
LMS J. Comput. Math. 17 (Special issue A) (2014) 314–329 C© 2014 Authors

doi:10.1112/S1461157014000266

A census of quadratic post-critically finite rational functions
defined over Q

David Lukas, Michelle Manes and Diane Yap

Abstract

We find all quadratic post-critically finite (PCF) rational functions defined over Q, up to

conjugation by elements of PGL2(Q). We describe an algorithm to search for possibly PCF
functions. Using the algorithm, we eliminate all but 12 rational functions, all of which are
verified to be PCF. We also give a complete description of all possible rational preperiodic
structures for quadratic PCF functions defined over Q.

1. Introduction

Let φ(z) ∈ Q(z) have degree d > 2. We may regard φ : P1 → P1 as a morphism of the
projective line. We consider iterates of φ:

φn(z) = φ ◦ φ ◦ . . . ◦ φ︸ ︷︷ ︸
n times

(z) and φ0(z) = z.

The orbit of a point α ∈ P1 is the set Oφ(α) = {φn(α) | n > 0}.
Rather than studying individual rational maps, we consider equivalence classes of maps

under conjugation by f ∈ PGL2(Q); we define φf = f ◦ φ ◦ f−1. Note that φ and φf have the
same dynamical behavior. In particular, f maps the φ-orbit of α to the φf -orbit of f(α).

Critical points of φ are the points α ∈ P1 such that φ′(α) = 0 as long as α and φ(α)
are finite. To compute the derivative at the excluded values of α, we use a conjugate map.
See [13, § 1.2] for details.

Definition 1. A rational map φ : P1 → P1 of degree d > 2 is post-critically finite (PCF) if
the orbit of each critical point is finite.

A fundamental observation in the study of one-dimensional complex dynamics is that the
orbits of the finite set of critical points of φ largely determine the dynamics of φ on all of
P1. So the study of PCF maps has a long history in complex dynamics, including Thurston’s
topological characterization of these maps in the early 1980s and continuing to the present day.

In [2], for example, the authors find exactly one representative from each conjugacy class
of nonpolynomial hyperbolic PCF rational maps of degree 2 and 3 in which the post-critical
set, the forward orbit of the critical points, excluding the points themselves, contains no more
than four points. In that paper, the authors have no concern for the field of definition of the
map, while this is a paramount concern of the present article. In [14], Silverman advances
the idea of PCF maps as a dynamical analog of abelian varieties with complex multiplication,
suggesting that these maps may be of special interest in arithmetic dynamics as well.
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Our main result is inspired by these ideas. Compare this to the statement that, up to
isomorphism over Q, there are exactly 13 elliptic curves E/Q with complex multiplication.

Theorem 1. Every PCF quadratic map defined over Q is conjugate (over Q) to precisely
one of the following 12 maps:

(1) z2 (2)
1

z2
(3) z2 − 2 (4) z2 − 1

(5)
1

2(z − 1)2
(6)

1

(z − 1)2
(7)

−1

4z2 − 4z
(8)

−4

9z2 − 12z

(9)
2

(z − 1)2
(10)

2z + 1

4z − 2z2
(11)

−2z

2z2 − 4z + 1
(12)

3z2 − 4z + 1

1− 4z

Of these, the first four were well known to researchers in both complex and arithmetic
dynamics. Maps (5)–(8) appeared in [2]. Maps (9)–(12) did not appear in [2] because either
they fail to fit the criterion of hyperbolicity or the post-critical set is too large. One major
contribution of the present work is the fact that this list is exhaustive. The fact that the
list is finite is a consequence of [1], where a height bound for PCF maps provides one of the
principal preliminary results needed for our analysis. However, translating this height bound
into something amenable to reasonable computation is highly nontrivial.

Classifying rational functions by the structure of their rational preperiodic points is a
fundamental problem in arithmetic dynamics. In [12], Poonen undertakes this task for
quadratic polynomials defined over Q, subject to the condition that no rational point is on a
cycle of length greater than 3. In [6], the second author gives a classification for quadratic
rational maps with nontrivial PGL2 stabilizer, subject to a similar condition. Given the
comprehensive list in Theorem 1, we are able to describe all possible rational preperiodic
structures for quadratic PCF maps defined over Q with no additional hypotheses. Difficulty
arises only for the first two maps, which have nontrivial twists. We are able to conclude the
following.

Theorem 2. A quadratic PCF map defined over Q has at most six rational preperiodic
points.

Given the parallels between the set of rational preperiodic points for a rational map and the
torsion subgroup of an abelian variety A(Q) (see [14, p. 111], for example), this result and
the preperiodic structures given in §§ 4 and 5 are analogs of the comprehensive list of torsion
subgroups for CM elliptic curves E/Q in [11].

