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Abstract. Let / be a C° circle map of degree one with precisely one local minimum
and one local maximum, and let [p_(/), p+(/)] be the interval of rotation numbers
of/ We study the structure of the function p(A) = p+(.RA°/), where Rk is the
rotation through the angle A.

0. Introduction
The rotation interval for a degree one circle map was first denned by Newhouse,
Palis and Takens in [9] and was subsequently shown by Ito ([6]) to be closed.
Newhouse, Palis and Takens also showed that if / varies continuously in the C°
topology then p_(/) and p+(/) vary continuously also. In another paper ([7]), Ito
showed that if p+(f) e R\Q, then p+(/?A °f) > p+(/) for all A > 0.

In this paper we study the behaviour of the function p+(/?A <•/) near rational
values. There are four main theorems, Theorems 2.5, 3.5, 3.7, and 3.8. The first deals
with the persistence of p+(A) at rational values in any C°-continuous family of
continuous circle maps of degree one. On the assumption that fk is never a homeo-
morphism it is shown that if p+(/A)eQ then there is an e > 0 such that either
P+(U)^P+(fx) for all fi€(X-e,\ + e) or else p+(/M)=sp+(/A) for all p.e
(A-e, A + e). This theorem is a slight generalization of results obtained by Bamon,
Malta and Pacifico in [2], and it serves to set the stage for the other two main
theorems.

Theorems 3.5, 3.7, and 3.8 deal with a more specific family Rx °f. In addition
they require that we impose several differentiability conditions on / Specifically we
assume that / is C3 with precisely two critical points, a quadratic local minimum
and a quadratic local maximum, and that / has a negative Schwarzian derivative.
If b>iv all these conditions are satisfied, for example, by the function family
x + b sin (2irx) (modi). One further condition, also required for these theorems,
ensures that p_(/?A °f)<P+(R\ °f) for all A. The function x + b sin(2wx) (mod 1)
satisfies this last condition at least when b>£.

To state the theorems we need a little number theory. For any rational number
piq with (p, q) = 1 there is an associated rational number defined as follows: 5 is
the smallest positive integer such that

sp +1 = rq
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for some reZ. Then

q qs s'

and so r/s>p/q. In fact it is easy to show that r/s is the smallest rational greater
than p/q whose denominator satisfies s<q. This immediately puts the relationship
between p/q and r/s into the context of Farey sequences (see [5]).

We now use the numbers p/q and r/s to construct a decreasing sequence of
rationals, each the mediant of p/q and its predecessor:

r+kp

s + kq
Thus <f>k(p/q) is always p/q's nearest neighbour to the right in the Farey sequence
of appropriately high order, and every such nearest neighbour is of that form.

Theorem 3.8 may be summarized as follows. Suppose/satisfies the differentiability
conditions indicated above, and that p+(f)= p/q with p+(/?A °f)>p/q if A>0.
Let nn >0 be the smallest value of A at which p+(RMn °f) = </>n(p/q). Then

hm

exists. In fact we show that this limit is equal to the derivative of the qth iterate of
/ at a certain periodic orbit.

For Theorem 3.5 we suppose An > 0 is the value at which the local maximum is
periodic, and that its rotation number is <f>n(p/q) = p+(RXn °f). The theorem con-
cludes that limn̂ oo An/An+1 exists and is equal to the limit of Theorem 3.8.

For Theorem 3.7 we let vn be the greatest parameter value for which

This theorem concludes once again that vn/vn+i has the same limit as n-*oo. In
addition, however, the theorem shows that

lim l.
"̂ °° An-An+1

This indicates that for small positive A, p+(/?A " / ) is nearly always rational.
The author would like to express his appreciation to the referee, who suggested

several improvements in the proofs, as well as the inclusion of Theorem 3.7.

The author would like to thank the Natural Sciences and Engineering Research
Council (NSERC) of Canada for its financial support.

