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Accepted: 15 July 2025 Fossil pollen analysis is an “open-world” problem in paleontology for which there is a long-
standing need for automated identification and classification. In the open world, categorical
classes are imbalanced, test classes are not known a priori, and test data are captured across
different domains. Pollen samples capture large numbers of specimens that include both
Corresponding author: common and abundant types and rare and sometimes novel taxa. Pollen is diverse morpholog-
Surangi W. Punyasena; ically and features can be altered during fossilization. Additionally, there is little standardization
Email: spunyal@illinois.edu . . . .
in the imaging of pollen samples. Therefore, generalized workflows for automated pollen
analysis require techniques that are robust to these differences and can work with microscope
images. We focus on a critical first step, the initial detection of pollen specimens on a
palynological slide and review how existing methods can be employed to build robust and
generalizable analysis pipelines. First, we demonstrate how a mixture-of-experts approach—the
fusion of a general pollen detector with an expert model trained on minority classes—can be
used to address taxonomic biases in detections, particularly the missed detections of rarer pollen
types. Second, we demonstrate the efficiency of domain fine-tuning in addressing domain gaps
—differences in image magnification and resolution across microscopes and of taxa across
different sample sources. Third, we demonstrate the importance of continual learning work-
flows, which integrate expert feedback, in training detection models from incomplete data.
Finally, we demonstrate how cutting-edge segmentation models can be used to refine and clean
detections for downstream deep learning classification models.
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Non-technical Summary

Fossil pollen analysis presents challenges that result from the complexity of the “open world.” It
is not possible to anticipate all the taxa that will be encountered in geologic samples. Each sample
has the potential to produce new species and introduce specimens with unique shapes and sizes.
Pollen embodies diverse morphologies; its appearance can be altered depending on the condi-
tions under which it was fossilized; and there is little standardization in the microscopy
equipment used to image and catalog pollen images. Al applications in palynology need to
address this complexity. We applied four machine learning methods (mixture-of-expert models,
domain fine-tuning, continual learning, and foundation models for segmentation) to fossil
pollen data to demonstrate their effectiveness in the detection and isolation of pollen specimens
on a pollen sample slide and provide command line software for others to reproduce this work

and apply these methods.
© The Author(s), 2025. Published by Cambridge
University Press on behalf of Paleontological
Society. This is an Open Access article, Introduction
distributed under the terms of the Creative w N
Commons Attribution licence (http:// Fossil pollen analysis represents a paleontological example of an “open-world” problem. The
creativecommons.org/licenses/by/4.0), which term “open world” describes uncontrolled operational environments in machine learning
permits unrestricted re-use, distribution and (Bendale and Boult 2015; Liu et al. 2019; Joseph et al. 2021). It stands in contrast to classic

reproduction, provided the original article is

properly cited supervised learning, where all the test classes are known and have been introduced in training.

The data collected by pollen analysis—Ilike data from many other fields of paleontology—cannot

SO0 be fully anticipated and modeled a priori. Specimens often represent new, extinct, and/or

PALEOBIOLOGY Paleontologicl  undiscovered species. Species abundances (sensu May 1975) naturally follow an imbalanced or
Rripesovore T e e ey long-tailed distribution, where a small number of taxa are common, while many others are rare.
Images of the same taxon can vary widely, depending on the microscope, magnification, and

CAMBRIDGE imaging or preparation techniques. Specimens can have variable levels of preservation from
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sample to sample and locality to locality. Given the high level of
expertise and time required for traditional pollen identifications,
researchers have long sought to develop automated detection and
classification pipelines for pollen specimens (Langford et al. 1990).
However, developing machine learning models that can generalize
across the range of variability in pollen diversity, abundance, pres-
ervation, preparation, and imaging requires adopting workflows
that can succeed in open-world environments.

Fossil pollen isolated from geologic sediments for paleoeco-
logical or biostratigraphic analysis are typically mounted on
microscope slides (Traverse 2007). The first step in any auto-
mated classification process is streamlining the imaging of micro-
scopic slides of pollen samples and detecting and segmenting
pollen specimens from these scanned images. The widespread
availability of slide-scanning microscopes means that entire slides
can be imaged quickly and efficiently (Tetard et al. 2020; Punya-
sena et al. 2022; Theuerkauf et al. 2023; Li et al. 2024; von Allmen
et al. 2024; Jaramillo et al. 2025). These scans are capable of
capturing the entirety of a pollen slide—both the area of a
coverslip and multiple focal planes—producing a fully three-
dimensional representation of the pollen sample (Punyasena
et al. 2022).

Accurate, consistent detection of pollen among other organic
debris in these slide scans is a critical step in automating visual
pollen identifications. It can be followed by segmentation to
isolate the grain from its background. The final step is classifi-
cation into morphological or taxonomic groupings. While an
increasing number of studies have shown that classification is
feasible with enough training data (Sevillano and Aznarte 2018;
de Geus et al. 2019; Menad et al. 2019; Astolfi et al. 2020; Bourel
et al. 2020; Sevillano et al. 2020; Barnes et al. 2023; Rostami et al.
2023), training effective detection and segmentation models
remains a challenge due to the taxonomic, taphonomic, imaging,
and preparation diversity within palynology. Detection in this
context refers to the automated location of a pollen specimen
within the X, Y, and Z coordinates of a slide scan. Segmentation
refers to isolation of the detected specimen from the background.
Detection is needed at two discrete stages of automated work-
flows. Experts can label detected pollen grains to efficiently
produce training and validation data for the development of
pollen classification models. Detection is also needed when apply-
ing these classification models to new samples.