2. Background

Since φ is quadratic, it has exactly three fixed points in P1, counting multiplicity. The finite
fixed points of φ are roots of the polynomial found by setting φ(z) = z. The multiplier at
a finite fixed point α is φ′(α). A straightforward computation using the chain rule shows
that fixed point multipliers are preserved under conjugation. Hence when φ fixes the point at
infinity, we may conjugate by any f ∈ PGL2 such that f(∞) and f(φ(∞)) are both finite. We
then take the multiplier for the fixed point at infinity to be (φf )′(f(∞)).

The following result gives a normal form for quadratic rational maps with trivial PGL2

stabilizer that respects the field of definition. Combined with the height bound in Proposition 1,
this allows us to create exactly one map in each equivalence class and test if it is PCF. Rational
functions with nontrivial stabilizer are addressed in § 5.

Theorem 3 [8, Lemma 3.1]. Let K be a field with characteristic different from 2 and 3. Let
ψ(z) ∈ K(z) have degree 2, and let λ1, λ2, λ3 ∈ K be the multipliers of the fixed points of ψ
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(counted with multiplicity). Then ψ(z) is conjugate over K to the map

φ(z) =
2z2 + (2− σ1)z + (2− σ1)

−z2 + (2 + σ1)z + 2− σ1 − σ2
∈ K(z), (2.1)

where σ1 and σ2 are the first two symmetric functions of the multipliers. Furthermore, no two
distinct maps of this form are conjugate to each other over K.

The following result gives a crucial bound on H(λ), the standard multiplicative height of a
fixed point multiplier for a quadratic PCF map. (See [13, § 3.1] for background on heights.)
In Proposition 1, we use this result to derive height bounds for σ1 and σ2.

Lemma 1 [1, Corollary 1.3]. Let φ(z) ∈ Q(z) have degree 2, suppose that φ is PCF, and let
λ be the multiplier of any fixed point of φ. Then H(λ) 6 4.

Proposition 1. Let φ(z) ∈ Q be a PCF map of degree 2, and suppose that σ1 and σ2 are the
first and second symmetric functions on the multipliers of the fixed points. Then H(σ1) 6 192
and H(σ2) 6 12 288.

Proof. We simplify notation by setting d = [K : Q] for K any field of definition of the fixed
point multipliers. By the triangle inequality:

|σ1|v = |λ1 + λ2 + λ3|v 6

{
max {|λ1|v, |λ2|v, |λ3|v} for each finite place

3 max {|λ1|v, |λ2|v, |λ3|v} for each infinite place.

For an extension of degree d, there are at most d infinite places, so

H(σ1) =
∏

v∈MK

(max{|σ1|v, 1}nv )1/d 6 3
∏

v∈MK

(
max
16i63

{|λi|v, 1}nv

)1/d

6 3
∏

v∈MK

(max{|λ1|v, 1}nv ·max{|λ2|v, 1}nv ·max{|λ3|v, 1}nv )1/d

= 3H(λ1)H(λ2)H(λ3) 6 3 · 43 = 192.

The proof for the bound on σ2 follows similarly:

H(σ2) = H(λ1λ2 + λ1λ3 + λ2λ3) 6 3
∏

v∈MK

(
max
i 6= j

16i,j63

{|λiλj |v, 1}nv

)1/d

6 3
∏

v∈MK

(max{|λ1λ2|v, 1}nv ·max{|λ2λ3|v, 1}nv ·max{|λ1λ3|v, 1}nv )1/d

= 3H(λ1λ2)H(λ2λ3)H(λ1λ3) 6 3 · 46 = 12 288. 2

This height bound, together with the normal form given in Theorem 3, reduces the proof
of Theorem 1 to testing whether each of a finite set of rational maps is PCF. To accomplish
this, we rely on results describing the way the periods of periodic points can change under
reduction modulo certain primes.

We fix the following notation: K is a local field with nonarchimedean absolute value | · |v,
R is the ring of integers of K, p is the maximal ideal of R, k = R/p is the residue field, and ·̃
represents reduction modulo p. A morphism φ has good reduction at p if deg(φ) = deg(φ̃).
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Theorem 4 [13, Theorem 2.21]. Let φ : P1 → P1 be a rational function of degree d > 2
defined over K. Assume that φ has good reduction, let P ∈ P1(K) be a periodic point of φ,
and define the following quantities:

n The exact period of P for the map φ.

m The exact period of P̃ for the map φ̃.

r The order of λφ̃(P̃ ) = (φ̃m)′(P̃ ) in k×. (Set r =∞ if λφ̃(P̃ ) is not a root of unity.)

p The characteristic of the residue field k.

Then n has one of the following forms:

n = m or n = mr or n = mrpe.

The following refinement of Theorem 4 for quadratic maps drives our algorithm.