1. Preliminaries
When studying a continuous degree one circle map / it is convenient to lift it to R
giving a function F:R-»R satisfying F(x + l) = F(x) + l. In other words, we let
eiR-^S1 be the map x^*elmx, and choose F so that e°F=f°e. F is unique up
to an integer, and all the properties of / may be studied by examining F. We will
let EndJ(R) denote the space of all Cr functions F:R-»R with the property
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For Fe End?(R) the rotation interval is denned as follows: For xeRwe let

p(x) = lim sup — F"(x).
n-»oo n

p(x) is the rotation number of x. The set

p(F) = {p(x)|xeR}

is a closed interval ([9,6]) called the rotation interval of F. We will write p-(F)
and p+(F) for the left and right endpoints of this interval. We also call p(F) the
rotation interval of/, writing p( / ) , but then we should keep in mind that p(f) is
unique only up to addition of an integer. However, once a lift F is chosen for one
member / in a continuous family of circle maps, the family lifts uniquely to a
continuous family in End? (R). This makes it possible to discuss the variation of
the rotation interval of a continuous family.

When e(x) is periodic under/ with period q, then x is periodic under F in the
following sense:

Fq(x) = x+p

for some p e Z. The rotation number of x is then pi q. We may assume that (p, q) = 1
here. When we say that x is periodic under F with rotation number pi q we shall
always mean it in this sense. We shall also abuse language slightly when speaking
of the F-orbit of a periodic point x0. We shall mean by it the preimage under e of
the/-orbit of e(x0), and we shall always index the points of e~1{fk(e(x0))\keZ+}
in increasing order:

• • • <x_,< x0 < x, < x2 < • • • .

Then xl+, = x, +1 for all i e Z, and {x,},eZ is the union of p disjoint invariant sets,
{Fk(x0}}, {Fk{x0+l)},...,{Fk(x0 + p-l)}, each of them a lift of the /-orbit of
e(x0). In other words, when we speak of a periodic F-orbit it will in actual fact be
a set of disjoint periodic orbits.

An F-orbit of period q and rotation number p/q is called a twist periodic orbit
(TPO, see [1]) if F(x,) = x,+p for all i. Geometrically this means that the effect of/
on the points of the orbit is that of an orientation preserving homeomorphism.

If F ' ( x )<x+p for all xeR, then clearly p(x)<p/q for all x and so p+(F)<p/q.
Similarly p^(F)>p/q if F"(x)>x + p for all x. Thus, if p/qe p(F) then F has a
periodic orbit of period q and rotation number p/q. In fact, F will have a TPO of
period q and rotation number p/q, and if p/qeint (p(F)) it will have infinitely
many others of that rotation number ([8], see also [3]).

2. Persistence of p+(F) at rational values
If FeEnd, (R), then p+(F) is said to be Cr-persistent if p+(G) = p+(F) for all
GeEndJ(R) in a neighbourhood of F in the Cr-topology. In their paper [2],
Bamon, Malta and Pacffico obtained necessary and sufficient conditions for the
C1-persistence of p+(F). One of their results is that p+(F) is not persistent if p+(F)
is irrational. This also follows from an earlier paper of Ito ([7]) who shows that if
p+{F) € R\Q then p+(i?A ° F) > p+(F) for any rotation A with A > 0. Much of [2] is
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devoted to finding the precise conditions on F with p+(F)eQ under which p+(F)
is C'-persistent, and showing that p+(F) is C'-persistent for generic F. They obtain
the following result (Theorem B, (iv)). Letting

and

they prove that if p+(F) = p/q then p+(F) is C'-persistent if and only if Apq and
Bpq are non-empty and there exists bedBpq such that Fq(x)<b+p for all x<b.

Bamon et al. did not indicate that this persistence of p+(F) at rational values
must occur in every one parameter family of degree one circle maps. We will show
that it does if the functions in the family are not homeomorphisms. Prior to that
we will also present simple necessary and sufficient conditions for C°-persistence
of p+(F) at rational values.

Following Misiurewicz ([8]) we associate with FeEnd?(R) the following non-
decreasing continuous functions:

F+(x) = supF(«)
USX

F_(x)=inf F(w).

F+ may be characterized as the smallest non-decreasing function greater than or
equal to F. Similarly F_ may be characterized as the largest non-decreasing function
less than or equal to F. It is easy to see that F and F+ are identical if F is already
non-decreasing. Otherwise there will be intervals on which F+(x) is constant and
strictly greater than F(x). Similar comments apply to F_. Since F+ and F_ are
non-decreasing, they have unique rotation numbers.

