Received 31 March 2017
Revised 21 November 2017
Accepted 27 November 2017

Corresponding author
A. Dong
andy.dong@sydney.edu.au

Published by Cambridge
University Press

(© The Author(s) 2018

Distributed as Open Access under
a CC-BY-NC-SA 4.0 license
(http://creativecommons.org.
licenses/by-nc-sa/4.0/)

Des. Sci., vol. 4, e8

journals.cambridge.org/dsj
DOI: 10.1017/dsj.2017.31

me\ Design Society
aworldwide community

! CAMBRIDGE

@ P UNIVERSITY PRESS

Design Science

The role of bridging nodes in
behavioral network models of
complex engineered systems

Hannah S. Walsh!, Andy Dong? and Irem Y. Tumer!

1 School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University,
Corvallis, OR 97331, USA

2 Faculty of Engineering and Information Technologies, University of Sydney, Sydney,
NSW 2006, Australia

Abstract

Recent advances in early stage failure analysis approaches have introduced behavioral
network analysis (BNA), which applies a network-based model of a complex engineered
system to detect the system-level effect of ‘local’ failures of design variables and parameters.
Previous work has shown that changes in microscale network metrics can signify system-
level performance degradation. This article introduces a new insight into the influence of
the community structure of the behavioral network on the failure tolerance of the system
through the role of bridging nodes. Bridging nodes connect a community of nodes in a
system to one or more nodes or communities outside of the community. In a study of
forty systems, it is found that bridging nodes, under attack, are associated with significantly
larger system-level behavioral degradation than non-bridging nodes. This finding indicates
that the modularity of the behavioral network could be key to understanding the failure
tolerance of the system and that parameters associated with bridging nodes between
modules could play a vital role in system degradation.

Key words: failure analysis, complex systems, network-based modeling, mechanical design

1. Motivation

The complexity of high-stakes engineering systems, such as airplanes and
space systems, means that design engineers require scalable failure analysis
techniques to ensure system safety. However, since sub-systems are often designed
independently (i.e., by separate engineering groups or companies), sub-system
interactions are not completely known even if specified through interface
protocols until a prototype is built and tested. At the prototype building stage of
the design process, changes are costly. To reduce cost, it is desirable to understand
a system’s failure behavior early in the design process. However, early stage design
presents a significant challenge for designers, including lack of detailed knowledge
of the system hardware. Engineering design has recently turned to network
analysis as a new technique for understanding the failure tolerance of complex
engineered systems in the absence of fully built prototypes and simulations.

1/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

mailto:andy.dong@sydney.edu.au
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1017/dsj.2017.31

Design Science

2. Aim and significance

Prior research introduced the idea of using a behavioral network and network
metrics to understand the failure tolerance of complex engineered systems
(Haley et al. 2014, 2016). Behavioral networks represent complex engineered
systems with a network-based representation in which nodes represent design
variables and parameters and edges represent relations between them. We call
these nodes parameter nodes. The relations (edges) between nodes are derived
from behavioral descriptions of complex engineered systems, which include but
are not limited to governing equations and model-based design representations.
This prior work developed the method known as behavioral network analysis
(BNA). BNA introduced a method to relate the local failure of nodes in behavioral
networks to system-level failures through the use of specific microscale, i.e., local,
node-level, network metrics. BNA showed the novel result that local perturbations
to behavioral network-based representations of complex engineered systems can
reveal system-level behavioral faults. An important limitation of the prior research
was that BNA cannot identify a priori which nodes, when in a fault state,
are most likely to be associated with significant degradations of system-level
performance. Building on this method, this article aims to show that bridging
nodes, which are nodes that connect communities, or modules, in the behavioral
network are associated with a large change in a topological network metric average
shortest path length (ASPL) when under attack. An attack simulates the failure of
nodes or edges on system-level behavior. What this means is that the behavioral
degradation of a system is intrinsically linked to the community structure of its
behavioral network. To show this, the hypothesis to be tested is that the behavioral
degradation of complex engineered systems is higher when bridging nodes are
subject to attack than when non-bridging nodes are subject to attack, as measured
by the network metric ASPL.

An experimental study with forty engineering systems is used to test this
hypothesis. The experiment tests the change in the ASPL when bridging and
non-bridging nodes are attacked, that is, removed from the behavioral network
representation. During the attack, the edge weights of edges associated with anode
are modified. The fault variable is a factor that describes the degree of degradation
of anode (Haley et al. 2014, 2016). Performing the test under a range of values for
the fault variable tests the sensitivity of the BNA method on the value of the fault
variable.

In addition to testing this hypothesis, this article extends BNA modeling
techniques (Haley et al. 2014, 2016). The article introduces new techniques to
model embedded behaviors, represented by function calls, and logical behavior,
described by discrete equations.

3. Outline

First, a conceptual proof is presented to demonstrate how ASPL relates to bridging
nodes. Then, the forty systems used to test the hypothesis are described in terms of
size, type, and other characteristics. Next, modeling advances necessary to build
behavioral networks for these systems are presented. The hypothesis tested is
whether bridging nodes under attack are associated with a larger change in ASPL
than non-bridging nodes in the network. The experimental study uses a t-test
to show whether or not there is a statistically significant difference between the

2/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

change in ASPL between bridging and non-bridging nodes from nominal to fault
cases. The latter part of the article explores the effect of the fault variable on
the ASPL method. The article ends with a general discussion of the findings and
a section on future work.

4. Background

4.1. Existing failure analysis methods

Many methods for failure analysis take place late in the design process. Designers
often use Failure Modes and Effects Analysis (FMEA) to decompose a system into
sub-systems and components to explore possible failure modes and their effects
on the system (Department of Defense 1980). The downside of FMEA is that
it relies on engineering expertise, knowledge of the system, and historical data.
This limits its usefulness for novel designs. Another widely used method, Fault
Tree Analysis (FTA), shows paths leading to undesirable system states (Vesely
et al. 1981). The usefulness of FTA, however, depends on the accuracy of the
system representation, which can be lacking in the early design stages. Another
design method is the use of a Reliability Block Diagram (RBD) (Jensen 2012).
An RBD represents system architecture and component relationships graphically
using failure rate information. If information is required for systems with dynamic
behavior, it may be necessary to use a more advanced technique such as Markov
analysis (Xue and Yang 1995). A problem with such techniques is that they require
accurate failure probabilities and independent failures (Jensen 2012). These may
not always be the case in real-world complex engineered systems. These methods
are therefore limited by the accuracy of the failure probabilities, independence of
fajlures, and lack of usefulness early in the design process.

More recently, efforts have been made to move failure analysis to early stage
design. This includes methods such as the Function-Failure Design Method
(FFDM) (Stone et al. 2005). An extension of FFDM, Risk in Early Design
(RED), takes into account likelihood estimates (Grantham Lough et al. 2007,
2008). FFDM and RED connect system failures to loss of function in order to
identify potential failures. It then considers historical data so it can predict which
failure modes are likely. It is therefore reliant on the availability of such data.
Another method available in the conceptual design stage is Functional Failure
Identification and Propagation (FFIP) (Kurtoglu et al. 2008). FFIP provides
designers with information on failure behavior considering component, function,
and behavior implementations. However, FFIP uses a behavioral simulation to
determine fault propagation paths, which is computationally costly.