Proposition 2. Let p > 3 be prime and φ(z) ∈ Qp(z) be a quadratic function with good
reduction. Continue with the other notation of Theorem 4. Then we have the following:

(i) the function φ̃ has two distinct critical points γ1, γ2 ∈ Fp;
(ii) the critical points of φ are Qp-rational if and only if γ1, γ2 ∈ Fp;
(iii) if the critical points of φ are Qp rational

n = m or n = mr.

Proof. Since φ has good reduction at p, φ̃ has degree 2. So by the Riemann–Hurwitz
Theorem, it must have two critical points counting multiplicity. Corollary 1.3 in [3] says

that φ̃ can have a unique critical point in a field of characteristic p if and only if deg φ̃ ≡ 0 or 1
(mod p). Statement (i) follows because φ̃ is quadratic and p is odd.

Statement (ii) then follows from (i) (since there is no ramification) and Hensel’s lemma.
For (iii), we use [13, Theorem 2.28] which bounds the exponent e in Theorem 4 when K has

characteristic 0. If v : K∗ → Z is the normalized valuation on K, we have

pe−1 6
2v(p)

p− 1
.

Since K = Qp, v(p) = 1. Then p > 3 gives e = 0, leaving only the first two possible periods. 2

To apply Proposition 2 in our algorithm, we consider φ(z) = f(z)/g(z) ∈ Q(z) to be defined

over Qp for primes p > 3 of good reduction. We ensure that the critical points of φ̃ are in Fp,
and hence that the critical points of φ are in Qp, by eliminating primes p where the Wronskian
f ′g − g′f is an irreducible quadratic over Fp.

If φ is PCF, then some iterate φj(γi) has exact period n. Since the Fp-orbit Oφ̃(γ̃i) is

necessarily finite, some iterate φ̃k(γ̃i) has exact period m. Proposition 2 gives a set of possible
n values based on the more easily computed m. We intersect these possible values for various
primes, and discard the map as not PCF if that intersection becomes empty.

3. Algorithm

We first describe the overall flow of the algorithm for determining if a map with trivial stabilizer
is potentially PCF. We then provide more detailed pseudocode and explanation for each piece
of the algorithm. Our actual code is provided in the arXiv distribution of this paper.

(1) Build a database containing, for each p in a list of primes, all quadratic rational maps
mod p in the form given in (2.1), along with their critical points and corresponding possible
global periods as given by Theorem 4 (see Algorithm 1).
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(2) For σ1 and σ2 values within the height bounds in Proposition 1, create φ(z) ∈ Q(z) as
in (2.1), reduce the map modulo primes p, and iteratively intersect the possible global periods
(found in the database) for the critical points at each prime. If the intersection becomes empty,
the map is not PCF (see Algorithm 2 and Subroutines 2A and 2B).

Using this algorithm, we identified ten potentially PCF quadratic rational functions. For
each of these functions, we calculated the forward orbit of each critical point and verified that
each critical orbit was, indeed, eventually periodic. In other words, all ten ‘potentially PCF’
functions were verified to be PCF. These maps and their critical orbits are given in § 4.

Algorithm 1 builds the databases; our implementation used the first 99 primes greater than 3.
We construct a rational function ψ = F/G ∈ Fp(z) based on the normal form in Theorem 3.
The critical points of ψ are the roots of the Wronskian F ′G − G′F ; when the Wronskian is
linear, we also include the point at infinity. If the critical points are not defined over Fp, that is,
if the Wronskian is an irreducible quadratic over Fp, the map is not included in the database.

Algorithm 1 — Build Database

Input: pList, a list of primes > 3

Output: a database of quadratic rational maps over Fp together with critical point data for
each prime p in pList

for p in pList:

for each pair (b, c) ∈ F2
p:

create the morphism ψ := (2z2 + bz + b)/(−z2 + (4− b)z + cz2)
set crit1, crit2 := the critical points of ψ

if deg(ψ) = 2 and crit1, crit2 are defined over Fp:
add an entry for ψ to the database

for i = 1, 2:
find mi, the length of the cycle into which criti’s orbit eventually falls
find λi, the multiplier of that cycle

if λi = 0:
append the pair (criti, {mi}) to the database entry for ψ

else:
find ri := the multiplicative order of λi in F×p
append the pair (criti, {mi,miri}) to the database entry for ψ

Algorithm 2 filters out functions which are certainly not PCF, but does not guarantee
that the functions which remain are PCF. The algorithm uses the resultant of φ, meaning
the resultant of the relatively prime polynomials f and g such that φ = f/g. The resultant
of a map given in the form (2.1) is nonzero if and only if the map has trivial stabilizer
[8, Remark 3.2], and primes dividing the resultant are precisely the primes of bad reduction
for φ [13, §§ 2.4 and 2.5]. Our implementation used the height bounds from Proposition 1,
namely H1 = 192 and H2 = 12 288.