We demonstrate four machine learning solutions for addressing
common limitations in automated pollen detection and segmenta-
tion. Taken together, these approaches provide effective strategies
for constructing robust, generalized detection models that can be
applied to a wide range of palynomorphs and other paleobiological
data. We first focus on detecting pollen specimens from a scanned
image of a microscope slide and demonstrate how the mixture-of-
experts technique can address taxonomic bias. The morphological
diversity and long tail of rare species encountered in pollen samples,
particularly those from the tropics, lead to detectors that are poten-
tially biased toward the most common and distinctive morpholog-
ical types. False negatives (pollen that is missed by the detector)
pose a greater problem than false positives (non-pollen objects
identified as pollen by the detector), as false positives can be
removed at a later stage of the analysis, while bias toward false
negatives will affect downstream estimates of proportional abun-
dance. The solution is to train an expert model on small, difficult-
to-detect taxa and fuse it with a more general pollen detector. This
technique is used frequently in top-ranked detection methods in
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public machine learning challenges (Akiba et al. 2018; Guo et al.
2019; Huang et al. 2020).

We next demonstrate how fine-tuning can be a data-efficient
method for transfer learning across new imaging domains. Differ-
ences among pollen samples or images result from differences in the
microscopes and objectives used, localities or ages represented, or
preparation techniques applied. Detection models trained in one
domain will have reduced accuracy when applied to a new domain
due to differences in color, brightness, and resolution, or the
taxonomic or taphonomic differences between samples. Fine-
tuning previously trained models with training data from a new
domain can quickly produce more generalized models. This
approach is widely used in machine learning (for reviews, see Pan
and Yang 2010; Zhuang et al. 2020).

Next, we show how workflows for continual learning using
human-in-the-loop annotation can address the problem of incom-
plete training data for pollen detection. In fossil pollen analysis, as
in many other areas of paleobiological research, there is a high
probability of encountering new taxa with each new sample. We
inevitably begin with insufficient training data because it is not
possible to curate images of all possible types. Incorporating expert
feedback through human-in-the-loop annotation leverages trained
models to annotate new, unlabeled data. Experts verify or revise
low-confidence detections, and these new annotations are used to
further fine-tune detection or classification models (Zhou et al.
2017; Wang et al. 2020; Adhikari and Huttunen 2021; Wu et al.
2022; Kirillov et al. 2023). This approach provides an efficient
mechanism for improving pollen detection (as well as pollen clas-
sification) models over time.

Finally, we demonstrate how newly available foundation seg-
mentation models (Meta’s Segment Anything Model 2 [SAM-2];
Kirillov et al. 2023; Ravi et al. 2024) can be incorporated into
object detection pipelines of microscope images. Segmentation
builds on detection results, producing masked images that follow
an object’s outline. Cleanly segmented images improve future
classification analyses by removing extraneous and potentially
biasing information from an image background. The off-the-shelf
segmentation model SAM-2 takes a user prompt, for example, a
bounding box that specifies a region of interest or a cursor
prompt, and outputs a valid segmentation mask. SAM-2 is trained
on a segmentation dataset of more than 1 billion masks, 1 million
still images, and 51,000 videos, allowing the model to segment
general objects of interest on diverse images and videos (Ravi et al.
2024).

We review these four foundational and emerging techniques to
demonstrate their application to palynological analysis and specif-
ically to the critical first step of pollen detection and segmentation
from scanned slide images. Our hope is to encourage and guide
other researchers in developing robust deep learning workflows. All
Python code used to process slide scans into image stacks, annotate
image stacks, train and evaluate detection models, and apply seg-
mentation is available through our GitHub repositories, and we
provide command line interface (CLI) Python software so that
others can easily integrate these techniques into their own research
(see Data Availability Statement). The NDPI Tile Cropper CLI as
written can only be applied to Hamamatsu NanoZoomer Digital
Pathology Images (NDPI) images (Puthanveetil Satheesan et al.
2025a), but the source code shared in our GitHub repository can be
modified to open other microscope images using the python-
bioformats library, a wrapper for Bio-Formats Open Microscopy
Environment software (Linkert et al. 2010).
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Methods
Pollen Samples Source

We imaged pollen from two high-resolution sediment cores
extracted from Laguna Pallcacocha, in El Cajas National Park,
Ecuadorian Andes. The first core, PAL 1999, (Moy et al. 2002)
extends through the Holocene (11,600 cal yr BP—present). The
second parallel core, PAL IV (Hagemans et al. 2021; Hagemans
et al. 2023) spans the twentieth century. The vegetation surround-
ing the lake is dominated by cushion plants and patches of paramo
shrubs (Hagemans et al. 2019). Volumetric samples were spiked
with Lycopodium clavatum and prepared following standing pro-
tocols, including acetolysis and heavy liquid flotation (Faegri and
Iversen 1989). Samples from PAL IV were mounted using glycerin,
and samples from PAL 1999 were mounted in a permanent mount.

Imaging

We imaged 19 slides from the PAL IV core and three slides from the
PAL 1999 core using two different microscopes (Fig. 1, Table 1). PAL
IV slides were imaged at 630x magnification (0.146 pm/pixel

resolution) with a Leica DM 6000 B, an upright transmitted light
microscope fit with a halogen light source, an automated XYZ stage,
and LAS 4.12 PowerMosaic software for the creation of image tile
grids (Fig. 1B). One to three scans measuring 3698 pm x 2790 um
were taken from each slide. Each scan was composed of 400 image
stacks of 1040 x 1392 pixel tiles, with 7 or 9 focal planes imaged at
increments of 3 or 4 um. A total of 2986 image stacks contained
palynomorphs; these were used for model training. The three sam-
ples from the PAL 1999 core were imaged at 400x magnification
(0.225 pm/pixel resolution) with a Hamamatsu NanoZoomer 2.0 HT
slide-scanning microscope. Nine focal planes were imaged in 3 um
increments for a focal depth range of 24 pm. Slide scans (NDPI file
format) were processed into 1040 x 1392 pixel image stacks (PNG file
format) using the Bio-Formats Python library (Linkert et al. 2010).
Three hundred randomly selected image stacks, approximately 5% of
the total slide area, were exported from each slide.