LEMMA 2.1. (Misiurewicz [8], Remark (B)). p+(F) = p(F+) a«dp_(F) = p(F_).

Proof. F+(x) > F(x) for all x. Since F+ is non-decreasing this implies that F+(x) >
Fk(x) for all xeR and for all fceZ+. Thus p(F+)>p+(F).

On the other hand, ifp/q>p+(F) then F" (x) < x+p for all x. Choose x0 arbitrarily
and define

X = X-q+i, X-q+2, . . . , X_i , Xo

inductively by x,_i = inf (F~'(Xj)). Then F+(Xj_,) = F(Xj_i) = x, for all i. Thus
Fl(x)<x+p for this particular x. Since p(F+) is a single number it follows that
p(F+)-S:p/q. By choosing a sequence of rationals to converge to p+{F) from above
it follows that p(F+)<p+(F).

The proof that p-(F) = p(F_) is similar.

LEMMA 2.2. (F+)* = (Ffc)+ and (F_)fc = (Fk)_.

Proof. First note that F+ = F if F is already non-decreasing. In particular ((F+)k)+ =
(F+)k. But then F(x)<F+(x) for all x implies F*(x)<(F+)'t(x) for all x. Hence
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We prove the reverse inequality by induction. Suppose (F+)k = (Fk)+. Then

(F+)k+l(x) = F+((F+)k(x)) = sup {F(u) | u s (F+)fe(x)}.

Since F is continuous, sup {F(u) \ u < (F+)k(x)} = F(u) for some u < (F+)k(x). But
then u = (F+)k(u) = (Ffc)+(») for some v^x. That is, « = Fk(H') for some w < x
Thus (F+)fc+1(x) = Ffc+1(w) for some w < x In particular, (F+)k+1(x)<;(Fk+I)+(*).

The proof that (F_)k = (Ffc)_ is similar. D

LEMMA 2.3. //F%{x)-p > x for allx, then p+(F + A)>p/q for all A >0. IfFq
+{x)-

p<xfor all x, then p+(F-\)<p/qfor all A >0.

/ Suppose A >0 and assume F!J.(x)-p>x for all x. Then

because F+ is non-decreasing. Therefore, for all x,

>Fl{x)-p>x.

Since (F+ + A)9 satisfies (F+ + A)«(x + 1) = (F+ + A)«(x) + 1, therefore there is an
e>0 such that {F+ + X)q(x)—p>x + e for all x. It now follows immediately that
p(F+ + A)>p/q. The second assertion is proved similarly. •

PROPOSITION 2.4. //" F e End? (R), and p+(F)=p/q, then p+(F) is C°-persistent if
and only if p(F+) is C°-persistent in the sense that for every GeEnd?(R) in a
C°-neighbourhood of F+ we have p/q 6 p(G).

Proof. The transformations End?(R)-»End?(R) given by F*->F+ and F*-^F%-p
are clearly continuous in the C° topology.

If p{F+) is C°-persistent in the sense defined above, then for G in a C°-
neighbourhood of F, G+ will be near F and so p(G+) = p/q. This proves that p{F)
is then C°-persistent.

To prove the converse, note that if there exist x,, x2 such that F%{xx)—p<xl

and Fl{x2) -p > x2, then these conditions hold on a C°-neighbourhood of F+, and
so p(F+) is C°-persistent. Thus, if p(F+) = p/q but is not C°-persistent, then either
Fl(x)-p>x for all x or Fl(x)-p<x for all x. Lemma 2.3 implies that p(F+)
fails to be C°-persistent in either case. •

The conditions obtained in [2] for C1-persistence of p+(F) are necessary but not
quite sufficient for C°-persistence. We have instead the following parallel result.

PROPOSITION 2.5. / /FeEnd?(R) and p+(F)=p/q, then p+(F) is C°-persistent if
and only if AM and Bpq are non-empty and there exists a point b on the boundary of
a connected component of Bpq such that F"(x) < b + p for all x<b.