Subroutine 2A is called when φ has rational critical points γ1 and γ2, meaning we can
easily reduce them modulo primes p. (If p divides the denominator, the point reduces to the
point at infinity on P1

Fp
.) We must keep track of the possible periods for each critical point

independently, because it is possible that they terminate in cycles of different lengths.
Subroutine 2B is called when φ has irrational critical points. The equation defining the

critical points is a quadratic polynomial in Q[z], so in this case γ1 and γ2 must be Galois
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Algorithm 2 — Find PCF maps up to height bound

Input: pList, a list of primes included in the database; height bounds H1 and H2

Output: a set of possibly PCF maps with σ1 6 H1 and σ2 6 H2

for σ1 ∈ Q of height 6 H1 and σ2 ∈ Q of height 6 H2:

create the rational map φ(z) := 2z2+(2−σ1)z+(2−σ1)
−z2+(2+σ1)z+(2−σ1−σ2)

normalize the coordinates of φ (clearing denominators so all coefficients are in Z)
calculate res := resultant of φ

if res 6= 0:
calculate γ1, γ2 := critical points of φ

if γ1, γ2 ∈ Q:
if Check Rational Periods(φ, γ1, γ2, pList, res):

add φ to set of possibly PCF maps
else:

if Check Irrational Periods(φ, pList, res):
add φ to set of possibly PCF maps

Subroutine 2A — Check Rational Periods filters out maps φ which are not PCF

Input: A quadratic rational map φ with integer coefficients, resultant res, and rational
critical points γ1, γ2. A list of primes pList for which the database has been built

Output: False if φ is definitely not PCF and True otherwise

initialize empty lists PossPer1 and PossPer2

for p in pList:
if p - res (p is a prime of good reduction):

set ψ := φ (mod p), crit1 := γ1 (mod p), crit2 := γ2 (mod p)
look up ψ in the database

for i = 1, 2:
retrieve the set of possible global periods for criti
if PossPeri is empty (this is the first good prime):

set PossPeri = {possible global periods for criti}
else:

set PossPeri = PossPeri ∩ {possible global periods for criti}

if PossPeri is empty:
return False

return True

conjugates. Since φ(z) ∈ Q(z), the same is true of φi(γ1) and φi(γ2) for every i > 0. The
subroutine takes advantage of this symmetry. The orbits of γ1 and γ2 are either both finite or
both infinite. If the orbits are finite, they will terminate in cycles of the same length, and that
length must be in the intersection of the possible periods for each critical point at every good
prime.

Algorithm 1 was implemented in Sage [15], using built-in functionality for morphisms
on projective spaces over finite fields. The database used throughout was GNU dbm [10].
Algorithm 2 and Subroutines 2A and 2B were prototyped in Sage and eventually implemented
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Subroutine 2B — Check Irrational Periods filters out maps φ which are not PCF

Input: A quadratic rational map φ which has irrational critical points and integer coefficients;
res, the resultant of φ; and a list of primes pList for which the database has been built

Output: False if φ is definitely not PCF and True otherwise

initialize empty list PossPer

for p in pList:
if p - res (p is a prime of good reduction):

set ψ := φ (mod p)
look up ψ in the database
let Poss1 and Poss2 be the sets of possible global periods for the critical points of ψ

if PossPer is empty (this is the first good prime):
set PossPer = Poss1 ∩ Poss2

else:
set PossPer = PossPer ∩ Poss1 ∩ Poss2

if PossPer is empty:
return False

return True

in C to improve speed of computation. They use the GNU Multiple Precision Arithmetic
Library [4]. The program was run on two 6-core Intel R© Xeon R© CPUs at 2.80 GHz, with
12 GB of RAM and running Linux (CentOS 5.10).

4. PCF maps with trivial PGL2 stabilizer

Table 1 lists the output of our algorithm: all quadratic PCF maps defined over Q with trivial
PGL2 stabilizer. In the critical portraits, an arrow from P to Q indicates that φ(P ) = Q;
an integer over the arrow indicates the ramification index of the map at that point. In
particular, the critical points are the initial points for arrows where the integer is 2. The
portraits demonstrate that for each map found by our algorithm both critical points have
finite forward orbit, so the map is definitely PCF. The final column gives a conjugate map in
simpler form, reflecting the statement of Theorem 1.

Remark. This list of PCF maps raises some questions.
(i) All maps except the sixth one and the last one satisfy σ1 ∈ {±2,−6}. (This is also true

of the maps with nontrivial stabilizer described in § 5.) The line σ1 = 2 in the moduli space
of quadratic rational maps corresponds to the quadratic polynomials. What (if anything) is
special about these other two lines?