Annotation

For every annotated pollen grain or spore, we defined its X,Y,Z
coordinates using bounding boxes converted to inscribed circles
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Figure 1. A, Example of a slide scan (~20.5 x 20.5mm), image stack (7 or 9 focal planes with 3 or 4 um step size), image tile (1040 x 1392 pixels), and crop (800 x 800 pixels). Comparison
of 1040 x 1392 pixel image tiles taken with a (B) standard upright microscope (0.146 pm/pixel) and (C) slide-scanning microscope (0.225 pm/pixel). The 40 x 40 um boxes highlight
Lycopodium spores in each image for comparison. Noticeable differences include color, brightness, and scale. The upright microscope domain was used in training the general
pollen detection model (GPDM) and small-grain detection model (SGDM), and the slide-scanning microscope domain was used for domain fine-tuning and continual learning.
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Table 1. Summary of the two different slide imaging and image tiling methods used in this paper, identifying several variables: the sediment core source for the
pollen sample, the techniques described in the paper used on those samples, the number of slides used in the analysis, the microscope used for imaging, the lens
magnification and image resolution, the number of focal planes in the image stacks, the image stack focal plane step size, the focal depth range of the image stack,
the slide image tiling method, and the tile dimensions. Samples were imaged using two different but comparable bright-field microscopy methods, making use of
the available institutional resources at Utrecht University and the University of Illinois, Urbana-Champaign. GPDM, general pollen detection model

Sediment core
twentieth century

PAL IV (Hagemans et al. 2021, 2023) spans the

PAL 1999 (Moy et al. 2002) spans the Holocene

Relevant methods

Training GPDM, mixture-of-experts approach

Transfer learning and human-in-the-loop approaches

Number of slides 19

3

Microscope

Leica DM 6000 B, upright transmitted light microscope

NanoZoomer 2.0 HT slide scanning microscope

Lens magnification and image 630x (0.146 um/pixel)

400x (0.225 pm/pixel)

resolution
Number of focal planes 7or9 9
Image stack step size 3o0or4pum 4 um
Focal depth range of image stack 24 um 24 um

Image tiling method

image tile grids (BMP format)

Microscope fitted with an automated XYZ stage and
LAS 4.12 PowerMosaic software for the creation of

Whole slide scans (NDPI format) processed into tiles (PNG
format) using the Bio-Formats Python library

Tile dimensions 1040 x 1392 pixels

1040 x 1392 pixels

(PAL IV images) or directly as circles (PAL 1999 images) on the
plane of the image stack that captured the equatorial cross section of
the pollen grain or spore. When these annotations fell at the edge
of the image, annotations were corrected manually to identify the
center of the grain. We annotated the PAL IV images using a
MATLAB script, modified from Punyasena et al. (2022), and
annotated the PAL 1999 images using Labelme (Wada et al.
2021) and the Hamamatsu NanoZoomer NDP.view2 software.
All three methods produced the same annotation metadata: a
center and radius that defined the location of a pollen grain. We
annotated 3191 PAL IV and 794 PAL 1999 specimens as one of
129 taxonomic types (Feng et al. 2025). The 18 most common
palynomorphs accounted for 92% of the total dataset (Fig. 2). We
excluded algae and fungal spores, but included plant spores from
ferns and lycopods, such as Huperzia (Fig. 2P), Isoetes (Fig. 2Q),
and the exote marker Lycopodium clavatum (Fig. 2R). The
excluded algae were primarily Pediastrum, which is much larger
and lighter than pollen and morphologically distinct. Similarly,
the excluded fungal spores are much smaller and darker than
pollen and likewise morphologically distinct.

General Pollen Detection Model (GPDM) Architecture and
Training

Convolutional neural networks (CNNs) have learnable parameters
that are optimized to output the desired prediction for a given
input. A CNN model is trained using a set of images and their
associated annotations. Annotations refer to human expert labels or
tags of specimens and their bounding box coordinates. This is the
“ground truth.” From the training set, a random selection of images
is forward passed through the model, which outputs detection
results. The detection results are compared with the ground-truth
annotations of these images, producing a loss that measures the
difference between detection results and annotations. Then, an opti-
mization algorithm updates the model’s parameters by minimizing
the cost value. This procedure iterates over batches of the whole
training data, for multiple epochs (where an epoch is a single pass
over all the training data). Intermediate models are saved after each
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epoch or saved under different training hyperparameters, and we
select the model that produces the smallest cost value on a held-out
validation set (Fig. 3A).

In our case, our input is image stacks from slide scans, and our
desired prediction is pollen detections (determining whether image
pixels represent “pollen” or “not pollen”). We used ResNet34
(He et al. 2016) as the backbone of our GPDM, encoding the input
image stacks as a feature map, which assembles per-pixel feature
vectors. Over the feature map, we built a decoder (Kong 2022;
Punyasena et al. 2022) that transformed the feature map to a
detection heat map, with each pixel denoting a confidence score
for the pixel belonging to a pollen grain.

We used the PAL IV dataset in developing the GPDM. The
model was trained on 800 x 800 pixel crops of the original 1040 x
1392 pixel image tiles (Fig. 1A). During training, crops were
taken randomly, and the location of the crop varied with each
epoch. During evaluation, four overlapping crops were taken of
each image stack, covering the entire image tile. We divided the
annotated image stacks into a training set (80%) and a validation
set (20%). We augmented the training data using random rota-
tions and flips of the original image stacks. We set the number of
images in each batch of training data to four, trained the model
for 30 epochs, and set the learning rate (the degree of model
weight adjustment for each weight update) to 0.0005. We stopped
the training at 30 epochs when the model improvement pla-
teaued.