Taking an alternative approach, BNA makes the assumption that complex
engineered systems can be represented by behavioral networks that abstract
behavioral relations from a system and then represent those relations as a
network. This network is the basis for the analysis of the tolerance of the complex
engineered system to systemic failure.

4.2. Network analysis in engineering design

The fundamental idea behind BNA is that complex engineered systems can be
represented as a complex network, a modeling formalism that has led to significant
insights in multiple fields including social networks (Pattison et al. 2000), the

3/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

world wide web (Albert et al. 1999), and biology (Jeong et al. 2000; Sole et al. 2003).
Complex network theory has already been applied to engineering design in a
number of ways. A network approach has been used to analyze system modularity
(Sosa et al. 2007), analyze the effect of design changes (Ma et al. 2016), and predict
customer responses to technological changes (Wang et al. 2016). Recent research
has uncovered that the network structure of products and product development
processes resembles many other real-world networks (Braha and Bar-Yam 2004).

The idea behind using network analysis to understand system failures is to
find an appropriate way to represent a complex engineered system as a complex
network and use various techniques from network theory for analysis (Sosa et al.
2011; Sarkar et al. 2014). This is possible because of meaningful analogies between
complex networks and complex systems (Mitchell 2006), specifically with regard
to failure behavior. The complex network perspective explicitly considers the
relation between structure and function, that is, how entities come together in
order to perform a function (intended purpose). It also explicitly considers the
relation between structure and systemic risk of connectivity failure based on
the interdependence of nodes. Simply put, the structure of the network affects
how effectively a system accomplishes its functions and its resistance to systemic
fajlure.

Much as a contagion spreads in a biological system, a failure in an engineered
system can cause loss of performance downstream (Mehyrpouyan et al. 2013a).
Failure in a complex network is described as fragmentation of the network into
smaller, disconnected parts and is generally measured using size-based metrics
such as the diameter of the network or the size of the largest connected component
of the network. It is assumed that in the network’s original state, every node is
connected to at least one other node in the network. An attack on a network can
be either random or targeted, meaning nodes and edges are attacked (removed
from the network) at random or due to specific properties such as their high
degree of connectivity. A networK’s ability to withstand attack has been well
researched in other fields (Albert et al. 2000; Sosa et al. 2011). For instance,
scale-free networks are vulnerable to targeted attacks on nodes having a high
degree of connectivity but robust to random attacks (Albert et al. 2000). In an
engineering system, a random node attack is similar to a random failure whereas
a targeted attack is similar to a failure initiated by a known external event that will
impinge directly on the target node (design variable or parameter). For example,
rain and fog can interfere with specific components in radar-based detection
systems, compromising the system’s performance. For this reason, the transfer of
knowledge about the failure of complex networks and complex engineered systems
is possible.

4.3. Behavioral modeling

To understand how vulnerable a system is to the loss of function in an individual
element in the system, previous work developed the concepts and mathematics
behind network representations of engineering systems (Kasthurirathna et al.
2013; Mehyrpouyan et al. 2013a; Mehrpouyan et al. 2013b0). The predominant
modeling approach has thus far been to represent the components and their
inter-relationships in the system as a network. The problem with using only
the components in the network model is that the network model insufficiently
represents behavioral interactions. Depending upon the assumptions used to

4/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

create the component-based model, interactions between components may
include physical connections or spatial interactions, such as a magnetic flux
from one component that may impact nearby components. Any behavioral
interaction is implied in the component model and it is not evident which
interactions have been included and which have been excluded. In complex
engineered systems, multiple design variables and parameters are often shared
among components and sub-systems. Component models do not necessarily
model the interaction between components due to these shared parameters.
Taking into account behaviors rather than physical architecture alone means
that a broader range of failure possibilities and sub-system interactions can be
considered (Haley et al. 2014, 2016). Furthermore, while other methods of failure
analysis rely on expert knowledge such as failure probabilities, failure behavior
known through experience, and specific component selection, BNA does not.
The advantage of BNA lies in early stage design, especially of novel systems, when
this information is not known.

5. Related work

5.1. Prior work in behavioral network analysis

5.1.1. BNA overview

Given the lack of work on network-based behavioral representations, initial
research in BNA focused on the details of modeling a complex engineered
system. BNA utilizes a behavioral model rather than a component-based model
or a typical functional model. One of the assumptions of BNA is that the
mathematical details of the governing equations of the system can be abstracted
into a network representation. Subsequent experimental results indicate that
the network representation is sufficient to obtain valuable information about
the failure tolerance of the system. Abstracting away the mathematical details,
and instead focusing on the structural role of the parameters in a behavioral
network representation, saves a significant amount of computational cost. BNA
is not expected to provide quantitative predictions regarding the effect of the
degradation of a particular parameter, that is, to provide the exact values of
parameters and variables at the time of a particular failure. Instead, the concept of
the local degradation of a parameter causing global system-level impact, and its
analogy to what happens in a complex network when a node is removed, is at the
core of BNA.

Given the network representation, BNA uses network topology metrics to find
vulnerable parameter nodes in the behavioral network (Haley ef al. 2014, 2016).
The degradation of parameter nodes should cause a system-level change. In order
to test which network topology metrics could detect system-level changes due
to attacks on nodes in the behavioral network, prior work compared multiple
network metrics (Haley et al. 2014, 2016) based on their ability to indicate the
system-level effects of node attack. Attacking a node in BNA involves decreasing
the edge weight of all edges associated with the target (attacked) node from 1.0 to
0.5. In other words, a fault variable of 0.5 is applied to that parameter. Complete
node removal would involve applying a fault variable of zero to all edges associated
with the target node. However, using a fault variable value greater than zero
(but less than one) is more representative of what happens in the engineering
system, which is that a parameter’s value is different from its nominal value but

5/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

some functionality is retained. It was found that two network metrics, ASPL and
robustness coefficient (Piraveenan et al. 2013), sufficiently captured the behavioral
degradation due to attack on parameter nodes (Haley et al. 2014, 2016). This prior
research showed that behavioral networks of complex engineered systems can
be used to detect system-level faults due to local failures. However, the method
could not determine in advance which nodes would most likely be associated with
system-level faults. In other words, if a system-level fault is detected, which nodes
may be the cause? Or, alternatively, if certain nodes fail, which ones are most likely
to cause the most significant changes to the system?

Previous work by the authors (Walsh et al. 2017) introduced the concept of
bridging nodes to understand the structural role of vulnerable parameters in
behavioral networks of complex engineered systems. In this article, the authors
delve deeper into this idea. The new contributions of this article are a conceptual
proof for a higher change in ASPL for bridging nodes than non-bridging nodes,
a study on the effect of the value of the fault variable on system-level failure,
additional empirical results on the degree distributions of real-world behavioral
networks, and findings on the relationship between the community structure of
behavioral networks and their failure tolerance.

5.1.2. BNA system representation

The technique outlined in this section is based on the work by Haley et al. (2014,
2016). The first step in BNA is to build the behavioral network from the system’s set
of governing equations. Each individual function in the set of governing equations
is referred to by a numbered function, for instance F'1. The network is bipartite
which means it has two distinct types of nodes. In bipartite behavioral networks,
these two nodes types are function nodes and parameter nodes. Any given node
in a bipartite network can share an edge only with a node of the opposite type.
A bipartite network can be transformed into a unipartite network through an
appropriate transformation.