(ii) Similarly, all maps except the sixth one and the last one correspond to integer values of
(σ1, σ2). What is special about these the two anomalous maps?
(iii) For the two anomalous maps we have (σ1, σ2) = (− 2

3 ,
4
3 ) and (σ1, σ2) = (− 10

3 ,
20
3 ). In

other words, the symmetric functions of the multipliers have denominator at most 3 for all
quadratic PCF maps defined over Q. Is there some general phenomenon here that extends to
maps defined over number fields?

From [13, Proposition 4.73], functions with trivial PGL2 stabilizer have no nontrivial twists.
That is, any quadratic PCF map defined over Q with trivial stabilizer must be conjugate to
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one of the ten maps in Table 2, and the conjugacy must also be defined over Q. Hence the
rational preperiodic structures for these maps are invariant within the conjugacy class. The
possible structures, computed with Sage [15], appear in Table 2.

Table 1. All quadratic PCF maps defined over Q with trivial PGL2 stabilizer.

φ(z) Critical portrait Conjugate map

2z2

−z2 + 4z + 8
•0 •−4 •−4/3 •4

2
�� 2 // 1 //

1
��

z2 − 2

2z2

−z2 + 4z + 4
•0 •−2 •−1

2
��

2

33
1

ss z2 − 1

2z2 + 8z + 8

−z2 − 4z + 4
•∞ •−2 •0 •2 •−4

2 // 2 // 1 //
1

44
1

uu 1

2(z − 1)2

2z2 + 8z + 8

−z2 − 4z •−2 •0

•∞

2

33

1
ii

2

��
1

(z − 1)2

2z2 + 4z + 4

−z2 •0 •∞ •−2 •−1
2 // 1 //

2

33
1

ss −1

4z2 − 4z

6z2 + 8z + 8

−3z2 + 4z + 4
•0 •2 •∞ •−2 •−1

2 // 1 // 1 //
2

44
1tt −4

9z2 − 12z

2z2 + 8z + 8

−z2 − 4z − 2
•∞ •−2 •0 •−4

2 // 2 // 1 //
1
�� 2

(z − 1)2

2z2 + 4z + 4

−z2 + 4

•−3−
√
5

•−3+
√
5

•− 1
2
(1+
√
5)

• 1
2
(−1+

√
5)

•2 •∞ •−2

2 ++

2

33

1

++

1

33 1 //
1

44
1tt 2z + 1

4z − 2z2

2z2 + 4z + 4

−z2 + 2

•−2−
√
2

•−2+
√
2

•−√2

•√2

•∞ •−2

2
++

2

33

1

++

1

33 1 //
1
�� −2z

2z2 − 4z + 1

6z2 + 16z + 16

−3z2 − 4z − 4

•0 •−4 •−4/3

•−2 •−1

2 // 1 //
1
��

2

33
1

ss

3z2 − 4z + 1

1− 4z
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5. PCF maps with nontrivial PGL2 stabilizer

Quadratic rational maps with nontrivial PGL2 stabilizer have been extensively studied.
In [9], Milnor described the symmetry locus for quadratic rational maps; the second author
investigated the arithmetic of these maps in [6, 7]. Jones and the second author found a height
bound on PCF maps with nontrivial stabilizer and used that bound to show that over Q, the
only maps meeting these criteria must be conjugate to either ψ1(z) = z2 or ψ2(z) = 1/z2

[5, Proposition 5.1].
Unlike the six maps described in § 4, these two maps have nontrivial twists. That is, there

are infinitely many PGL2(Q)-conjugacy classes within each of these two PGL2(Q)-conjugacy
classes of maps. The different Q-conjugacy classes may have very different structures for their
rational preperiodic points. In this section, we find all of the possible rational preperiodic
structures for these two Q conjugacy classes. This determination of preperiodic structures
completes the proof of Theorem 2 from the introduction.

Throughout this section, ζn represents a primitive nth root of unity.

Table 2. Preperiodic structures for quadratic maps with trivial stabilizer.

φ(z) Rational preperiodic points graph

z2 − 2 •∞ •1 •−1

•0 •−2 •2

��
//
��

// //
��

z2 − 1 •∞ •1 •0 •−1

��
// tt 33

1

2(z − 1)2
•1 •∞ •0 •1/2 •2 •3/2// // // oo55

ss

1

(z − 1)2

•∞

•0
•1•2

��aa

//

//

−1

4z2 − 4z
•1/2 •1 •∞ •0// // 44

tt

−4

9z2 − 12z •2/3 •1 •4/3 •∞ •0

•1/3

// // //
��

55
tt

2

(z − 1)2
•1 •∞ •0 •2// // //

��

2z + 1

4z − 2z2
•−1/2 •0 •∞ •2// oo44

uu

−2z

2z2 − 4z + 1
•∞ •0//

��

3z2 − 4z + 1

1− 4z

•1/2 •1/4 •∞

•−2 •−1•1/3

// //
��

33

//

ss//
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Definition 2. If a point α ∈ P1 enters a cycle of least period m after n iterations (that is,
if φn(α) has period m with n and m minimal), then α is called a periodic point of type mn.