We created circular binary masks to indicate where pollen was
present using our circular annotations. From these, we created
distance transform masks where values for pixels inside each circle
or partial circle represented the number of pixels to the nearest edge
(Fig. 4B). Binary masks were used to train the model to recognize
pixels in an image as “pollen” or “not pollen,” while the distance
transform masks were used to train the model to recognize the
centers of pollen grains. Use of the distance transform masks
creates a spatially aware detection, allowing for the separation of
overlapping detections and cleaner segmentations (e.g., Punyasena
et al. 2022). The final loss sums the detection loss and the distance
transform loss.
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Figure 2. The 18 most common palynomorphs (>20 training examples, representing 92% of the total dataset): A, Alnus; B, Apiaceae; C, Asteraceae Tubuliflorae-type; D, Cyperaceae;
E, Hedyosmum; F, Myrica; G, Myrsine; H, Plantago; 1, Polylepis spp.; J, Poaceae; K, Podocarpus; L, Valeriana; M, Cecropia; N, Melastomataceae; O, Urticaceae-Moraceae; P, Huperzia;
Q, Isoetes; and R, Lycopodium clavatum (exote marker). Black borders indicate taxa with medium to large pollen grains (A-L), medium-gray borders indicate taxa with small grains
(M-0), and light gray borders indicate plant spores included in the annotated dataset (P-R). Scale bars, 10 um.

Detection Model Outputs

For each image in an image stack, the detection model outputs
softmax layers (normally distributed probabilities of whether a
pixel is within a pollen grain) (Fig. 4C) and predicted distance
transform layers of pollen pixels from the edge of a pollen grain
(Fig. 4D). Local peaks in the distance transform layer identified the
mass centers of pollen detections (Fig. 4E). We next used the
maximum radius of the largest connected component as the pre-
dicted radius. The predicted center and radius defined the circular
binary detection mask (Fig. 4F). Softmax was used to determine the
confidence of the detection (Punyasena et al. 2022).

Detection Model Evaluation

We evaluated detections by determining the overlap with the closest
annotated pollen grain (Fig. 4A) using their intersection over union
(IoU) (Padilla et al. 2021). If an IoU was above a predefined IoU
threshold (heuristically chosen as 0.3 for this study, or an overlap of
30%), the detection was considered as a true positive (Fig. 4F),
otherwise it was a false positive. If an annotation did not overlap
with any detections above the IoU threshold, it was considered a
false negative. IoU values of true positives were consistently lower
than 1, because the masks defined by machine detections and
human annotations were rarely the same size and shape.

We used confidence scores to rank all the detections. Increasing
the confidence threshold keeps only high-confidence detections but
removes true positive detections with lower confidence. It also
potentially increases the percentage of true positives in the retained
detections. Therefore, tuning the confidence threshold introduces a
trade-off between the percentage of kept true positives over all
annotations (termed “recall”) and the percentage of kept true
positives over the kept detections (termed “precision”). We define
precision and recall, respectively:
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true positives

(1)

precision = — —
true positives + false positives

true positives
recall =

()

true positives + false negatives

We calculated the values for precision and recall at varying confi-
dence thresholds and plotted a precision—recall curve from these
results. The area under the curve is the mean average precision
(mAP), which we can then use to evaluate model performance
(Everingham et al. 2010; Lin et al. 2014). Within an image stack,
there may be multiple detections for the same grain. We used non-
maximum suppression to remove duplicates when the IoU of two
detections was >0.3, retaining only the detection with the highest
confidence score.

Mixture-of-Experts

In our samples, small grains (<20 um in diameter) were only 6.8%
of the total dataset, so taxonomic bias in the data distribution
included a morphological bias against the detection of small grains.
We used an expert model trained specifically on smaller pollen
grains (a small-grain detection model [SGDM]) alongside GPDM
detections to improve our detection results (Fig. 3B). This is known
as a mixture-of-experts approach (Nowlan and Hinton 1990).

We fine-tuned the GPDM exclusively on three small-grained
taxa: Urticaceae-Moraceae (132 image stacks for training and 32 for
validation, with each image stack representing a single pollen
grain), Cecropia (19 training/4 validation), and Melastomataceae
(25 training/4 validation). The fine-tuned model is our SGDM. We
fine-tuned the SGDM for 80 epochs. (We needed more epochs to
train the SGDM than the GPDM due to the greater challenge of
learning to detect smaller grains from high-resolution tiles). We
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Figure 3. Setups for: A, the general pollen detection model (GPDM), B, the mixture-of-

experts technique, C, transfer learning across imaging domains, and D, continual
learning with human-in-the-loop annotation. A, The process of training the GPDM by
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splitting the annotated dataset into training and validation sets, used respectively for
training the model and for model selection. The validation set was then passed through
the model to obtain a list of detections and associated confidence scores. Using the
detections, we drew a precision-recall curve for model evaluation. B-D are variations on
A. In B, we trained a small-grain detection model (SGDM) on a subset of the PAL IV data,
selecting only image stacks that contained Urticaceae-Moraceae, Melastomataceae, or
Cecropia grains and revising the masks to only represent these taxa. The SGDM was then
fused with the GPDM into a single pipeline. In C, we fine-tuned the GPDM on slides from a new
domain, PAL 1999. In D, we implemented a continual learning workflow. We used Slide 1 to
fine-tune the GPDM in TPy, producing the TP, detector, then used the TP, detector to detect
pollen in image stacks from Slide 2. In the fine-tuning stage, experts manually verified
detections so that the detections served as new training data to fine-tune detectors. The
process was repeated continually in subsequent time steps.

reserved examples from three other small-grained taxa—Acalypha,
Vallea, and Weinmannia—as a held-out validation set to assess the
ability of SGDM to detect novel taxa with similar characteristics.
We used this validation set to evaluate both SGDM and GPDM in
terms of detecting small pollen grains.