Proof. First note that AM(F) = 0 if and only if AM(F+) = 0 and that BM(F+) = 0
if BM(F) = 0.-For BM this follows immediately from the fact that Fl(x)>F"(x)
for all x The proof that AM{F+) = 0 implies AM(F) = 0 is similar. On the other
hand, if AM{F) = 0 then the function Fq —p is less than or equal to the increasing
function i(x) = x Therefore {Fq -p)+ = Fq+-p<i. Thus AM(F+) = 0 .
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Suppose p+{F) is C°-persistent. Then by Proposition 2.4, p(F+) is C°-persistent
and so by Lemma 2.3, Ap><?(F+)#0 and B p q (F + )^0. Hence AM{F)*0 and
BM(F)*0. Furthermore, if F%(xi)-p<xl and Fl(x2)-p>x2 let J be the con-
nected component of Bpq(F+) containing x, and let b = sup/. Then Fq+{b)-p = b,
and Fl(x)-p<b for x<b. Therefore F"(x)-p<b for x<b. But F"+{b)-p = b
implies Fq(u) —p = b for some u < b. Since Fq(u) —p^ F+(u) —p this implies w = b.
Thus F«(b) - p = b. Since also F"(x) - p < Fq

+{x) -p < x for x e J we conclude that
6 is on the boundary of a connected component of Bpq(F).

Now for the converse suppose AM(F) and BM{F) are non-empty and that there
is a point b on the boundary of a connected component / of Bpq{F) such that
Fq(x)<b+p for all x<fe. The latter condition implies Fl(b) = b+p. Also,
APyq(F+)*0. It remains only to show that B p , (F + )^0 , for then p+(F) will be
C°-persistent by Proposition 2.4. But if BM(F+) is empty, then for x> b, Fq+(x) -p>
x and so for each such x there is a number usx at which Fq(u)—p>x>b. Since
F9(u) < b+p for M < ft, therefore M e (b, x). In particular J cannot lie above b. Thus
J = (a, b) for some a<b. Let C = sup{F9(x)-p |x<a}. Then c<b by our assump-
tions. Let

a, = sup{xG/|F*(x)-p = c}.

Then a,<b. Now suppose xe(alt b). Then Fq
+(x)-p = Fq{u)-p for some u<x.

If u < ax this means Fl(x) —p < c < x, and if u > a, then

F£(x) - p = Fq{u)-p < u < x.

Thus(a , ,b)cBp,q\ •

FIGURE 1
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Although the differences between the conditions presented in Proposition 2.5 and
those presented in [2] are very slight, the latter are not in fact sufficient for
C°-persistence, as the following example will show.

EXAMPLE 2.6. We will define a function F on [0,1] with F(0) +1 = F ( l ) , and then
extend it to U using the identity F(x+1) = F(x) +1. First we define a function a(x)
on [i, 1] with the graph shown in figure 1.

We only require the following of a: a is continuous, a(x)< 1 on [£, 1], a(x)>x
on [1,|], a(j)=s, a(s) = l, a(x)<x on (|, 1) and a(l) = l. We now define F on
[0,1] as follows: r i f x g [ i > l} a n d Jf x = Q

[
It is easy to see that if this F is extended to U then p+{F) = 0 is not C"-persistent,
even though AOj) and Bo>1 are non-empty, and 1 edB0,i with F ( x ) < 1 for x< 1.

The main theorem of this section proves that the persistence of p+(F) at rational
values occurs in every continuous one-parameter family, provided the members of
the family are not homeomorphisms.

THEOREM 2.7. Let FA, A £ [a, /3] be a family of functions in End? (R), none of which
are homeomorphisms. We assume that A >-* FA is continuous in the C° topology on
End?(R). Then for every A e(a , /3) with p + ( F J e Q one of the following is true, and
possibly both:
(i) There is an e > 0 such that p+(F^) 2= P+(F\) far all fi with \fi - A | < e.

(ii) There is an e>0 such that p+(F^)^ p+(Fx) for all fj. with \fi-\\<e.
In particular, //p+(FM) < p / q and p+(Fv)> p / q, then there is a non-trivial parameter

interval J between /A and v such that p+(Fx) = p/q for all X e J.

Proof. If (i) and (ii) are true the rest of the theorem clearly follows. Suppose
p+{FK)=p/q.

