represents the external mass force function evaluated at the geocen-
tre and has been computed taking into account the Sun, the Moon and the
planets from Mercury to Neptune.

By comparison to numerical integrations, T. Fukushima and A. Irwin
have shown that this solution has an accuracy of 1.8 ns over (1980-2000).
At the beginning, the solution of (Fairhead and Bretagnon, 1990) retained
only the periodic terms greater than 0.1 ns. To obtain the precision of 1.8 ns,
we have taken into account the 971 periodic terms greater than 0.01 ns.

To improve the relation between TC B and TCG, we have :

- to compute Ug and vg with planetary motion solutions using recent values
of the planetary masses, for instance the ones of the IERS Standards 1992
(McCarthy, 1992);
- to take into account Pluto : ALE! ~ 2 x 10~18;
- to take into account asteroids (Fukushima, 1995) : AL4 ~ 4.5 x 10~18;
- to determine the terms proportional to ¢~%. For these terms, (Mois-
son, 1995) finds :

A(TCB-TCG) = c* / TPl 3

( ¢ TCB, 8 2
= 1.0965 x 10~TCB - 0.10 x 10-20TC B?

—7%3 x 107125in(A3) — 3159 X 10712 cos(A3) + - - -

TCB
(Ue + 3v})d(TCB)
0

vh + U — %Ug) dTCB)
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with TC'B in thousands Julian years.

5. Precession and nutation for the rigid Earth

5.1. EQUATIONS OF THE MOTION

We have established the motion equations for the rigid Earth with the Euler
angles %, w, ¢ reckoned in the positive direction and w being the rotation
angle from ecliptic J2000 to the equator of date. We have therefore :
Y=—9Ya
W= —wy
where ¥4 and w4 represent the luni-solar precession and the obliquity with
the notations of (Lieske et al 1977). The sidereal time ¢ is given by :

¢ = potpit+Ap

with :
wo = 4.903 56257935
¢1 = 2301216.7531542 rd/thousand Julian years
We also defined :
p=pt+a
with :
a = -14°95

longitude of major axis of equatorial ellipse (Bursa, 1992).
Then, the equations are written :

B-A

., C . L

w+ZSlnwo<,01¢'=Z+F2+ 1 K

) . C M B-A

sinwp Asolw—;vE+Gz+BAAG1

¢—6+H2+ c H, (7)
with :

Fy = = bpr(sine = sinwo) - Ghapsing - S35 sinw coses
Gy = —9(sinw — sinwp) + %chgb - ﬁ%_—caﬁw cosw
Hy = —cosw + Pwsinw (8)
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Fy = 4sin gp cos @sinw + 1p(cos? @ — sin? @) sinw — 2w sin @ cos @
—-&sin? ¢ + P2 cos? @sinw cosw
G = 21/)<p sin @ cos gsinw + &sin @ cos g + o.zga(cos2 —sin? @)
412 sin @ cos Gsinw cosw — ¢ cos2 Psinw
Hy = &?sin@cos @ — 1w (cos? @ — sin? ) sinw — 12 sin @ cos @ sin? w
(9)
Let Ozyz be the reference frame ecliptic J2000 and OXY Z the non-
rotating equator of date. From Ozyz, we define OXY Z with 2 rotations:
- a rotation with 1 angle around 2 axis;
- a rotation with w angle around X axis.
The quantities L, M, N of the formula (7) represent thus the compo-
nents, in OXY Z, of the torque of the external forces with respect to the
geocenter 0. A, B, C are the moments of inertia.

5.2. USED MODEL

In the computation of the quantities L, M, N, we take into account, for
the influence by the Moon, the terms of the terrestrial potential depending
on Cpp for n from 2 to 5, on Ca 9, S22 and C3k, S3x for k from 1 to 3; for
the influence by the Sun : Cy 9, C30, Ca,2, S2,2, C3,1, 53,1; for the influence
by the planets from Mercury to Neptune : C3 9. The lunar theory used is
ELP2000/82 (Chapront-Touzé and Chapront, 1983); the one of the planets
and the Sun is VSOP87A (Bretagnon and Francou, 1988). In this study,
we take the following choices :

a) We study the variations of the rigid Earth equator with respect to the
ecliptic and the equinox J2000. So, we have to take into account the pertur-
bations of the equator by the Moon, the Sun and the planets, the motion
of which is expressed in rectangular coordinates with respect to the ecliptic
and the equator J2000.

b) The solution is expanded in Fourier and Poisson series, the angles of
which are linear combinations of the planet longitudes A; reckoned from
the equinox J2000 and of the Delaunay angles which do not depend on the
origin. In consequence, the 18.6 year period perturbation is represented by
the angle A3 + D — F which differs from the longitude €2 of the node of the
Moon referred to the equinox of date :

Ma+D—F=0Q+180°—pxt

where p is the constant of the precession in longitude and ¢ the time reck-
oned from J2000.

¢) In the Fourier and Poisson series, we keep only the linear part of the mean
longitudes of the planets and of the Delaunay angles D, F, lys; the poly-
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nomial parts, the degree of which is equal or greater than 2 are expanded
in Poisson series.

d) The perturbations due to the Moon are computed as a whole. We do use
a representation of the lunar motion in rectangular coordinates, containing
the perturbations of the main problem, the direct and indirect planetary
perturbations, the perturbations due to the terrestrial potential, the tidal
effects. In the same way, we use a solution of the Sun in rectangular co-
ordinates reckoned with respect to the Earth but not to the Earth-Moon
barycenter.

e) The computation was performed with the value of the precession constant
given by (Williams et al 1991) and used by (Simon et al 1994) :

p = 50288"200/thousand Julian years.