The SGDM and GPDM produced independent sets of detec-
tions with different confidence score distributions. To fuse their
detections, we first calibrated their confidence scores using the
method in Platt (1999) for score calibration. Specifically, we
adjusted the confidence score (s) of an SGDM’s detection towards
the calibrated score (S) by tuning two hyperparameters (o and f) in
the sigmoid function below:

_ 1
T 14 e St

(3)

We tuned the hyperparameters by sweeping over a range (3.0, 6.0)
for o and B, with step sizes of 0.1, with a goal of maximizing mAP
over our validation set. We derived the final hyperparameter at o =
5.5 and B = 4.9 used in our work. We fused overlapping detections
from the GPDM and SGDM.

Transfer Learning across Imaging Domains

We next fine-tuned our GPDM, originally trained on PAL IV
images, to new imaging domains, that is, the PAL 1999 images.
Because the taxonomic composition of the two cores was iden-
tical, differences between the two image datasets were primarily
in the image resolution, color, and contrast (Hagemans et al.
2022, 2023). The PAL 1999 dataset included 300 image stacks
from each of three slides; 80% were used as the training set and
20% as the validation set. The GPDM was trained on PAL 1999
image stacks and annotations (Fig. 3C), until we observed no
additional model improvement (120 epochs). Although the PAL
IV images had a resolution 0.146 pm/pixel and PAL 1999 images
had a resolution of 0.225 um/pixel, we did not rescale the images to
simulate a more challenging domain gap. We evaluated the fine-
tuned model performance by comparing the precision—recall curves
for the slide-scanner validation data before and after fine-tuning. To
provide a performance baseline for comparison, we also trained a
GPDM model trained from scratch on the PAL 1999 image stacks
and annotations.

Continual Learning with Human-in-the-Loop

We simulated a human-in-the-loop workflow that would allow us
to train models when starting with incomplete data. Instead of
training on all 900 images at once as in our transfer learning
experiments, we split the images at the slide level into three sets
of training and validation data to be used at three time periods (TP,
TP,, and TP,). We measured model performance as the decrease in
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Figure 4. The detection workflow. A, One plane of the image stack, overlaid with the original square annotations. B, The ground-truth distance transform mask, created from the
annotations. C, The softmax layer, one of the model outputs. D, The predicted distance transform mask, a second model output. E, The predicted pollen grain centers, determined
by calculating the peaks in the distance transform mask. F, The detection mask, created using the predicted pollen grain centers and radii, overlaid on the image with confidence
scores below each detection. The detection mask was thresholded at a confidence score of 0.025. Note that a single image is used solely to illustrate our workflow. In our study,
training and evaluation images were not duplicated.

the number of false positives and an increase in the recall rate. We In TP,, we fine-tuned the GPDM on the TP, training set and
manually verified true positives and false positives in our detection  used the TP, validation set to select the best-performing detector,
results from each time period and used these new labels to further =~ which we called the TP, detector. In TP;, we used the TP, detector
fine-tune our models (Fig. 3D). to help us annotate the TP, training set. We ran the TP, detector on
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the TP, training set to get a set of detections. Next, we simulated
human-in-the-loop verification of the detections by using the
ground-truth annotations. If a ground-truth annotation and a
predicted detection had an IoU > 0.3, we considered the detection
atrue positive and included it in the set of cleaned annotations for the
TP, training set. Otherwise, the detection was considered a false
positive and was eliminated. We did not include missed detections in
the cleaned annotations for the TP, training set. We fine-tuned the
TP, detector on a training set composed of [TP training set + TP,
training set] and selected the best model using the TP; validation set.
We called this detector the TP, detector. In TP,, we repeated the
process of using the TP detector to annotate the current TP, training
set, then cleaning up the annotations. We fine-tuned the TP; detector
on a training set composed of [TP, training set + TP; training set
+TP, training set] and selected the best model using the TP, valida-
tion set. We called this detector the TP, detector.

Zero-Shot Segmentation

The shape of a pollen grain outline varies with orientation, preser-
vation, and species morphology. Not all pollen grains are circular in
cross section. As a result, circular detection masks can include extra-
neous background material, such as organic debris or adjacent grains.
Equally, portions of the grain can be excluded when pollen shape
deviates significantly from circular. New foundation segmentation
models like SAM-2 allow segmentation of pollen grains without
needing pollen images to fine-tune, that is, “zero-shot segmentation”
(Ravi et al. 2024). To evaluate the efficacy of SAM-2 with palynolog-
ical images, we applied it to our pollen detections to produce more-
contoured segmentation masks that followed the true outlines of
detected grains. We used the pollen grain center and the cropped
pollen image output by our detection models as input for SAM-2. We
also experimented with adding four points near the four corners of the
detection mask as negative prompts to SAM-2 to unambiguously
differentiate foreground from the background.

Workflow Modules Development, Deployment, and Testing

Finally, we developed CLIs of the individual modules of the pollen
analysis workflow described in this paper to allow others to repro-
duce the analysis and adopt the image extraction and detection
workflows (listed in the Data Availability Statement). Written in
Python, the CLIs are for tile cropping Hamamatsu NDPI, running
trained pollen image detection models, and post-processing with
SAM-2 segmentation. The NDPI Tile Cropper CLI is written
specifically for opening and processing NDPI images, but can be
modified to open other microscope images.