Next, a group of nodes is assigned to describe each function. In practice, the
set of functions describing the behavioral network can be extracted from any
mathematical or behavioral description of the system. In this project, the systems
are derived from system models in OpenModelica, version 3.2.2 (OpenModelica
2016) and the sets of functions are extracted from the instantiation information.
Two functions from an example model from the standard OpenModelica package,
a rolling wheel, are shown below. They are called F1 (the first function in the set
of governing equations of the system) and F2 (the second function in the set of
governing equations of the system). A high-level description of this model is given
in Appendix A. For each given function, such as the ones given below, there is one
function node and at least one parameter node.

F1:inertia.] x inertia.a = inertia.flange_a.tau
+ inertia.flange_b .tau; (1)
F2: inertia.flange_a.tau + torqueStep.flange.tau = 0.0; (2)
There are four parameter nodes in (1), one for each of the variables in the
function. These are connected to the function node corresponding to the first

function in the set of governing equations, F'1. The function node is F2 for (2).
There are two parameter nodes corresponding to its two variables. This process,

6/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

inertia.a

inertia.flange_b.tau

inertia.flange_a.tau

torqueStep.flange.tau

Figure 1. Network segment for basic BNA technique example from rolling wheel
system for (1)-(2).

done for all functions, forms the system’s behavioral network. See Figure 1 for the
behavioral network in which nodes are ovals and edges are lines drawn between
nodes.

It is worth noting that for this example we have chosen two functions that
share a design parameter. Not all functions in the set of governing equations will
share a parameter. However, when the full graph is generated, all functions will
be connected via at least one parameter node. Two given functions may not be
connected together directly, but they will be connected together indirectly via
other functions.

5.1.3. Finding vulnerable design parameters using BNA

At this point, the behavioral network has been constructed. The next step in the
process is to calculate the network metric for the degradation of each parameter
node. Parameter degradation refers to a change from its nominal value. In network
analysis, failure is simulated by ‘attacking’ a node or edge, generally by removing
a node and its associated edges or removing or changing the weight of an edge.
In BNA, the parameter nodes are attacked by modifying the edge weights of
associated edges. The reason for attacking parameter nodes and not function
nodes is that, to the physical system, attacking a function node is meaningless.
It is meaningful to attack parameter nodes because they correspond to real
design parameters that may have out-of-nominal value depending on operating
conditions, manufacturing tolerances, or failure. The value of the edge weight is
used as an indicator of the degree of fault in the relation between nodes. Its value is
known as the fault variable in the behavioral network. The general prescription is

7/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

to modify the edge weights to 0.5, but this study will examine the effect of various
values of edge weight. The network metric ASPL is calculated first for the nominal
case and then for the case of degradation of each parameter. The first of these cases
implies no fault. The second implies a fault. The ASPL is the average value of the
shortest paths between all nodes in the network. ASPL has already been tested for
its ability to capture behavioral degradation (Haley et al. 2014, 2016).

In the work by Haley et al. (2014, 2016), the ASPL under an attack state is
compared to the nominal ASPL, that is, the ASPL of the behavioral network in
its original state. In this article, the difference between the nominal ASPL and a
given degradation case ASPL was calculated and the resulting quantity is called the
AASPL of that parameter node. A large AASPL of a parameter node compared
to other parameter nodes in the same system is expected to predict that this
parameter (node) is vulnerable. AASPL is a measure of relative vulnerability.
Vulnerable parameter nodes have with high AASPL relative to other parameter
nodes in the network.

5.2. Bridging nodes

Since the focus of BNA is on finding vulnerabilities, and because of the analogy
between complex engineered systems and complex networks, vulnerabilities in
networks are relevant. Finding vulnerable nodes in a network is a key area of
research in network science (Li et al. 2013). Vulnerable nodes in a network are
typically described as those for which the removal would disconnect a large group
of nodes from the main portion of the network or greatly increase the path length
between nodes. Recently, some researchers have focused on locating bridging
nodes, which are nodes that connect communities (Zhu et al. 2014; Liu et al. 2016).
While there is some debate on the exact mathematical definition of a community
in a network, the generally accepted definition of a community is tightly connected
groups of nodes that have more connections to nodes within the community than
to nodes outside of the community (Newman 2010). Bridging nodes have been
shown to be relatively more vulnerable than other types of nodes in the network
(Hwang et al. 2006).

Communities are located in a particular network using a community
detection algorithm. There are many methods for community detection, but
this paper will focus on methods based upon the concept of modularity
maximization. Modularity maximization begins with an initial division of
nodes into communities, which is often a random division into equally sized
communities. Then, the change in modularity metric is calculated in the case
that each node individually were to move to the other community. Those nodes
for which their movement would increase the modularity metric by the largest
amount (or those for which their movement would decrease the modularity metric
by the smallest amount) and which have not already been moved are then moved
to the other community. Once all the nodes have been moved, the algorithm saves
this state and begins the process again. When the modularity metric no longer
improves at the end of the process, the algorithm terminates (Newman 2010).

The Q-modularity of a community or group in the network is calculated using
the relation in (3), where m is the number of edges, A;; is an element of the
adjacency matrix, k; is the degree of vertex i, § im, n) is the Kronecker delta, and ¢;
is the community in which node i belongs. The Q-modularity is always less than
1. A positive modularity indicates that there is more interconnectedness within

8/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

Figure 2. Heat transfer of two masses behavioral network, unmodified.

a community than would occur by chance alone, whereas a negative modularity
indicates that there is less interconnectedness within a community than would
occur by chance alone (Newman 2010).

1 kik;
QZZmZ(AU_ zmj)S(ci,cj). (3)

1

Bridging nodes are nodes that have at least one connection from a node within
a community to a node in another community. In a community, there are many
nodes that have connections internal to the community and few nodes that have
connections outside of the community. The latter type of node is a bridging
node. Bridging nodes essentially connect communities. The definition of bridging
nodes, then, is inseparable from the definition of communities.

The conjecture presented in this article is that bridging nodes have a significant
role in the failure tolerance of behavioral networks. This is an interesting research
question because it suggests a link between the community structure of behavioral
networks and their failure tolerance. Communities of nodes exist in almost all
networks, and they do not exist by chance. Whether by self-organization or
intent, elements form communities to perform a higher-level function. From a
physical architecture perspective, these communities represent sub-systems that
perform a specific function. In behavioral networks, these communities are a
collection of design parameters which perform a behavior. Though it would
be highly unlikely that communities would not exist in behavioral networks,
communities are not completely evident in the set of governing equations. Other
than communities that are defined by a single equation, ‘emergent’ communities
arise from the structure of the set of equations describing the systems. Figure 2
shows the behavioral network of an engineering system. Figure 3 shows the same
behavioral network with the communities circled for purposes of illustration. This
behavioral network is for the heat transfer of two masses system, described at a
high level in Appendix A. These communities were located using a modularity
maximization community detection algorithm. If a bridging node were to fail,
then these behavioral communities would become disconnected from other
behavioral communities in the system. This could cause a potential fault. Given

9/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

Figure 3. Heat transfer of two masses behavioral network, communities circled.

the established relation between the change in ASPL and system-level failure, this
article tests whether or not the change in the ASPL of bridging nodes is higher
than the change in the ASPL of non-bridging nodes.