5.1. Maps conjugate to ψ1(z) = z2

Twists of ψ1 are described completely in [6]. They are given by

φb(z) =
z

2
+
b

z
,

where b 6= 0 is defined up to squares in Q. Applying propositions from [6], we easily conclude:
(1) The map φb always has a rational fixed point at infinity and a rational point of type 11

at 0 [6, Propositions 1 and 5].
(2) The map φb has finite rational fixed points if and only if b = c2/2 for c ∈ Q×

[6, Proposition 1], and all such maps are conjugate over Q. Taking b = 1
2 yields

φ1/2(z) =
z2 + 1

2z
.

In this case, there are no additional points of type 11 [6, Proposition 5].
(3) The map φb has rational points of primitive period 2 if and only if b = −3c2/2 for c ∈ Q×

[6, Proposition 2], and all such maps are conjugate over Q. So we take b = − 3
2 to get

φ−3/2(z) =
z2 − 3

2z
.

In this case, we have two rational points of type 21 [6, Proposition 5] but no rational
points of type 2n for n > 1 [6, Proposition 8] and no finite rational fixed points
[6, Proposition 9].

(4) The map φb cannot have rational points of primitive period 3 or 4 [6, Theorems 3 and 4].
This will also follow Theorem 5 below.

(5) The map φb has rational points of type 12 if and only if b = −c2/2 for c ∈ Q×, and all
such maps are conjugate over Q. So we take b = − 1

2 to get the map

φ−1/2(z) =
z2 − 1

2z
.

In this case, there are no finite rational fixed points [6, Proposition 6] and no rational
points of period 2 [6, Proposition 9].

(6) The map φb cannot have rational points of type 1n for n > 3 [6, Propositions 7 and 8].
The description above yields four possible rational preperiodic structures, shown in Table 3.
In order to claim we have a complete description of the possible rational preperiodic

structures, we need the following result.

Theorem 5. Let

φb(z) =
z

2
+
b

z
.

Then φ has no rational point of least period n > 2.

Proof. Consider a point α ∈ Q so that α is periodic for φb(z). Let

f(z) =
z√
2b
, so φfb (z) = φ1/2(z) =

z2 + 1

2z
.

Then we have that f(α) = α/
√

2b is periodic for φ1/2(z).
Now let g = (z − 1)/(z + 1). It is a simple matter to check that ψ1(z) := φg1/2 = z2, so that

g(f(α)) ∈ Q[
√

2b] is periodic for ψ1(z).
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Figure 1. All possible quadratic periodic points for ψ(z) = z2.

We will now categorize periodic points for ψ1(z) = z2 that lie in quadratic fields, showing
that none of them have period of length more than 2. The result will follow.

The map ψ1 has a totally ramified fixed point at ∞. Any finite periodic point of ψ1(z) = z2

is a root of z2
n−z, so it is either 0 or a root of z2

n−1−1, that is, a root of unity. Since we seek
periodic points that lie in quadratic fields, we can restrict our search to roots of unity that lie
in quadratic fields, namely {±1,±i, ζ3, ζ−13 , ζ6, ζ

−1
6 }.

A computation verifies that the preperiodic structures for ψ1 containing these points are the
ones shown in Figure 1. So the only quadratic periodic points have period 1 or 2 as desired. 2

5.2. Maps conjugate to ψ2(z) = 1/z2

From [8], all such maps are conjugate over Q to a map of the form

θd,k(z) =
kz2 − 2dz + dk

z2 − 2kz + d
, with k ∈ Q, d ∈ Q×, and k2 6= d. (5.1)

Conjugating this map by

f(z) =
z −
√
d

z +
√
d

yields θfd,k(z) =
t

z2
where t =

k −
√
d

k +
√
d
.

Conjugating this by g(z) = t−1/3z gives

(θfd,k)g(z) =
1

z2
.

Table 3. Preperiodic structures for twists of ψ1(z) = z2.

φb(z) =
z

2
+
b

z
Rational preperiodic points graph

φ1(z) =
z

2
+

1

z
•∞•0
��
//

φ1/2(z) =
z

2
+

1

2z
•∞•0 •1 •−1

��
//

�� ��

φ−3/2(z) =
z

2
− 3

2z
•∞•0

•−2

•−1

•2

•1
��
//

?? __44
ss

φ−1/2(z) =
z

2
− 1

2z
•∞•0

•−1

•1

��
//88

&&
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Figure 2. ψ2(z) = 1/z2: 2-cycle and one fixed point.
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Figure 3. ψ2(z) = 1/z2: two additional fixed points.