There are several advantages to employing the CLIs. These include
the ability to: switch between running in serial and parallel mode; install
and manage dependencies using Docker or Apptainer software on
high-performance computing (HPC) systems; access optional param-
eters; and produce user feedback logs. We developed, deployed, and
tested the CLIs using different computing environments (e.g., laptop,
HPC, and cloud computing) and provide detailed documentation on
installation and usage in our GitHub repositories (Puthanveetil
Satheesan et al. 2025a,b,c; see Data Availability Statement).

Results
GPDM

We achieved a maximum detection recall rate of 93% and mAP of
73.21% with the full PAL IV image dataset (Fig. 5A). We set the
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threshold for the desired precision of our model output to 20% to
remove the majority of false detections. At 20% precision, we
achieved ~90% recall across our experiments. The GPDM under-
detected smaller, more transparent pollen grains such as Urticaceae-
Moraceae, Cecropia, Melastomataceae, Acalypha, Vallea, and
Weinmannia (Fig. 5C). For example, although Cecropia was a
more common pollen type, with 19 training examples (Fig. 2M),
none of the four images in the validation set were detected at the
20% precision level. In contrast, the larger and darker grains of
Polylepis spp. (Fig. 2I), of which there were also 19 training
examples, had 100% recall.

Mixture-of-Experts Technique

Fusing the SGDM with the GPDM increased maximum recall by
2% and increased mAP from 73.21% to 75.09% (Fig. 5A). Recall at
the 20% precision level increased for Urticaceae-Moraceae from
69% to 81%, Melastomataceae from 75% to 100%, and Cecropia
from 0% to 50% (Fig. 5C). Acalypha, Vallea, and Weinmannia, the
three remaining taxa with small, transparent pollen grains, also
showed improvement, despite not being included as SGDM train-
ing examples (Fig. 5C). The fused SGDM + GPDM model shows an
increase in model precision within a large range of recall in (0.1,
0.9), indicating that the SGDM added some high-confidence small-
pollen detections (Fig. 5A). The increase in maximum recall shows
that the SGDM added detections that are missed by the GPDM
(Fig. 5A,B).

Transfer Learning across Imaging Domains

We achieved a mAP of 32.56%, maximum recall of 82%, and 10%
precision at the 80% recall level when we forward-passed the PAL
1999 (slide-scanner) images through the GPDM trained on PALIV
(upright microscope) images. The low performance demonstrated
the extent to which the detection models were sensitive to domain
differences caused by illumination, optical resolution, and camera
property offsets. After fine-tuning the model with 900 PAL 1999
training images, we achieved a mAP of 65.99% and precision
increased from 10% to 46% at the 80% recall level (Fig. 6). Maxi-
mum recall increased from 82% to 93%. The model trained from
scratch on the 900 PAL 1999 images achieved a mAP of only
59.27% (Fig. 6).

Continual Learning with Human-in-the-Loop

Human-in-the-loop fine-tuning increased mAP with each itera-
tion, from 34.11% to 58.72% in TP, from 48.25% to 62.60% in TP,
and from 61.57% to 76.01% in TP, (Fig. 7). To compare model
performance across all three time periods, we also evaluated each
model on a common validation set (composed of the TPy + TP, +
TP, validation sets). Against this common validation set, mAP
increased from 41.10% with the TP, model to 59.93% using the
TP, model (Fig. 7D).

Zero-Shot Segmentation

The SAM-2 segmentation masks with the highest probability scores
closely followed pollen grain shape (Fig. 8). We used a single point,
the center of the original detection bounding box, to prompt
SAM-2. Because the detection bounding box tightly bounds the
detection, the center of the detection mask identified the region of
interest and provided a clean input prompt for SAM-2. Adding four
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Figure 5. Results of general pollen detection model (GPDM), application of the mixture-of-experts technique, and application of transfer learning. A, For the mixture-of-experts
technique, comparison of the blue (GPDM) and yellow (fused model) curves shows how the addition of an expert model trained only on small pollen grains improves maximum
model recall from 93% to 95%. B, Comparison of detections from the general model, the small-grain model, and the fused model. Boxes in each panel indicate ground-truth labels,
and circles indicate detections. The color of the detections is arbitrary. Confidence scores are shown adjacent to each detection. small-grain detection model (SGDM) confidence
scores in the fused model have been calibrated as described in the text. A validation-set image stack containing a Cecropia pollen grain and Isoetes spore was fed into the two
models. The GPDM detected the Isoetes spore with high confidence but missed the Cecropia grain. The SGDM was able to detect the Cecropia grain but had poor localization
accuracy and low confidence for the Isoetes spore. The fused model kept both detections. C, Blue and yellow bars indicate model recall by taxon for the GPDM and the fused (GPDM +
SGDM) models respectively (left y-axis). The black and gray lines indicate the abundance distribution of taxa in the GPDM training and validation datasets, respectively (right y-axis).
Both models were thresholded at the confidence value that yielded 20% precision. The taxa highlighted in orange are particularly small-grained taxa, which have low rates of
detection relative to the number of training examples. Hatched bars indicate taxa that had no training examples but were in the validation set and detected by the detector. mAP,
mean average precision; PAL IV.

points near the four corners of the detection mask as negative
prompts did not improve the results. This may be because the
image background significantly differs from the pollen. However,
in situations where the foreground and background have less color
difference, this approach could be used. Notably, SAM-2 was able to
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recognize nearly the entirety of a pollen grain, although the
foundation model had not been trained on pollen images. To
completely capture the pollen wall, we applied dilation (an image
processing morphological operation; 5 x 5 kernel over 1 iteration)
to expand the area captured by the segmentation mask and ensure
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Transfer Learning Across Imaging Domains
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Figure 6. Comparison of the lightest and darkest purple curves shows the improvement
of the model after fine-tuning. Maximum recall increased from 82% to 93% and
precision increased from 10% to 46% at the 80% recall level. The medium purple curve,
representing the performance of a model trained from scratch on the PAL 1999 domain,
shows that training from scratch on a small dataset is not as effective as fine-tuning.

that the mask completely captured the pollen wall and external
ornamentation.