In the C° topology (FA+) depends continuously on A, as does {F\+). Suppose
(ii) is false. Thus there is a sequence A,-»A such that p+{Fk.)>p+(Fx). That is, for
each i (FA+ )q(x)-p> x for all x e R . Therefore, by continuity, (FA+)*(x) —psx for
all x € R. Now by hypothesis there is at least one interval (X[, x2) on which (FA +) ' —p
is locally constant. Thus

But then, again by continuity, there is an e > 0 such that ( F * ) + ( x , ) - p > x , for all
fi with |/A — A| < e. Thus p+(F^)>/>/q for all fi with |ju,-A|< e. •

We end this section with two further results about the relationship between F
and F+.

LEMMA 2.8. / / {x,} is a periodic orbit of F+ then {xj is a TPO (of F+).

Proof. Suppose F+(x , ) -p = Xj for all / e Z . Since F + is non-decreasing it follows
that F+(x,+1) > F+(x,) for all i. Say F+(xf) = xi+o.(0, cr(i+1) > a(i). Since x,+, = x; + 1 ,
therefore a(i + q) = cr(i). From this it follows immediately that a-(i) is independent
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of i. Say <x(i) = m. But then F*(x,) = xl+qm. On the other hand F*(xf) = x,,+p = xi+qp.
This shows that m = p, and thus that {x,} is a TPO. •

COROLLARY 2.9. If {x,} is a periodic orbit of F at which F and F+ agree, then {x,}
is a TPO.

3. Rate of increase of p+{F) from rational values
In this section we will assume that p+(F)=p/q and p+(F + \)>p/q for A>0. To
obtain our main results about the function p+(F+A) we have to make certain
differentiability assumptions about F. We let <£ be the subset of End? (R) consisting
of all functions F which on each unit interval have precisely one local maximum
and one local minimum and for which |F'(x)|>0 everywhere else. In this section
we assume that F belongs to (€. We let C and D be a pair of adjacent critical points
with C a local maximum and D a local minimum and C <D. Note that F and F+
are identical except on the integer translates of an interval (C,C), with D<C<
C + l, on which F+ is constant. Similarly F and F_ differ only on the integer
translates of an interval (D\ D) with D-KD'<C<D.

In addition to Fe<<? we shall also assume that SF<0 where SF{x) is the
Schwarzian derivative , -

FVl 3/F"(s)\2

l
We will make use of the following subclasses if and & of <& if consists of all
functions F e ^ satisfying the following conditions:

51. SF(x) < 0 if x is not a critical point;
52. p.(F)<P+(F).

?T consists of all functions F e "<? satisfying these conditions:

Tl. SF(x) < 0 if JC is not a critical point;
T2. F ' (x )>l if x£(D', C') + Z.

Conditions S2 and T2 serve to prevent bifurcations of Fl from interfering with
bifurcations of F+. T2 is satisfied, for example, by F(x) = x + b sin (2TTX) provided
b>\. Clearly, if F satisfies T2 then so does F+A. The disadvantage of condition
S2 is that it seems hard to verify.

For background information on the properties of functions with negative Schwar-
zian derivative the reader should consult [4] or [10]. Let us simply note that these
functions constitute an open subset in the class of C3 functions, and that if F has
negative Schwarzian derivative then so does Fq—p for any qeZ+ and peZ. It
follows that the derivative of Fq -p does not have a negative local maximum or a
positive local minimum. Consider the following two lemmas as applications of this
property. We let GA =(F + + A )"-p.

LEMMA 3.1. IfF'e if or Fe & and ifp+(F) = p/q and p+(F' + A)> p/q for all A >0 ,
then G0(C') = C and G'O(C')>1.

Proof. Suppose G0(C) * C. Then G0(C')>C, because otherwise p+(F+k)<p/q
for small A. Let B = inf {x> C": G0(x) = x}. We claim that Go is strictly increasing
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between C" and B. Otherwise there would exist k,£eZ such that F+(C)< C'+(<
Fk(B) andO<fc<g- l . Then C'<Fk

+(B)~l Since F%{B)-{ is a fixed point of
Go, we have Fk(B)-£>B, which together with Fk+{C')<C' + £ gives £/k = p/q.
This is a contradiction, since (p, q) = 1.