6. Research method

6.1. Conceptual proof

Considering the definition of ASPL and the definition of a bridging node, it
can be shown conceptually that an attack on a bridging node induces a larger
change in ASPL than an attack on a non-bridging node. The ASPL formula, given
in (4) (Newman 2010), considers the shortest path between all pairs of nodes
in the network. In (4), n is the number of nodes in the network and d is the
shortest distance between two nodes. The indices i and j refer to individual
nodes. The equation for ASPL indicates that a shorter distance between nodes
decreases the ASPL. A visualization of this concept is shown in Figures 4 and 5. In
Figure 4, a completely connected graph, each node neighbors every other node in
the network. In contrast, in Figure 5, some nodes are farther apart, meaning the
‘path’ between these nodes is more than one edge long (in Figures 4 and 5, assume
that all edge weights are equal).

ASPL = rTlZ Zdi,-. (4)
ij

The ASPL for any node under attack is always less than or equal to the nominal
case because attack on a node decreases the edge weights of the nodes associated
edges, thereby decreasing the length of the path between the nodes. Those edges
that connect communities are like major freeways between cities in that they are
the shortest path between a large number of nodes, in contrast to edges that
are within a community which may only connect a few nodes that are within
their community. If the edge weight of an edge that connects two communities
is reduced, the shortest path between all those nodes connected by this edge is
shortened even further, thus reducing the ASPL significantly. However, if the edge
weight of an edge that connects nodes within a community is reduced, the shortest
path between only those local nodes within the community is shortened, meaning

10/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

@ @

Figure 4. Small example network with ASPL = 1.

[
o]

Figure 5. Small example network with ASPL = 2.

there is less of an impact on the ASPL. This effect can be shown on the relatively
simple behavioral network shown in Figures 6 and 7. Figure 6 shows the edges
associated with a bridging node highlighted. Figure 7 shows the edges associated
with a non-bridging node highlighted. The system shown here is a voltage divider
circuit, described in Appendix A.

The nominal ASPL of the behavioral network with all edge weights equal to
1 is 8.05936. When the edge weights of the edges associated with the bridging
node are reduced to 0.5, the ASPL is 7.79604. When the weights of the edges
associated with the non-bridging node are reduced to 0.5, the ASPL is 7.81963.
The bridging node, under attack, has a larger effect on the ASPL. These values can
also be represented as AASPL by subtracting the failure values from the nominal
value. This shows how much the ASPL has changed from the nominal. The AASPL
of the bridging node is 0.26332 and the AASPL of the non-bridging node is
0.23973, meaning the bridging node has a larger AASPL than the non-bridging
node. Either function nodes or parameter nodes can be bridging nodes, but only
those bridging nodes that are parameter nodes are relevant to the method because

11/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

. > 09
. ¢ B
L] Y ®
° [
-* 4
P °
f L]
[} \
]
@ P oo
N P | g
o o-o°? o ®
/ o . o o
oo g
| ot -]
[}
-]
-]
| o/
Q
n‘ o
'
13 o @
] L]
] L]
®

Figure 6. Behavioral network for voltage divider circuit with bridging node
highlighted.

O Py o9
. ¢ B

L] Y ®

® [
.I 4

- L]

[2=] ™ +Q
P °
Y, o
v)
. '
0
e
| o)
e
% 4
L]
L L L]
® °
® ®
(]

Figure 7. Behavioral network for voltage divider circuit with non-bridging node

highlighted.

those are the only nodes that are attacked. This small example tested on a relatively
small, modular network illustrates why bridging nodes and ASPL are related. This
intuitive example leads to the experimental study to show this observation more
rigorously.

6.2. Description of method

The experimental study tests the hypothesis that bridging nodes have a
higher AASPL than non-bridging nodes. To do this, first, a set of engineering

12/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

systems was analyzed using the existing BNA method. For this study, each system
was modeled in OpenModelica (OpenModelica 2016). In general, designers
can obtain behavioral models using SysML or Simulink. After the behavioral
model was obtained, the governing equations of each system were extracted
from the OpenModelica instantiation information. The behavioral network was
built from the governing equations using a text-processing MATLAB script.
The text-processing script works by checking each function for its associated
parameters and generating a list of nodes and edges with which to build the
network. Once this information was obtained, Mathematica was used to generate
the actual network that can be analyzed. The MATLAB script and Mathematica
code make the computational time and human effort for this process trivial. This
process for generating the network representation of each system was repeated
for all forty systems.

After this step, AASPL values for each node in each system were obtained.
Next, the modularity maximization algorithm built into Mathematica was used
to find communities in the behavioral network for each of the forty systems.
Then, the parameter nodes were split into two categories: bridging nodes and non-
bridging nodes. To determine the categorization, all nodes that were in a specific
community were considered and, using the accepted definition of a bridging node
(Zhu et al. 2014; Liu et al. 2016), these nodes were checked to determine if any were
connected to a node in another community. In this case, this node was identified as
a bridging node. This process was automated in Mathematica code and repeated
for all nodes in the network. For each of the forty systems, the average AASPL
of the bridging parameter nodes and the average AASPL of the non-bridging
parameter nodes were calculated. This left forty data points for bridging nodes
and forty data points for non-bridging nodes. To test the hypothesis that bridging
nodes have a higher AASPL than non-bridging nodes, an independent samples
t-test with unequal variances was used.

Recall that calculating the ASPL is not a recommended way of finding bridging
nodes. The purpose of this experiment was simply to show that bridging nodes are
associated with nodes having high AASPL. There are other, likely more efficient,
algorithms that are being developed for finding bridging nodes (Hwang et al. 2006;
Li et al. 2013; Zhu et al. 2014; Liu et al. 2016). Nonetheless, the fact that nodes
with a high AASPL tend to be bridging nodes shows that they are valuable to
the study of behavioral networks and indicates the importance of the community
structure of these networks. This is particularly significant given that the study
was conducted using behavioral network models of real engineering systems.

6.3. Description of systems used

The forty systems used in the study were diverse in size, discipline, and governing
equations. System size, as measured by number of edges, ranged from 33 to 1732
edges. See Figure 8 for a histogram of the different sizes of systems. In Figure 8 the
size of a system was defined by the number of edges in its behavioral network.
The systems came from multiple engineering disciples including electrical,
mechanical, fluid/heat transfer, and magnetic. See Table 1 for a breakdown of
number of systems by engineering discipline. Thirty eight of these systems were
example models from OpenModelica, version 3.2.2 (OpenModelica 2016). One
system was a simple voltage divider circuit model. One system was synthetic. The
diversity of the sample set reduces the bias in our experiment and increases the

13/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

14-

Number of Systems

0 200 400 600 800 1000 1200 1400 1600 1800
Number of Edges

Figure 8. Sizes of systems studied.

Table 1. Characteristics of systems

System category Number of systems
Mechanical

Fluid/Heat Transfer

Magnetic

Electrical 22

external validity of the findings. The functions making up the governing equations
of the system include continuous equations, discrete equations, embedded
function calls, and many different mathematical operations. In size, discipline,
and function type, then, the systems used should be representative of a wide
variety of systems found in general engineering practice. A table with a high-level
description of each of the systems can be found in Appendix A.