If α ∈ Q is preperiodic for θd,k, then β = g−1f−1(α) ∈ Q(t1/3) is a preperiodic point for
ψ2(z). Since [Q(β) : Q] 6 6, we may find all rational preperiodic structures for this family of
maps by describing preperiodic points for ψ2 of degree at most 6. Conjugating these points to
lie in the rationals, we will find a map in the family with specified rational preperiodic points
or show that none exists.

Lemma 2. All preperiodic points for ψ2(z) = 1/z2 of degree at most 6 are given in
Figures 2–5.

Proof. For n even, ψn2 (z) = z2
n

, so the points with period dividing n are 0,∞, and (2n−1)th
roots of unity. For n odd, ψn2 (z) = z−2

n

, so the points with period dividing n are (2n + 1)th
roots of unity. Hence all strictly periodic points other than 0 and ∞ are roots of unity of
odd order. The only roots of unity of odd order with degree no more than 6 are powers of
{1, ζ3, ζ5, ζ7, ζ9}. We may find their periodic structures by iterating ψ2 with the appropriate
seed values.

Let β be a preperiodic point for ψ2. Then [Q(β) : Q] 6 6 if and only if all powers of β also
satisfy [Q(βn) : Q] 6 6. In particular, the orbit of β lands in some cycle, and the points of that
cycle have degree no more than 6. Hence we can find all preperiodic points for ψ2 having degree
no more than 6 by finding preimages of the periodic points described above, and continuing
until the field generated by the preimages has degree greater than 6. It is a simple matter to
verify that this process yields the diagrams given. 2

Proposition 3. Let φ(z) ∈ Q be conjugate over Q to ψ2. Then φ has no points of type 2n
for n > 1. For m 6= 2, φ has the same number of rational points of type m1 as it has rational
points of primitive period m.

Proof. The critical points of ψ2 lie on a 2-cycle, and this property is preserved under
conjugation. Therefore each critical point is also a critical value, so if the critical points of
φ are {γ1, γ2} we have φ−1(γi) = {γj} for i 6= j. Hence φ has no points of type 21 and it
follows that φ has no points of type 2n for n > 1.

Let α be a rational point of primitive period m for φ. Then all points on the m-cycle
containing α are also rational since φ(z) ∈ Q(z). Therefore the quadratic φ(z) = α has one
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Figure 4. ψ2(z) = 1/z2: two 3-cycles.

•ζ5

•ζ35•ζ45

•ζ25

•−ζ25•−ζ45

•−ζ5•−ζ35

��
kk

HH
** ww''

gg77

•ζ7
•ζ57

•ζ47•ζ27

•ζ37

•ζ67

•−ζ37
•−ζ7•−ζ27

•−ζ57•−ζ67
•−ζ47

��

oo
dd

HH

//
$$

��
����

ZZDD

OO

Figure 5. ψ2(z) = 1/z2: a 4-cycle and a 6-cycle.

rational root. Since m 6= 2, α is not one of the critical values of φ by the argument above.
Hence, the quadratic φ(z) = α has two distinct roots, so both must be rational. That is, there
is a rational point β not on the m-cycle satisfying φ(β) = α, and β is a point of type m1. 2

Proposition 4. Let φ(z) ∈ Q(z) be conjugate to ψ2. If φ has a rational 2-cycle then it may
have either no rational fixed points or one rational fixed point. In either case, it has no other
rational preperiodic points except the required point of type 11.

Proof. From [8, Lemma 5.1], we see that φ has a rational 2-cycle if and only if it is conjugate
over Q to θt(z) = t/z2 for some t ∈ Q×. Solving θt(z) = z, we see that there is a rational fixed
point if and only if t ∈ (Q×)3, and all such maps are conjugate over Q.

Furthermore, if f(z) = t−1/3z, then θft (z) = ψ2. Applying f to the preperiodic structures
given in Lemma 2, we find no other rational preperiodic points. 2

By Proposition 3, we have only two rational preperiodic structures for maps conjugate
to φ2(z) that contain rational points of primitive period 2. These are the first two maps
represented in Table 4.

Proposition 5. Let φ(z) ∈ Q be conjugate over Q to ψ2. Suppose φ has no rational points
of period n > 1. Then φ has one of the following rational preperiodic structures:

(i) φ has no rational fixed points (hence no rational preperiodic points at all);
(ii) φ has exactly one rational fixed point and one point of type 11 but no other rational

preperiodic points;
(iii) φ has exactly one rational fixed point, one rational point of type 11, and two rational

points of type 12, with no other rational preperiodic points; or
(iv) φ has exactly three rational fixed points and three rational points of type 11, with no

other rational preperiodic points.
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Proof. Choosing k = 1 and d = 2 in the normal form from equation (5.1) yields the map

z2 − 4z + 2

z2 − 2z + 2
.

One can check computationally that this map has no rational points of primitive period 1, 2,
3, 4, or 6. By Lemma 2, these are the only possibilities.