Note that G'0(B) = 1 and GJ(B) >0, for otherwise p+(F+ A) </>/<? for small A. Let

E = sup {x < C: (F")'(x) = 0}.
Then because SF" <0 we have that (F* -p)(x) > x on [£, B). Either Fk(£) -£=C
or Fk(£) - / = D for some fc, / e Z, fe = 0,1 ,2 , . . . , q - 1 . Since Go is strictly increas-
ing between C" and B we know that Fk(E)-£= D. Since B is the smallest element
larger than D in the TPO {B,} generated by B = B0, therefore if fc>0 there must
be a point £ ,€[£,B) such that Fk(E1)-£ = Bpk.x-£. But then F ' [ £ h B ] - p
[B_,, B], contradicting the fact that (F« -p)(x) >xon [£, B). Thus it = 0 and £ = D.
That is, F 9 ( x ) - p > x on the whole interval [D', B).

We now show that this is also the case if G0(C') = C and G'O(C')<1. Then
G'0(C') = l, for otherwise p+(F + \)^p/q for small A. Again, because SF<0, it
follows that Fq(x)-p>x on [D1, C). In this case we put B=C.

If F e #, then F" - p has a fixed point on (C, C). UFeST, the fact that G'0(B) = 1
implies that some point of the form F + ( B ) - / lies inside (D', C). But Fk+{B)-£
is fixed under Go while G0(x) > x on [£)', B). D

It follows from Lemma 3.1 and Corollary 2.9 that the orbit of C" is a TPO under
F. We let Co = C" and index the orbit {C^} as usual. Note that C'-1<C<D< C'o,
so that F is strictly increasing on each interval [C'i^l, CJ], i^O (mod q).

LEMMA 3.2. Under the assumptions of Lemma 3.1, G0{x)> x for all xe (C'-u C).

Proof. Let A = sup{x< C : G0(x) = x}. Then A<C because Go is constant on
[C, C"]. Therefore, if C'^<A then F 9 is strictly increasing on [CLUA]. On the
other hand, Fq then has slope less than 1 at a point between C_i and A even
though (Fq)\A)>\ and (F«)'(CL,)> 1. This is impossible since SF<0. Thus
A = C_,. D

The first theorem in this section deals with parameter values A at which C is
periodic under F + A with rotation number 4>n(p/q). We begin with the following
observation.

LEMMA 3.3. Suppose Fe •# and suppose p+(F)=p/q with p+{F+ A)>p/q for any
A > 0. Ifkn is the smallest parameter value at which C is periodic of period nq + s and
rotation number <})n{p/q) under F+ + A, then it is also the smallest value at which this
happens under F + A.

Proof. If (F + \)nq+s(C)-np-r=C then (F+ + A)"«+s(C)-n/>-r> C. Thus An is
no greater than the first parameter value at which C is periodic under F+A with
rotation number (j>n(p/q).

Suppose k is the smallest integer greater than 0 such that
fc

 n)t(C)e[C,C'] + Z.
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Say E = (F+ + Xn)
k(C)e[C, C'] + \. If E> C + l, then k<nq + s and

which is false. Thus £ = C +1 and fc = nq + s. D

The following technical result provides the estimate required for the proof of
Theorem 3.5 below.

PROPOSITION 3.4. Let H:[0, a]x[0, 0]-»IR be a C2 map and let HK=H(-,\).
Suppose that H'0(x)>l for all xe[0 ,a] , (dH/d\)(0,0)>0, and tf(0,0) = 0. Let
c: [0, 0]-»R be a C1 map with c(0)e (0, a). Then for n large enough and T small
enough there is a unique An € (0, T) such that H"n(0) = c(An). Moreover,

U m H i ( 0 ) .
"-»An+1

Proof. Let
« = — (0 ,0 ) / / f i (0 ) - l

and suppose 0< e <|M. We will consider the curves x = H^"(c(\)) and identify the
parameters An as their A-intercepts. Define H:[0,a]x[0, d]^U2 by H(x, A) =
(Hx(x), A). Note that

In particular,

We may assume that H'K(x) > b > 1 throughout [0, a] x [0, 0]. Let L = dH(0,0) and
let w be the eigenvector of L with eigenvalue 1, given by w = (—u, 1)T. Now let

a i H l + a2 — ,a2) .

and choose S so small that for all x e [0, 5] we have

and such that for all (x, A) e [0, 5]2 we have

HdH-'-L-'IK-.