A degree distribution plot is a commonly used type of plot to describe a
network. It reveals structural characteristics of the network and can be used to
differentiate between network types such as scale-free and random. It is essentially
a histogram of the degree of connectivity of all the nodes in the network. The
degree distribution plots for four of the resulting behavioral networks are given
in Figures 9-12. These four networks are taken from each of the categories in
Table 1 and are a representative sample of the forty systems. See Appendix A
for a high-level description of these four systems. The shape of the degree
distribution plots looks similar for all four and roughly follows the distribution
of a homogeneous graph as opposed to a scale-free graph. A scale-free graph is
robust to random attack and vulnerable to targeted attack (Albert et al. 2000).
However, the behavioral networks of these systems are not scale-free, which
provides some insight into the failure tolerance of these systems simply from

14/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

Frequency
150
100
50

Degree
2 34567

Figure 9. Degree distribution plot for behavioral network of indirect cooling system.

Frequency
250

200
150
100

50

Degree
2 3 4 5 6 7

Figure 10. Degree distribution plot for behavioral network of electrical multiphase
rectifier system.

Frequency

— D
2 3 4 5 6 7 ~oUee

Figure 11. Degree distribution plot for behavioral network of simple drivetrain
system.

Frequency
70
60
50
40
30
20
10

= Degree
2 3 4 5 6 7 8

Figure 12. Degree distribution plot for behavioral network of magnetic saturated
inductor system.

looking at their degree distribution plots. Given this characteristic, it is not a priori
obvious whether bridging nodes will be more vulnerable (cause more significant
degradations to system-level performance if they are attacked) than non-bridging
nodes since both have a similar node degree.

In developing the behavioral networks for these systems, it was noted
that there were some behaviors that existing modeling techniques could
not handle. These behaviors had specific mathematical manifestations in

15/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

the OpenModelica instantiation information. These mathematical constructs
represent real behaviors in the real system. Therefore, modeling them correctly
is critical. These modeling complexities were addressed before testing the
hypothesis.

6.4. Modeling techniques

In this section, the modeling techniques developed in order to model more
realistic systems are presented. First, a technique for modeling embedded behavior
is presented. Then, a technique for modeling logical behavior is presented. With
these techniques, systems with a wider range of behaviors can be modeled
using BNA.

6.4.1. Modeling embedded behavior

An embedded function call represents embedded behavior. The function call
may describe the behavior of a small sub-system or a mathematical tool in the
governing equations used when a specific calculation needs to be performed
several times. For instance, an embedded function could be used for converting
a temperature in Celsius to a temperature in Kelvin. When these embedded
functions are to be performed several times, each set of input parameters is unique,
and therefore the output parameters of each function call are unique. In the
governing equations, a function call occurs when an embedded function is defined
and then referred to by at least one equation. An example is in (5)-(10). (5)-(9)
comprise the function definition, while (10) demonstrates an equation calling the
function. This example is from one of the systems used in the study. The embedded
function definition may also include an algorithm to show how the output is

calculated.
function ToSpacePhasor (5)
input Real[3] x; (6)
output Real[2] y; (7)
output Real y0; (8)
end ToSpacePhasor; ©)

F1: (electricalPowerSensor.i_, _) = ToSpacePhasor
({electricalPowerSensor .plug_p.pin[1].i,
electricalPowerSensor.plug_p.pin[2].i,

electricalPowerSensor .plug_p.pin[3].i}); (10)

There are two outputs from the embedded function: y and y0. This is
illustrated in (5)-(9). Because the outputs will be different depending on the
inputs used, one cannot simply use those outputs every time the function is
called. Otherwise, if the embedded function were used multiple times, the
nodes associated with the outputs of the embedded function would have an
inappropriately high node degree in the behavioral network. To handle this
complexity, a new output parameter is created for each instance of the function
being called. If the instantiation information has multiple function calls with
different inputs, the name of the output must depend on the inputs used in the

16/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

electricalPowerSensor.i_

y({electricalPowerSensor.plug_p.pin[1].i,
electricalPowerSensor.plug_p.pin[2].i,
electricalPowerSensor.plug_p.pin[3].i})

yO({electricalPowerSensor.plug_p.pin[1].i,
electricalPowerSensor.plug_p.pin[2].i,
electricalPowerSensor.plug_p.pin[3].i})

electricalPowerSensor.plug_p.pin[1].i
electricalPowerSensor.plug_p.pin[2].i
electricalPowerSensor.plug_p.pin[3].i

Figure 13. Resulting network segment for function call example from SMEE
generator system.

function call. The embedded function outputs for the function call are given in
(11) and (12). To reiterate for clarity, embedded functions are not the same as the
functions which are described by the governing equations of the system.

y ({electricalPowerSensor.plug_p.pin[1].i,

electricalPowerSensor.plug_p.pin[2].i,
electricalPowerSensor.plug_p.pin[3].i}) (11)

y0 ({electricalPowerSensor .plug_p.pin[1].i,
electricalPowerSensor.plug_p.pin[2].i,
electricalPowerSensor.plug_p.pin[3].i}) (12)

The output parameters in (11) and (12), electricalPowerSensor.i_, and F'1
comprise the list of nodes describing (10). The underscore on the left-hand side of
(10) is not a parameter node because it is not a design parameter. A new function
node must be added for the function call in (10). This is F2. The nodes associated
with F2 are the inputs and outputs of the function call. Figure 13 is the resulting
network segment for this example.

6.4.2. Modeling logical behavior

if not out_p.m_leakBEcurrentIsGiven > 0.5 then (13)
out_p.m_leakBEcurrent :=

out_p.m_c2 x out_p.m_satCur, (14)

end if ; (15)

Some systems included logical behavior, which shows up as discrete equations
in the set of governing equations. An if-clause is one type of discrete equation.

17/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

out_p.m_leakBEcurrentIsGiven

out_p.m_c2IsGiven

out_p.m_leakBEcurrent

Figure 14. Resulting network segment for if-clause example from electrical oscillator
system.

There is a relationship between the condition in the if-clause and the parameters
contained in the body of the if-clause which cannot be ignored. All parameters in
the body of the if-clause as well as the if-condition itself must be connected to a
single function node. The same goes for parameters associated with an else-if or
else statement.

An excerpt from the set of governing equations including an example of an
if-clause is given in (13)-(15). Figure 14 shows the resulting network segment.
Since all of the parameters in (13)-(15) are included in the same if statement, they
are all connected to the same function node in the resulting network segment in
Figure 14.

Other examples of discrete equations include when-clauses. There are also
if-expressions and assert statements, which are handled the same as if they were
structured as an if-clause. These modeling advances allowed all forty systems to
be analyzed. In the next section, results of the empirical study are presented.