Choosing k = 0 and d = 2 in the normal form from equation (5.1) yields the map

− 4z

z2 + 2
.

One can check computationally that this map has fixed point 0 and no other rational points
of primitive period 1, 2, 3, 4, or 6. By Lemma 2, these are the only possibilities. We also have
∞ 7→ 0, a rational point of type 11. The preimages of∞ are not rational, so there are no other
rational preperiodic points.

Beginning with the preperiodic structure described in Lemma 2, we see that conjugating φ2
by any f ∈ PGL2 which maps three arbitrary rational points to 1, i, and −i creates a map
with rational type 12 points. Choose

f(z) =
iz + 1

z + i
which yields ψf2 (z) =

−z2 + 2z + 1

z2 + 2z − 1
.

Table 4. Preperiodic structures for twists of ψ2(z) = 1/z2.

φ(z) Rational preperiodic points graph

1

z2
•1•−1 •0 •∞
��
// 44

tt

2

z2
•0 •∞44tt

z2 − 4z + 2

z2 − 2z + 2
no rational preperiodic points

− 4z

z2 + 2
•0•∞
��
//

−z2 + 2z + 1

z2 + 2z − 1
•1•−1

•0

•∞

��
//

88
&&

− (z − 2)z

2z − 1
•0•2 •1•−1 •∞• 1

2

�� �� ��
// // //

2z − 1

z2 − 1

•0

•1•∞

• 1
2
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��
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One can check computationally that this map has no rational point of period 2, 3, 4, or 6. The
only rational fixed point is 1; −1 is a type 11 point; and 0 and ∞ are type 12 points. There
are no rational type 13 points.

Again, beginning with the preperiodic structure described in Lemma 2, we see that
conjugating φ2 by any f ∈ PGL2 which maps three arbitrary rational points to 1, ζ3, and
ζ23 , yields a map with three rational fixed points. Choose

f(z) =
(1 + ζ3)z + 1

z − ζ23
which yields ψf2 (z) = − (z − 2)z

2z − 1
.

This map has fixed points at 0, 1, and ∞ and the corresponding rational type 11 points. One
can check computationally that this map has no rational point of period 2, 3, 4, or 6, and no
rational type 12 points.

We have shown that each of the possibilities listed are possible for maps conjugate to ψ2. It
remains to check that no other possibilities exist.

Since φ is defined over Q, the cubic polynomial φ(z) = z has either zero, one, or three
rational roots. Hence we cannot have exactly two rational fixed points.

If a map φ is conjugate to ψ2 and has rational points of type 13, then it is conjugate over
Q to a map with a fixed point at 1 and the type 12 points at 0 and ∞. We found such a map
above, and it does not have rational type 13 points.

Similarly, if a map φ is conjugate to ψ2 and has three rational fixed points and rational
points of type 12, then it is conjugate over Q to a map with one fixed point at 1 and its type
12 points at 0 and ∞. We found such a map above, and it does not have additional rational
fixed points. We have now exhausted all possibilities. 2

By Proposition 5, the third through sixth rational preperiodic structures in Table 4 are the
only ones possible for maps conjugate to ψ2 that have no rational points of least period n > 1.

Proposition 6. Let φ(z) ∈ Q be conjugate over Q to ψ2. Suppose φ has a rational point
of period 3. Then φ has exactly three such points and three points of type 31. The map φ has
no other rational preperiodic points.

Proof. If φ is conjugate to ψ2 and has a rational point of period 3, then it is conjugate over
Q to a map with the 3-cycle 0 7→ 1 7→ ∞ 7→ 0 7→ . . . . This conjugacy completely specifies the
map. Given the preperiodic structure described in Lemma 2, we may begin with f ∈ PGL2

which maps 0, 1, and ∞ to ζ9, ζ79 , and ζ69 . This is

f =
ζ69z − ζ79
−z + ζ49

which yields ψf2 (z) =
2z − 1

z2 − 1
.

One may verify computationally that this map has the desired 3-cycle and no other rational
points of period 1, 2, 3, 4, or 6. It has rational type 31 points mapping into the 3-cycle, but
the type 32 points are not rational. 2

By Proposition 6, there is only one rational preperiodic structure for maps conjugate to ψ2

that have a rational point of primitive period 3. This is the last map in Table 4.

Proposition 7. Let φ(z) ∈ Q be conjugate over Q to ψ2. Then φ has no rational points of
period n > 3.

Proof. If φ has rational points of period 4, then it is conjugate over Q to a map where three
of those points are at 0, 1, and ∞. Applying Lemma 2, we choose f ∈ PGL2 mapping these
three rational points to three powers of ζ5. Conjugating ψ2 by this map does not yield a map
defined over Q. The argument for points of period 6 is the same, but using powers of ζ7. 2
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