Discussion

Rapid slide imaging is possible with the commercial availability of
automated stages and slide-scanning microscopes (e.g., Punyasena
et al. 2022; Theuerkauf et al. 2023). Efficient object detection in
scanned slide images will streamline the process of annotating and
curating training data, and effective generalized detectors will lower
barriers to the adoption of machine learning in palynology and
other fields of microfossil research.

Several studies have developed detection and classification
methods for analyzing environmental pollen on slides (e.g., Battiato
et al. 2020; Kubera et al. 2022; Punyasena et al. 2022; Tesendi¢ et al.
2022; Gimenez et al. 2024; Li et al. 2024; for a review, see Buters et al.
2022), and instruments for detecting and classifying airborne pollen
are commercially available (Oteros et al. 2020). Additionally, imag-
ing flow cytometry can process particles rapidly, and some instru-
ments are capable of simultaneously taking bright-field and
fluorescence images of particles. The autofluorescence of pollen
grains are used to visually isolate them (Dunker et al. 2021; Barnes
et al. 2023).

However, fossil pollen detection presents its own unique chal-
lenges. Pollen morphology is altered by the processes of fossiliza-
tion, which introduce taphonomic artifacts and morphological
distortions that vary with taxonomic composition and deposi-
tional environments (Cushing 1967; Delcourt and Delcourt 1980;
Campbell 1999). Fossil samples may also contain more inorganic
sediment, a larger number of unknown plant taxa, and a greater
diversity of non-pollen organic debris, all of which introduce
noise to automated analyses. Most fossil pollen material is
mounted on slides. Automated detection methods compatible
with traditional counting and archival material rely on scanning
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Figure 7. A-C, The improvement in model performance from fine-tuning in three time
periods. A, The light blue curve represents the performance of the general pollen
detection model (GPDM) on the TP, validation set. The darker blue line shows the
increase in model performance after fine-tuning on the TP, training set with ground-
truth annotations. B, The second time step, TP;. The dashed gray curve is the same as
the dark blue curve in A. Comparing the dashed gray curve with the light blue curve
shows the drop in model performance when switching slides and introducing a domain
gap. Comparing the light and dark blue curves, we see that fine-tuning on the expert-
verified TPy model detections of the TP, training set improves model performance
again. C, A similar pattern is shown in the next time step, TP,. D, A comparison of the
performance of the three models on the same validation set. Here, the TPy + TP, + TP,
validation set. mAP, mean average precision.

slides using multiple focal planes (12 to 5 planes, spaced <3 to
8 um; Theuerkauf et al. 2023; Gimenez et al. 2024; von Allmen
et al. 2024).

While previous studies fused the sharpest portions of the image
stacks into a single 2D image using focus stacking algorithms, the
detection model described in our analysis is trained directly on
unfused image stacks. This approach retains the spatial information
contained in all focal planes and allows post hoc selection of the
most in-focus plane or the entire image stack for downstream
analyses. We use the mAP metric to evaluate and benchmark model
performance because it is agnostic to IoU and confidence thresh-
olds. That is, at different IoU and confidence thresholds, recall and
precision will differ, but by using precision—recall curves, we can
evaluate the relationship between the two metrics at all confidence
thresholds. The confidence threshold can be set by the user
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Figure 8. Illustration of segmentation of cropped and detected pollen images using Segment Anything Model 2 (SAM-2). Top row shows the cropped pollen grain images produced
by our U-Net convolutional neural networks (CNN) pollen detection model. Taxon identifications from left to right: Amaranthaceae, Lycopodium, Alnus, Poaceae. Bottom row shows
the grain segmented with SAM-2 using an input prompt. The prompt is generated by the detection model and is illustrated with a small green cross.

depending on the application. In most cases, a high recall rate is
preferable, because false detections can be further eliminated dur-
ing classification or manual post-processing (Theuerkauf et al.
2023; von Allmen et al. 2024).

The choice of CNN architecture can vary. We used ResNet34
(He et al. 2016). Von Allmen et al. (2024) used CenterNet Hour-
glass104 (Duan et al. 2019). Theuerkauf et al. (2023) used Faster
R-CNN (Ren et al. 2016). Gimenez et al. (2024) used the joint
detection and classification model YOLOV5 (Zhang et al. 2022).
These previous studies achieved detection accuracies >90%, but
with a limited number of taxa (10 to 11 pollen types). They
demonstrate that while high recall rates are possible within a small
number of taxa, the diversity and long-tail distribution of pollen
taxa within paleontological samples makes detecting rare and
unusual morphotypes difficult. Theuerkauf et al. (2023) addressed
this imbalance by undersampling majority classes and von Allmen
et al. (2024) by selectively balancing training data.

We also found that the GPDM underdetected taxa with small,
transparent grains: Urticaceae-Moraceae, Cecropia, Melastomata-
ceae, Acalypha, Vallea, and Weinmannia (Fig. 5C). These smaller-
grained taxa were not only rare but also differed morphologically
from the majority of the training data. In contrast, rare taxa that
were similar in size, shape, and color to taxa in the training set were
easily detected by the GPDM. For example, Ericaceae, Rumex, and
Lupine were detected with 100% recall in the test set (Fig. 5C),
despite having 10 or fewer training examples.

