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Abstract. We present the effects that inhomogeneities have on radiating atmo­
spheres. It is shown that nonuniformities in a medium induce a reduction of the 
effective opacity which subsequently increases the Eddington Luminosity. The most 
striking effect however that arises from the dependence of the opacity on the inho­
mogeneities, is the possibility of a phase transition, where the atmosphere energet­
ically favors exciting horizontally propagating waves due to large fluxes. 

Atmospheres with a large radiative flux are extremely interesting as they 
are important for the behavior of objects such as luminous stars, novae or 
accretion disks. Moreover, they exhibit many effects in radiative hydrody­
namics. We summarize here two of them. We first show that the effective 
bulk opacity of an inhomogeneous medium is changed and that this can sub­
sequently induce a phase transition in a very luminous atmosphere. 

The important effect that arises when a system becomes inhomogeneous 
is the change of its effective opacity. Shaviv (1998a) has shown that the 
effective opacity relevant for the calculation of the average radiative force 
is not necessarily a simple mass or volume weighted average of the effective 
opacity. Instead, the opacity per unit mass is generally given by: 

Keff = (HKmp)/((H)(p)). (1) 

It is found by comparing the total radiative force on the system with the total 
flux. For small amplitude perturbations of the form Sp/p = Scos(kx — u>t), 
the effective opacity becomes1: K$ « Km' / (l + vd2), where v is a constant 
that depends on the wave type and on the form of the opacity. If for example 
Km oc paT13 and T <x p1* then optically thin and thick waves respectively have 
(Shaviv 1998b): 

"«wn = - [(a{a + 1) + /V( /3 - 1) + 2(Q + l)(3p] / 4 . (2) 

vthick = [(a + 2)(o + 1) + pp2(/3 + 1) + 2(a + 1)0fi] / 4 . (3) 

Evidently, the bulk opacity can under various circumstances be reduced. 
We now show that this induces a phase transition. To see it, we calculate 
the atmosphere's energy when a perturbation is added to it. If we find that 
the homogeneous equilibrium is not a minimum of the energy when small 
adiabatic perturbations are added, then it will be unstable as the latter will 
grow. The system will then have a new equilibrium state. 
1 The expression is accurate only for small amplitudes; since we wish to qualita­

tively analyze also large ones and strong fluxes, we choose an expression that 
correctly gives the quantitative behavior, namely, that neg —> 0 for 5 3> 1. 
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For simplicity, we assume that the relative perturbation is not a function 
of height and that the atmosphere resides on a rigid surface. Although gen­
erally not the case, these assumptions simplify the derivation as the specific 
energies become independent of height and of global energy changes in the 
system (e.g. a star) as a whole when the opacity is changed. 

The basic equation is the hydrostatic equation with the radiation forces: 

%=°T% = ^-9 + 9rad)p With grad=gWdlM-. (4) 

Here cy the isothermal speed of sound and glJd is the unperturbed accel­
eration due to radiation. The latter is changed from its unperturbed value 
when the opacity has corrections due to inhomogeneities. After integration, 
one finds that p = poexp (—geff/c?nz), with geg = g — grad- Even if the at­
mosphere is perturbed, the total mass of it per unit area - S should be con­
strained to remain the same. Using this condition we find that po — Hgegl<2j.. 

Two terms contribute to the total energy when a wave of amplitude 6 
is excited. The first is the acoustic energy in the wave per unit area. It is 
A = (e/2)SS2c2

r, where e is a constant that depends on the type of wave. 
The second is the potential energy. It is composed of the interaction with 
both the gravitational and radiation fields. For an optically thin atmosphere, 
one finds after proper integration that (Shaviv, 1998b): 

U + A- U(r0 = 0,8 = 0) = Sc2
T - ln ( - / ° + ^ 2 U^ 2 

(5) 
l + v62 ) 2 

where we have introduced Jo - the ratio between the radiation pressure 
gradient and the unperturbed Eddington Limit. For small amplitudes, we 
have: 

U + A-U(rQ = 0,6 = 0)*ZcT>(^--^^62 (6) 

Evidently, the total energy of the system is quadratic in the amplitude of 
the perturbations. However, the coefficient of the second order term can be 
either positive or negative depending on the value of To, if v is positive. For 
small values of r0, the sign is clearly positive and a zero amplitude wave is 
clearly the least energetic, however, above the critical value of: 

rcnt = 1/(1 + 2(i//e)), (7) 

it is apparent that by exciting a small amplitude wave, the total energy of the 
system will be lowered and thus more favorable! Moreover, the most favorable 
excitation or the one that is excited first when the flux is increased, is the 
one that has the lowest rcrit- In other words, the least stable mode is the one 
that has the lowest e to v ratio - a larger opacity change with a lower energy 
excitation cost. 

We also see that one cannot find the equilibrium from the linear or small 
amplitude analysis. Although eq. 5 is quantitatively valid only for small am-
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plitudes (S2 <C 1), we can use its qualitative behavior to understand what 
happens at large amplitudes as well. This behavior can be seen in figure 1. 
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Fig. 1. The total energy of an atmosphere for different rb (fluxes) when g,cr,t and 
2u = 1 (according to eq. 5). For values of Jb that are less than the critical value, the 
minimum of the total energy is at the origin. When rb is larger, the minimum energy 
is obtained for a finite amplitude wave. The inset depicts the equilibrium value as 
a function of Jo- It is of course accurate only for small amplitudes. The dotted line 
represents the unstable equilibrium of 6eq = 0 that exists for rcru < Jo < 1. 

When Jo is smaller than the critical value, the equilibrium amplitude is 
0. When Jo is larger, the total energy has a minimum for a finite amplitude 
of S given by: 

s2
eQ (r„ > rcHt) r0 - 2 + ^r2 + 8r0(u/e) V. (8) 

It approaches 0 for Jo -> r*rit. Namely, it is similar to a second order phase 
transition: The order parameter 8 is continuous but its derivatives are not. 

We have seen two interesting characteristics of radiative hydrodynamic 
flows. First, inhomogeneities can decrease the effective opacity of a medium, 
and second, that this change can reduce the potential energy of the sys­
tem and induce a phase transition. The effects have interesting implications 
to luminous objects. They affect phenomena like wind acceleration, change 
characteristics such as the Eddington luminosity and induce both spatial and 
temporal variability. A numerical simulation exhibits the qualitative results 
found here. A more general treatment can be found in Shaviv (1998b). 
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Discussion 

S. Owocki: In your simulation, you eventually find only one horizontal struc­
ture in the periodic box. In a real star, what sets the limiting horizontal scale? 
N. Shaviv: From the analytical treatment we know that different wave­
lengths are preferred for different opacity laws. Often, as was the case in 
the simulation, the preferred scale is ~ 2TTHP. Since the horizontal extent is 
roughly that, the periodic condition forces a wavelength that is exactly the 
width of the box. A larger horizontal extent gives a simulation that results 
in two wavelengths in the box. 

S. Shore: What is the effective viscosity of your calculations? In other words, 
what is your effective Reynolds number? 
N. Shaviv: The viscosity is of course limited by the finite resolution of the 
simulation (100x100). An increase in the resolution reduces the viscosity 
and could theoretically introduce more phenomena. This is why an analytical 
treatment is done as well. 

Nir Shaviv and Achim Feldmeier 
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