7. Results and analysis

In this section, the hypothesis tested whether the change in the network
metric ASPL due to attack on parameter nodes is higher in bridging nodes,
which are key structural elements of networks, than non-bridging nodes. To
restate the method for testing the hypothesis, a fault variable was applied to all
edges associated with each attacked parameter node. Then, the network metric
was calculated and compared to the network metric calculated from nominal
case, which is when no fault variable is applied to any edge in the network. A
large AASPL, or change in ASPL, for a particular node means that degradation
of that node significantly impacts system-level performance. Bridging nodes were

18/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

Table 2. AASPL and bridging nodes: average AASPL of bridging parameter nodes and non-bridging
parameter nodes in a representative selection of systems

System Category Non-bridging, Bridging, Non-bridging, Bridging,
Modularity Modularity Spectral Spectral
Maximization = Maximization

Multiphase rectifier ~ Electrical 0.0519 0.0894 0.0508 0.0774

Saturated inductor ~ Magnetic 0.0998 0.1664 0.0984 0.1399

Pump and valve Thermal/Fluid 0.0751 0.1587 0.0718 0.1290

Rolling wheel Mechanics 0.1309 0.1935 0.1338 0.1638

Table 3. AASPL and bridging nodes: t-test results

Method P-Value (one-tail) Effect size Non-bridging node Bridging node
mean AASPL mean AASPL
(all 40 systems) (all 40 systems)

Modularity < 0.001 1.2961 0.0828 0.1409

Maximization

Spectral 0.005 0.7920 0.0818 0.1160

located by first finding communities in the network and then using the definition
of bridging nodes to determine which parameter nodes in the network were
bridging nodes. The results in Table 2 show the average AASPL for bridging
and non-bridging nodes in a representative selection of systems. The full data
set includes the average AASPL of bridging and non-bridging nodes for all
forty systems and for two different community-finding algorithms. To determine
whether or not the difference in average AASPL is statistically significant, a
one-tailed t-test was used. A one-tailed t-test is appropriate for this study because
the hypothesis is about whether or not bridging nodes have a higher AASPL than
non-bridging nodes, which developed as a result of the conceptual proof discussed
earlier in this article. The results of the t-test, shown in Table 3, show that bridging
nodes have a significantly higher AASPL than non-bridging nodes.

In all systems studied, bridging nodes had a higher AASPL on average than
non-bridging nodes. This tendency is robust to different community-finding
algorithms, of which there are many (Newman 2004). To show this, the t-
test is performed with bridging nodes found using two different community-
finding algorithms, modularity maximization and spectral. The spectral algorithm
partitions the graph using information about eigenvectors and eigenvalues of
the adjacency matrix of the graph. See the AASPL values from a representative
selection of systems using both community-finding methods in Table 2. The
results of the t-test are given in Table 3. These results show that the difference
between the average AASPL is statistically significant (p < 0.01 for both
community-finding algorithms) and the effect sizes are strong and moderate for

19/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

.
3
[]
SN . 'Y
2 L] -y
° L B e a
L LR o .
»
. ° -
» o e
—
- o
oo,
!.0-:.
T8\
(a%
e 7 Y
Q ®
%% 73
S o
o &
- “_ @ _
Pl o ~_%} .
o o °
o g b
™, o v, L]
o “foe? »
®

9
[}
-]
-]

Figure 15. Behavioral network for simple drive train with grounded elements with
edges associated with most vulnerable parameter node darkened and communities
circled.

Table 4. AASPL and bridging nodes: standard deviation

Method Non-bridging node Bridging node
standard deviation of AASPL standard deviation of AASPL
(all 40 systems) (all 40 systems)

Modularity 0.0448 0.0712

Maximization

Spectral 0.0431 0.0712

modularity maximization and spectral methods, respectively. This means that
the presence of bridging nodes has a moderate to strong effect on the failure
tolerance of the system. Table 4 shows the standard deviation measures for
each community-finding algorithm for both bridging and non-bridging nodes.
Unsurprisingly, the standard deviation does not change significantly between
community-finding algorithms. For bridging nodes, one would need more than
four digits of accuracy to notice a difference between the modularity maximization
and spectral methods.

In addition to these numerical results, the behavioral networks for all forty
systems studied were graphed in Mathematica for visualization purposes. A
few examples are shown in Figures 15-18. Communities, as determined by a
modularity maximization community detection algorithm, are circled. The edges
associated with the parameter node with the highest AASPL are marked with a
thicker line. It is clear that in all four cases at least one of the edges associated with
this parameter node connects communities, meaning that this parameter node is

20/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

a
e ® ?
[Q
oy X
—— ® / e%n
& poo? /
AN - ¢ \
L_§ A I
LSRN \ A\ p
e) \ / oo Y
s B gl -
rd [/ Y4B I\ 0" arilVs
i®0o.ggn ! S~ YOS THA g™
— ;. - f ,... ..__. .‘.\ ...('."-'-- = L % P
...l',.-') ...-.._- \ Tele® [
\.. 4 | \,I .. o ..I o ..
@ ~ - /. & :.. 5
--E""'" e o
/| \ A)
/| ..d_ . ® 7
og e

Figure 16. Behavioral network for electrical rectifier circuit with edges associated
with most vulnerable parameter node darkened and communities circled.

a bridging node. In general, a parameter node needs only one edge connecting
community to be considered a bridging node. In these figures, the parameter
node with the highest AASPL is highlighted to show that parameter nodes with
high AASPL are frequently bridging nodes. This is based on the results of the
hypothesis test. BNA, however, assigns a value of AASPL to each parameter node,
thus giving a ranking of parameter nodes from most to least vulnerable.

8. Determining the effect of the fault variable value

An unanswered question from previous work in BNA (Haley et al. 2014, 2016)
was the effect of the value of the fault variable used when attacking nodes. To
answer this question, a study on the effect of the value of the fault variable on
the results of the ASPL of behavioral networks is presented. The fault variable, as
discussed, is the value applied to the edge weights of the edges associated with
a given parameter node when it is under attack. The fault variable was given a
value of 0.5 consistently in the previously shown experiments. However, the effects
of changing this value have not been considered. The BNA is repeated for fault
variable values of 0.2, 0.5, 0.7, and 0.9 and the results are compared.

The results in Figure 19 show that the average AASPL of all parameter
nodes within a system decreases approximately linearly as the fault variable
value increases. However, the sorted list of systems from smallest to largest
average AASPL is unchanged regardless of which value is used for the fault
variable. In other words, the value of the fault variable does not affect which
parameter nodes are considered the most vulnerable in the system.

21/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

L
Teooogd"

| & [}
.' \$>><)

Figure 18. Control temperature of a resistor behavioral network with edges
associated with most vulnerable parameter node darkened and communities circled.

9. Discussion

The role of bridging nodes in behavioral network models of engineering systems
had not previously been explored. In this article, it was found that bridging nodes,
under degradation, yield a larger change in the network metric ASPL based on
previous network-metric-based methods presented for BNA (Haley et al. 2014,
2016). This finding highlights the structural role of vulnerable parameter nodes,

22/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

045
04 o
0.35F
=
4 03f
5
© 025 © o
CS
[}
Z o2t 8
= 8
[}
7 0.15¢
;
01F g
0.05F 3 o

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fault Variable Value

154
©
o

Figure 19. Effect of fault variable value on average AASPL in each system.

which, despite the well-documented relationship between a network’s structure
and its ability to withstand attack (Sha and Panchal 2013), had not previously
been studied. It is important to note that this is a statistical observation. Bridging
nodes tend to be associated with a larger system-level degradation. This statistical
finding holds even when those bridging nodes have a low degree of connectivity
compared to non-bridging nodes that may have a high degree of connectivity, such
as to nodes within its community. The important finding is thus that engineers
should pay attention to nodes that sit between communities and not necessarily
high-degree nodes that sit within communities. The failure of the former may
cause more significant system-level faults whereas the failure of the latter could
be isolated within the community so long as the bridging node is not degraded.