The mixture-of-experts technique (Nowlan and Hinton 1990)
allowed us to address taxonomic bias without additional annotated
data. Fusing an expert SGDM with the GPDM increased detections
of rare, small-grained taxa. Three taxa that were not included as
SGDM training examples (Acalypha, Vallea, and Weinmannia)
also showed improvement (Fig. 5C). This suggests that the SGDM-
learned features were transferable across taxa with similar mor-
phologies. However, taxa with few training examples can still be
missed stochastically based on which images are included in
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training and validation. For example, two rarer taxa, Loranthaceae
and Thalictrum, were entirely missed by both the GPDM and
SGDM (Fig. 5C). At 20% precision, we achieved ~90% recall across
our experiments. Lowering the precision threshold increased detec-
tions and recall but introduced a greater percentage of false detec-
tions. Threshold selection, therefore, is ultimately dependent on the
application and tolerance for missed versus false detections and will
likely need to be determined on a case-by-case basis. Previous work
has demonstrated that the abundance of a particular pollen taxon,
the abundance of a particular pollen morphology, and the degree of
morphological similarity to organic debris all contribute to detec-
tion errors (Theuerkauf et al. 2023; Gimenez et al. 2024).
Including reference specimens in model training is a potential
solution to increasing the taxonomic diversity represented within
detection and classification models. Barnes et al. (2023) successfully
applied classification models trained on images of modern pollen
samples acquired using imaging flow cytometry to fossil material.
However, Durand et al. (2024) found that differences in the pres-
ervation quality and processing of fresh reference specimens lim-
ited the model generalizability to fossil pollen analysis.
Differences in sample preparation and imaging practices cre-
ate domain gaps among image datasets. Previous work has shown
that transfer learning is effective in pollen classification (Rostami
et al. 2023; von Allmen et al. 2024), and we demonstrate that
transfer learning is also effective in the context of detection. This
allows us to deal with domain gaps introduced by different micro-
scope models and scanning conditions. Detection models need to
work with multiple imaging sources, as standardizing imaging
across large imaging projects is not always feasible, manual anno-
tations are costly in terms of expert time, and training new models
for every dataset is not always possible. However, it is possible to
fine-tune pretrained detection models on relatively small amounts
of training data from new imaging domains. We needed to anno-
tate only 5% of images from a new imaging and sampling domain
to increase mAP from 32.56% to 65.99% (Fig. 6), while training
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from scratch on the new domain alone achieved a mAP of 59.27%
(Fig. 6).

Collaboration between institutions with different microscopes
and imaging equipment is therefore a feasible (and potentially
desirable) approach, as diverse training data will aid in the devel-
opment of large, robust pollen analysis pipelines. The creation and
maintenance of accessible and discoverable image databases and
adoption of best practices for imaging and data curation will be an
important step in advancing pollen analysis (Jaramillo et al. 2025).
The initial investment can be high in terms of personnel time,
equipment purchases, and data storage. However, public dissemi-
nation and long-term archival of image data support the mandate
of many museums and research institutes and increase the societal
value of their collections (Jaramillo et al. 2025).

With slide scanners that can scan an entire slide in under 1 hour
and detection and classification models that can be trained in days
(e.g., Punyasena et al. 2022; Theuerkauf et al. 2023), annotation
remains the primary bottleneck in automated pollen analysis work-
flows. Continual learning—with human-in-the-loop annotations
and iterative fine-tuning—allows models to improve as new images
and new data are introduced. Confidence scores can be used to
efficiently annotate false detections manually or using semi-
automated methods. New annotations can be used to further fine-
tune models, and these models can improve over time with expert
feedback on model results. Strategies for effective human-in-the-
loop data annotation are worth studying as a stand-alone problem,
as for instance, Gimenez et al. (2024) has done for studying the
effect of labeling specificity on model performance.

Finally, as foundation segmentation models like SAM-2 become
incorporated into analysis workflows, procedures for detection and
segmentation will become further streamlined. These foundation
models can efficiently segment objects within an image with a single
prompt (e.g., a mouse click, a coarse bounding box, or a coarse mask
obtained from an upstream task), producing clean segmented
images for training classification models. However, for palynolog-
ical samples, trained detection models may still be needed to
distinguish pollen and other specimens of interest from the diverse
organic material that can be found on a palynological slide. How-
ever, once detected, foundation segmentation models are able to use
a single set of coordinates to produce the clean contoured images
needed for machine learning classification analyses.

Conclusions

Working in open-world scenarios means that we do not know a
priori the full diversity that we will encounter in our analyses, so we
need methodological approaches in which we continually improve
both detectors and classifiers. Mixture-of-experts techniques,
domain fine-tuning, and continual learning allow researchers to
build upon shared generalized machine learning models, allowing
each new generation of machine learning models to become more
powerful than the last. The mixture-of-experts technique allows us
to build models that are more resilient to changes in data distribu-
tion, and the small-grain detection described in our study is just one
example of how the method can work with an unbalanced training
dataset. Fine-tuning allows us to efficiently apply general models to
new domains. These general models will also help annotate new
data in new domains, using human-in-the-loop annotation to
efficiently build large and diverse pollen image datasets. Developing
automated analysis pipelines for fossil pollen analysis in the open
world will mean adapting and continually updating the detection
and classification models produced by the community to new
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samples and new images. Data sharing and open-source software
will play a vital role in creating the momentum needed to address
the challenges of training models capable of handling the unique
biases of fossil data.

Efficient object detection in scanned slide images will streamline
the process of annotating and curating training data, and effective
generalized detectors will lower barriers to the adoption of machine
learning in palynology and other fields of microfossil research. While
the underlying architecture of machine learning models may change,
incorporating open-world methods will result in flexible and adapt-
able workflows that are accessible to all paleobiologists.
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