This value corresponds to :

d'/)A _ "
(T)t=0 = 50 385".0672.

The value of the geodesic precession p; determined by (Brumberg et al
1991) is :
pg = 19".1988.

We have therefore solved equations (7) fixing the value of the moment of

inertia C :
C = 1.805465872 x 10~15(mg au?) (10)
in order to obtain :
- (%)t—o = 50385”0672 + 19”1988 = 50 404".2660. (11)

The value of the obliquity is :
€0 = 23°26'21".412.
In the relation (10), mg is the mass of the Sun :
ms = 332946.045mEg
At this value of C corresponds the dynamical ellipticity Hy :
H,(50288".2) = 0.003 273 800 45
For p = 50287".7, one obtains :

Hy(50287".7) = 0.003 273 767 98
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TABLE 3. Most important perturbations of the nutation. Amplitudes are in 10~8",

periods in days.

Origin Argument Amplitude in ¥ Amplitude in w Period
Moon Cz XMM+D-F 17292 345.65 9227970.05 6793.48
Cs, As+D -1 104.05 88.95  3232.61
Cup MM+D-F 0.73 6.84 6793.48
Cs,0 A+D-1 0.01 0.00 3232.61
C22— S22 2X3+2D-2p 29.44 11.71 0.52
Cs1—Ss1 d+D+o 38.44 15.25 0.96
Ciz2 — 53,2 A3+ D —2¢ 0.39 0.14 0.51
03,3 - 53,3 A3+ D -3¢ 0.41 0.20 0.34
Sun Czp 23 1276 723.69 552395.17 182.63
Cs,0 A3 0.26 0.22 365.26
Ci2— S22 2da—29p 12.32 4.90 0.50
Cs,1 — Ss,l As+o 2.79 1.11 1.00
Mercury C>p A1 —4)s 1.03 0.43  2432.11
Venus Cz0 32 — 5)3 216.71 90.76 2959.21
Mars Czp Az — 2 11.55 0.95 5764.01
Jupiter C20 2)s 104.41 45.69 2166.29
Saturn Czp 26 12.15 5.16 5379.61
Uranus Cz 2)7 0.65 0.29 15344.24
Neptune Cz o 2s 0.40 0.16 30091.15
Complements A3+ D — F 15361.43 0.04 6793.48

5.3. RESULTS

We give in table 3 the most important perturbation of each component.
For the planets, it is the direct influence which is concerned. Complements
correspond to the quantities Fy, G1, Hy, F2, G2, H, of the equations (7).
Table 4 gives the different components to the secular terms of 14 and of w4.
In table (5) we compare the polynomial parts of ¥4 and w4 to the results
of (Simon et al 1994) and of (Williams, 1994). The difference with Williams
et alin 1 4(t) results from a different choice of precession constant and an
insufficient model in Simon et al explains the difference in w4(t). Besides,
Williams takes into account the secular variation of J; that explains the
discrepancy in ¥4(t?). With the value of J; (Bursa, 1992) :

Apa(Jy) =

Ja = (2.8 £ 0.3) x 107°/century
we compute the following perturbation :

—0".651 804¢2 + 0”.001 849t + 0".000 022¢* + - - -
—0"000447tsin(A3+ D — F) + - --
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TABLE 4. Secular term of ¥4 and of ws in
arcseconds per thousand years.

Origin Ya wa

Moon Cz,0 34455.298798 —0.254417

Cs,0 —0.000057 —0.000011
Cup 0.025192
Sun Cz2p 15948.860274 0.002923
Cspo —0.000026 —0.000 005
Mercury Cz0 0.003698 —0.000088
Venus Cz0 0.181582 —0.016814
Mars Cz0 0.005 999 0.000 357
Jupiter Cz 0 0.117060 0.002 804
Saturn Cz 0.005 208 0.000 220
Uranus Cz 0.000100 0.000001
Neptune Cz 0.000029 0.000001
Complements —0.231857
—pg —19.198 800

50385.067200 —0.265029

Awa(J) = 0000 00322 — 0”.000 088¢3 + 0".000 15024 + - - -
+0".000 239t cos(Az + D — F) + - - -

TABLE 5. Secular variations of ¥4 and of wa.

t 12 Al t
Ya 50385.067200 —107.246837 —1.144309 1.329708
Simon et al 50385.067200 —107.2374 -1.1424 1.3279
Williams 50 384.565010 —107.8977 -1.141 1.33
wa —0.265029 5.129643 —T7.732154 —0.004852
Simon et al 5.1294 —7.7276 —0.004 8
Williams —0.24400 5.126 8 -7.727

From ¢4 and wy4, we have computed the variables p4 and €4 and com-
pared to the KS solution of (Kinoshita and Souchay, 1990). Kinoshita and
Souchay use the following value of the precession constant :

p = 50290"966.

So, we have multiplied their solution by :

_ 50404.266

oef = +3407.032
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TABLE 6. Difference p4—coef KS. Unit is 108",

Argument sin cos Period
2Xs — 56 —499 —660 883y

3)s 216 888 121.75 d
A3+D-F —25 —384 6793.48d
203 +2D - F -y 20 281 6167.21d
423 — 8Xy + 35 -52 166 1783y

As+D—-1ly —106 96 3232.61d
82 —13Xs3 79 31 239 y

2A3 + 2D 81 -3 13.66 d
F—=lm -33 33 2190.35d

in order to make the solutions comparables. We give in table 6 the most
important discrepancies p4 — coef KS.
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