The importance of network structure is well known and has been well
researched (Braha and Bar-Yam 2004), and behavioral networks should be no
exception. Because of the relationship between bridging nodes and the community
structure of a network, this finding leads to the examination of the relationship
between bridging nodes and modularity in behavioral networks, setting the stage
for future work. For example, increasing modularity is generally recommended as
one approach to improve the robustness of a system. Future research could test
the extent to which increasing robustness through modularity is mediated by the
presence of bridging nodes.

In addition, advances to the modeling methods presented in previous work
in BNA (Haley et al. 2014, 2016) were developed. Inadequate modeling capabilities
would prevent real engineering systems from being modeled in BNA. Specifically,
these modeling advances included the ability to model logic and embedded
behavior. This work also analyzed the robustness of the method using network
metrics to different values of the fault variable. Since the AASPL values are already
small in magnitude, it is reasonable to choose a relatively small or moderate value
of the fault variable so that AASPL can be measured accurately without using
excessively small numbers. From the data gathered in this study, both 0.2 and 0.5

23/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

could be considered good choices for the fault variable value. More important than
the chosen value of the fault variable, however, is the fact that it must be consistent
across all node failures within a system. Since the value of the fault variable affects
the numerical value of AASPL, the same value must be used for the fault variable
when comparing node failures within a system.

10. Conclusions

In conclusion, this article presented conceptual and empirical arguments showing
that existing network-metric-based methods used for BNA correlate with bridging
nodes in the behavioral network. This finding has implications regarding the
community structure of behavioral networks and gives the designer a priori
predictions on vulnerable parameters. Moreover, this article showed that the
method for faulting behavioral networks is robust to different values of the fault
variable and presented new modeling techniques to be able to analyze more
realistic systems. All of these findings contribute to the research community’s
understanding of BNA and of network analysis of engineering systems as a whole.

Once fully developed, the BNA method can be used in early design stages
and can avoid a full-scale behavioral simulation. The results of BNA lead to
an understanding of the design parameters for which failure could cause large
degradation in system-level performance. Based on knowledge of vulnerable
parameters based on the results of the BNA method, system designers can specify
tight manufacturing tolerances or add sensors. Making these kinds of changes
earlier in the design process can reduce cost and create safer systems in the future.

11. Future work

Behavioral models are useful in early design stages but are ultimately only part
of the picture. For later stages of design, the behavioral model must be interfaced
with a component model of the system. Both types of models are necessary for
a complete understanding of the engineering system. While behavioral models
are useful in early stages of design, if failure probabilities are required later in
the design process, this method may not be appropriate. Future work will aim
to implement BNA for an in-depth case study to test how BNA would work on a
real system.

So far the authors have only used governing equations from OpenModelica
instantiation information to build behavioral networks. It is unclear whether
different sets of governing equations describing the system have a significant
impact on the results of BNA. For instance, there are different theories that can
be used to describe the same natural phenomenon. Future work will examine the
effects of using these different sets of equations and whether or not the granularity
of these equations is of particular importance.

This article has shown that parameters associated with bridging nodes,
which connect communities, are key to understanding the failure tolerance of
engineering systems. These communities group together closely related parameter
nodes which relate to a particular behavior. It is likely that these communities
in the behavioral network relate to the modularity of the system. It is also
possible that these behavioral modules could indicate long distance relationships
between parameters which create unexpected sub-system interactions. These
questions belong to future work. Specifically, future work will test whether or not

24/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

communities in the behavioral network reflect meaningful system behaviors and
associations between parameters. For this research to be possible, future work will
investigate more closely how using different sets of physics equations affects the
results of the BNA.

Financial Support

This research is supported by the National Science Foundation (NSF CMMI-
1562027). Any opinions or findings of this work are the responsibility of the
authors and do not necessarily reflect the views of the sponsors or collaborators.

Appendix A. Description of systems used in study

System name Number of edges ~ System description
1 Electrical analog rectifier 335 B6 diode bridge, three-phase sinusoid voltage, and
DC current load
Simple triac circuit 263 Simple triac used in alternating current circuit
AIMC DOL 1007 Asynchronous induction machine, squirrel cage,
and direct on line starting
4 AIMC inverter 878 Asynchronous induction machine, squirrel cage,
and ideal inverter
5 AIMS start 1617 Asynchronous induction machine, slipring rotor,
and resistance starting
6 AIMC Steinmetz 943 Asynchronous induction machine, squirrel cage,
and Steinmetz connection
7 AIMC transformer 1732 Asynchronous induction machine with squirrel
cage, transformer supplies three-phase voltage
8 AIMCYD 1189 Asynchronous induction machine and squirrel
cage, Y-D starting
9 SMEE generator 1246 Excited synchronous induction machine used as a
generator
10 SMEE load dump 1459 Excited synchronous generator, loaded with
generator
11 SMEE rectifier 1203 Excited synchronous generator, loaded with
rectifier
12 SMPM current source 1280 Synchronous induction machine with permanent
magnets fed by current source
13 SMPM inverter 1092 Permanent magnet synchronous induction
machine and ideal inverter
14 SMPM voltage source 1435 Synchronous induction machine with permanent
magnets fed by voltage source
15 SMR inverter 1064 Synchronous induction machine, reluctance rotor,

and ideal inverter

25/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

System name Number of edges ~ System description

16 Multiphase rectifier 528 Diode bridge rectifier with star-connected voltage
source, line reactor, and DC burden

17 Multiphase test sensors 796 Sinusoid source loaded with resistor and inductor

18 Transformer YD 675 Y-D transformer with star-connected voltage
source and load resistor

19 Transformer YY 665 Y-Y transformer with star-connected voltage source
and load resistor

20 Cascode circuit 188 JFET cascode circuit

21 Electrical oscillator 341 Oscillator circuit with BT transistors

22 Synthetic system 173 Test system with multiple mechanical blocks

23 Heat flow, one mass 187 One hot mass cooling

24 Indirect cooling 435 Heat source dissipates heat with thermal conductor
and inner coolant cycle

25 Saturated inductor 185 Inductor with a saturated ferromagnetic core

26 Accelerate 33 Demo moving a mass with predefined acceleration

27 Grounded drive train 117 Drive train with motor inertia, motor torque, and
grounded elements

28 Preload 318 Preload spool for hydraulic valve

29 Rolling wheel 84 Rolling wheel demonstrating coupling between
rotational and translational components

30 Sensors 84 Demo of sensors used for translational systems

31 Simple drive train 122 Drive train with motor inertia and motor torque

32 Elasto gap 191 Demo model with elasto gap, springs, and dampers

33 Parallel cooling 383 Cooling circuit, parallel branches

34 Pump and valve 280 Pump and valve cooling circuit

35 Pump drop out 203 Drop out of pump cooling circuit

36 Parallel pump drop out 383 Drop out of pump cooling circuit with parallel
branches

37 Simple cooling 203 Heat source dissipates heat with a thermal
conductor, coolant flow, and pump

38 Controlled temperature 121 Demo of controlling temperature of resistor

39 Heat transfer, two masses 48 Conduction between two mass elements

40 Voltage divider 82 Voltage divider circuit

References
Albert, R., Jeong, H. & Barabasi, A. L. 1999 Diameter of the world-wide web. Nature
401, 130-131.