Now suppose /f ~*(x, A) e [0, 5]2 for fc = 0,1 ,2 , . . . , M. Then for any tangent vector
v of the form (i;,, 1)T we have

b K

Applying this n times, we get

(2)
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Now choose m so large that Hom(c(Q))<8, and choose re(0,8) so small that
0 < H I m ( c ( A ) ) < 8 for all Ae[0, T] . Let ck{\) = H~x

k(c(A)) (where defined), and
choose K' so that X'>|c'm(A)| for all A e[0 , T] . NOW choose n so large that

Suppose « = («!, 1) is a tangent at (cm(A), A) to the graph of cm(A) and suppose
H~k(cm(A), A) is defined for k = 0 , 1 , 2 , . . . n. Then by (2) we have \\dH'"v- w\\ < e.
Consequently, the graph of cm+n(A) on [0, T] has negative slope for n large, and
lies between the lines l! and 12 through (cm+n(0), 0) of slopes dx/d\ = -u±e. Note
that both these slopes are less than -\u. Let k = m + n. Since ck(0) = Hok(c(0))->0
as fc-»oo, therefore for k sufficiently large the graph of ck(\) intercepts the A-axis
just once in [0, T] , at A = \k. Furthermore, the A-intercepts of 1, and 12 are given
by A = cfc(0)/u±e. Thus

ck(0) 5 ct(0)s As
u — e

Therefore,

ck(0) u-e^ \k ^ ct(0) u + e
ck+l(0) U + E~ Xk+l~ ct+,(0) u-e

Finally, from (1) we see that

H'o(0),

whence,

Ak+i u-e

for sufficiently large k. Since e is arbitrary, this proves that

lim-^=H'o(0). •

THEOREM 3.5. Suppose that FeSforFe 3 and thatp+(F) =p/q andp+(F + X )> p/q
for all A > 0. Suppose as well that s is the smallest positive integer such that sp+\ = rq
for some reZ. Then for sufficiently large n there is a unique A n >0 such that under
F+Xn the critical point C is periodic with period q + ns and rotation number (j>n(p/q)
and p+(F + kn) = <f>n(p/q). Furthermore,

lim —— = a,

Proof. Note that C, £. [ C, C ] + Z if ii ̂  0 (mod q). Furthermore, a simple calculation
reveals that

4 GA(C')|*-o=V (FkY(F"-k(C'))>0.
d\
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It follows that for small positive a and 6, the function

H(x,A) =

is C2 on [0, a] x [0, 0]. Furthermore,

Also, H(0,0) = Go(C') - C = 0,

— (0,0) = Gi(C')>l .

We may choose a so small that H'0(x) > 1 for all x e [0, a].
To apply Proposition 3.4 to the function H, we must now identify the curve c(A).

If a is sufficiently small, then F ! - r is a C1 diffeomorphism of [C , C'+a] into
[CL,, C) with (Fs - r)(C) = C'-u (Fs - r)(x) = (Fs

+ - r)(x), and (Fs - r)'(x) > X, >
0 for some X, and for all x e [ C , C' + a]. We let a, = (Fs - r)(C' + a). Furthermore,
by Lemma 3.2, the sequence {G£(ai)} is such that for some k,

a, < G0(fl,) < Gjka.) < < GS"'(ai) < C < GS(a,).

Therefore Gj = Fqk -pk on [CL,, a,] and G^y,) = C for some y, e (CL,, a,), and
(Fqk-pk)'(x)>K2>0 for some K2 and for all xe[0, a,]. Now define -ye
(C, C'+a) Jay (Fs-r)(y) = yx. Then {(F+A)Uy)}, Z = 0,1,2, . . . , s + kq-1, is
disjoint from [C, C'] + Z if A =0. By continuity this will be true for all A € [0, 6] if
e is sufficiently small. In particular, (F + k)s+kq~\x) = {F + \y+kq-\x) for all x in
a neighbourhood of y. That is, the function

is C2 on a neighbourhood of (% 0), with

{Gk°(Fs
+-r)}'(y)>KlK2>0.

It follows, therefore, by the Implicit Function Theorem that there is a C2 curve
c(A) with c(0) e (0, a) such that

for all A € [0, 0], if 0 > 0 is sufficiently small. Furthermore, by continuity we may
assume that

(G*o((F + A)s
+-r))'(C+c(A))>0

for all A e [0, 0] (two-sided derivative), from which it follows immediately that
C'+c(A) is the unique preimage of C under Gj°((F+A)+-r) for all Ae[0, 0].