Albert, R., Jeong, H. & Barabasi, A. L. 2000 Error and attack tolerance of complex
networks. Nature 406 (July), 378-381.

Braha, D. & Bar-Yam, Y. 2004 Topology of large-scale engineering problem-solving
networks. Physical Review E 69, 016113.

26/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

Department of Defense 1980 Procedures for Performing Failure Mode, Effects, and
Criticality Analysis (MIL-STD-1629A). Washington, D.C.

Grantham Lough, K., Stone, R. B. & Tumer, I. Y. 2007 The risk in early design method
(RED). Journal of Engineering Design 18 (1), 126-143.

Grantham Lough, K. A, Stone, R. B. & Tumer, I. Y. 2008 Failure prevention in design
through effective catalogue utilization of historical failure events. Journal of Failure
Analysis and Prevention 8 (5), 469-481.

Haley, B., Dong, A. & Tumer, I. Y. 2014 Creating faultable network models of complex
engineered systems. In ASME 2014 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, Buffalo, NY,
USA. American Society of Mechanical Engineers.

Haley, B. M., Dong, A. & Tumer, I. 2016 A comparison of network-based metrics of
behavioral degradation in complex engineered systems. Journal of Mechanical Design
138 (12), 121405.

Hwang, W., Cho, Y., Zhang, A. & Remanathan, M. 2006 Bridging centrality: identifying
bridging nodes in scale-free networks. Technical Report, University at Buffalo.

Jensen, D. C. 2012 Enabling safety-informed design decision making through simulation,
Reasoning and Analysis. PhD Thesis, Oregon State University, Corvallis.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. 2000 The large-scale
organization of metabolic networks. Nature 407 (6804), 651-654.

Kasthurirathna, D., Dong, A., Piraveenan, M. & Tumer, I. Y. 2013 The failure tolerance
of mechatronic software systems to random and targeted attacks. In ASME 2013
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Portland, OR, USA. American Society of
Mechanical Engineers.

Kurtoglu, T. & Tumer, I. Y. 2008 A graph-based fault identification and propagation
framework for functional design of complex systems. Journal of Mechanical Design
130 (5), 51401.

Li, S., Li, L., Jia, Y., Liu, X. & Yang, Y. 2013 Identifying vulnerable nodes of complex
networks in cascading failures induced by node-based attacks. Mathematical Problems
in Engineering 2013, Article 938398.

Liu, J., Xiong, Q., Shi, W,, Shi, X. & Wang, K. 2016 Evaluating the importance of nodes in
complex networks. Physica A: Statistical Mechanics and its Applications 452, 209-219.

Ma, S., Jiang, Z. & Liu, W. 2016 A design change analysis model as a change impact
analysis basis for semantic design change management. Proceedings of the Institution
of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231 (13),
pp. 2384-2397.

Mehrpouyan, H., Haley, B., Dong, A., Tumer, I. Y. & Hoyle, C. 2013 Resilient design of
complex engineered systems. In ASME 2013 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference,
Portland, OR, USA. American Society of Mechanical Engineers.

Mehrpouyan, H., Haley, B., Dong, A., Tumer, I. Y. & Hoyle, C. 2013 Resilient design of
complex engineered systems against cascading failure. In ASME 2013 International
Mechanical Engineering Congress and Exposition, San Diego, CA, USA. American
Society of Mechanical Engineers.

Mitchell, M. 2006 Complex systems: network thinking. Artificial Intelligence 170 (18),
1194-1212.

Newman, M. E. J. 2004 Detecting community structure in networks. The European
Physical Journal B 38 (2), 321-330.

Newman, M. E. J. 2010 Networks. Oxford University Press.

27/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2017.31

Design Science

OpenModelica [Computer software]. 2016 Retrieved from http://openmodelica.org.

Pattison, P., Wasserman, S., Robins, G. & Kanfer, A. M. 2000 Statistical evaluation of
algebraic constraints for social networks. Journal of Mathematical Psychology 44 (4),
536-568.

Piraveenan, M., Thedchanamoorthy, G., Uddin, S. & Chung, K. Quantifying
topological robustness of networks under sustained targeted attacks. Social Network
Analysis and Mining 3 (4), 939-952.

Sarkar, S., Dong, A., Henderson, J. A. & Robinson, P. A. 2014 Spectral characterization
of hierarchical modularity in product architectures. Journal of Mechanical Design 136
(1), 011006.

Sha, Z. & Panchal, J. H. 2013 Towards the design of complex evolving networks with
high robustness and resilience. Procedia Computer Science 16, 522-531.

Sole, R. V., Ferrer-Cancho, R., Montoya, J. M. & Valverde, S. 2003 Selection, tinkering,
and emergence in complex networks. Complexity 8 (1), 20-33.

Sosa, M., Eppinger, S. D. & Rowles, C. M. 2007 A network approach to define
modularity of components in complex products. Journal of Mechanical Design 129
(11),1118-1129.

Sosa, M., Mihm, J. & Browning, T. R. 2011 Degree distribution and quality in complex
engineered systems. Journal of Mechanical Design 133 (10), 101008.

Stone, R. B., Tumer, I. Y. & Van Wie, M. 2005 The function-failure design method.
Journal of Mechanical Design 127 (3), 397-407.

Vesely, W. E., Goldberg, F. F., Roberts, N. & Haasi, D. F. 1981 The Fault Tree Handbook
(NUREG0492). Washington, D.C.

Walsh, H. S., Dong, A. & Tumer, I. Y. 2017 The structure of vulnerable nodes in
behavioral network models of complex engineered systems. In ASME 2017
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Cleveland, OH, USA. American Society of
Mechanical Engineers.

Wang, M., Sha, Z., Huang, Y., Contractor, N., Fu, Y. & Chen, W. 2016 Forecasting
technological impacts on customers’ co-consideration behaviors: a data-driven
network analysis approach. In ASME 2016 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, Charlotte, NC,
USA. American Society of Mechanical Engineers.

Xue, J. & Yang, K. 1995 Dynamic reliability analysis of coherent multistate systems. IEEE
Transactions on Reliability 44 (4), 683-688.

Zhu, F., Wang, W., Di, Z. & Fan, Y. 2014 Identifying and characterizing key nodes among
communities based on electrical-circuit networks. PLoS ONE 9 (6), 1-10.

28/28

https://doi.org/10.1017/dsj.2017.31 Published online by Cambridge University Press

http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
http://openmodelica.org
https://doi.org/10.1017/dsj.2017.31

	The role of bridging nodes in behavioral network models of complex engineered systems
	Motivation
	Aim and significance
	Outline
	Background
	Existing failure analysis methods
	Network analysis in engineering design
	Behavioral modeling

	Related work
	Prior work in behavioral network analysis
	BNA overview
	BNA system representation
	Finding vulnerable design parameters using BNA

	Bridging nodes

	Research method
	Conceptual proof
	Description of method
	Description of systems used
	Modeling techniques
	Modeling embedded behavior
	Modeling logical behavior

	Results and analysis
	Determining the effect of the fault variable value
	Discussion
	Conclusions
	Future work
	Appendix A. Description of systems used in study
	References