Thus C is periodic under (F+A)+ with rotation number <l>n(p/q), n > k, if and
only if

which is true if and only if

That is,
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or

Since An is a solution of this equation, then Proposition 3.4 asserts that An is unique
for large n, and that

lim —— = a-. •

We will now study the largest parameter values at which p+(F + \) = <j>n(p/q).
The main result is contained in Theorem 3.7 below. First we must extend the estimates
of Proposition 3.4 a little.

PROPOSITION 3.6. Let H and c(A) be as in Proposition 3.4, and suppose that l<b<
H'0(Q) as in the proof of Proposition 3.4. Suppose moreover that c"(A) is a sequence
ofC1 curves [0, 0]-»R which converges to c(A) from below, uniformly on [0, 6], with
|| c - c" || < A/yfb^ for some constant A. Then for n large enough and r small enough
the equation H"n+1(0) = c"(vn+l) has a solution vn+l e (0, T), and

for some B > 0.

Proof. Letting c£(A) = H^k(c"(\)), where defined, we have

Clearly, x = c||(A) will have a A-intercept if x = cn(A) does. Furthermore, it follows
directly from the proof of Proposition 3.4 that if cn

n(vn+x) = 0, then

— A

Cn Vn + X < ^

and x = cn(A) lies below the line through

with slope dx/d\ = -u + e for A > pn+l. Therefore,

A B - c n + , s = = . •
( u - e ) ft" Vb"

THEOREM 3.7. Suppose F is as in Theorem 3.5 with the added assumption that
F"{C) <0 . Ler \ = vnbe the largest parameter value for which p+(F + X) = <f>n(p/q).
Then

lim " + 1 " + ' = 1,

and consequently

lim
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Proof. Note that G'o(C) = -/3 < 0 because F"(C) < 0. In the proof of Theorem 3.5
we noted that

and by Lemma 3.1 we have that G'0(C') = cr>\. Suppose ax> a, 0</3,</3,
and 0<ar1<<T<o-2, with {a2/cr-i)<-JoT

x. Then there are e, 0>O such that for
C - e < x < C a n d O < A < f l

/8,(C-x)2<GA(C)-GA(x),

and

GA(C)-C'<a,A.

Note that (F++ »»„)* ° G"Vn(C) = C'+ r. Clearly An > vn+1 > 0, so GVii+1(C)> C and
limn_oo fn+i = 0. For large n, therefore, there is a unique C'n<C such that
'GW|i+1(CJ) = C . The above inequalities give

To complete the proof we define H(x, A) and c(A) as in the proof of Theorem
3.5 and we let

To apply Proposition 3.6 we must show that c"(A) is C1 and that

for some A. We saw in the proof of Theorem 3.5 that for some a > 0 and for
sufficiently small A

is a C1 diffeomorphism of [ C , C' + a] onto an interval containing C in its interior,
with

(((F + \y-r)oGi)'{x)>KlK2>0

throughout that interval. It follows immediately that c"(A) is C1 and that

fA.,A.2 V / i , A.,A.2

Since An < Ai/a" for some A,>0 by Theorem 3.5, we have

\\c-c"\\<A/y/a^.

Thus, by Proposition 3.6AB-vn+,< B/cr"Ja^. But then

An A n + ) / n-»a> \ \ n An +j

since

An-An+1

and (cr1/<T2)<^/al. The result follows. D
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The final theorem now follows as an easy corollary:

THEOREM 3.8. Suppose F is as in Theorem 3.7. Let A = fin be the smallest parameter

value at which p+(F + \) = <j>n{p/q). Then

lim - ^ = - = ( F « ) ' ( C ) .

Proof. Clearly An+1 < vn+l <fin< An. Therefore by Theorem 3.7

lim — m^= 1.
"•*°° An — A n + 1

Therefore

Hence

.. Mn ,. f/Vn-An + l V , K + i\ , An + i)
lim — = lim i I 1 H 1 = 1.
n^ooAn n - o | A A n - A n + I / \ An / An J

lim = lim I ; I = <r. D
"^°%<-n + l "^°° \Mn + l/An + l An + 1 /
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