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Abstract

Let AT be a positive integer. This paper is concerned with obtaining bounds for 2 w j 1/P
(p prime), when N is an odd perfect number, a multiperfect number, or a quasiperfect number,
under assumptions on the existence of such numbers (where none is known) and whether 3 and 5
are divisors. We argue that our new lower bounds in the case of odd perfect numbers are not
likely to be significantly improved further. Triperfect numbers are investigated in some detail,
and it is shown that an odd triperfect number must have at least nine distinct prime factors.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 A 20.

1. Introduction

Let o(N) denote as usual the sum of the positive divisors of an integer N. We say
N is perfect when a(N) = 2N. No odd perfect numbers have been found, but many
necessary conditions for their existence have been established. For example,
bounds have been obtained for

Ss s i,
P\NP

where the sum is over the distinct prime divisors p ofN, under the assumption that
N is an odd perfect number. Improved bounds can be given under further assump-
tions on specific prime divisors of N, and it has become usual to consider the four
cases dependent on whether 3 and 5 are divisors.

In Cohen (1978), we considered upper bounds for 2. Prior to the appearance of
that paper, the best known bounds were described by Suryanarayana and Hagis
(1970), and we repeat their table here (Table 1), giving the results to six decimal
places.
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370 Graeme L. Cohen [2]

In this paper, we shall obtain improved lower bounds for 2. Incorporating the
results in Cohen (1978), the present best bounds (to six decimal places) are given
in the first two columns of Table 2, the row order being the same as in Table 1.

TABLE 1

Lower bound Upper bound Range

3
3
3
3

X
X
1
I

N,
N,
N,
N,

5
5
5
5

1
X
1
X

N
N
N
N

0.647387
0.667450
0.596063
0.603831

0.678036
0.693148
0.673770
0.657304

0.030649
0.025698
0.077707
0.053473

A number N such that v(N) = 2N+1 is called quasiperfect. No such numbers
are known, but necessary properties of them are described in detail by Abbott et al.
(1973). They showed that we must have N> 1020 and that N must have at least five
distinct prime divisors. Kishore (1978) has since shown that N must have at least
six distinct prime divisors. We shall give bounds for 2 when N is a quasiperfect
number. The lower bounds are the same as for odd perfect numbers; the upper
bounds to six decimal places are given in Table 2, column headed QP.

TABLE 2

Lower bound Upper bound Range Upper bound QP Range QP

0.647649
0.667472
0.596063
0.604707

0.677637
0.693148
0.673634
0.657304

0.029988
0.025676
0.077571
0.052597

0.670017
0.693148
0.602009
0.625140

0.022368
0.025676
0.005946
0.020433

When o(N) = kN, for some integer k ^ 2, N is more generally called multiperfect.
No odd multiperfect numbers are known. We shall give bounds for 2 under the
assumption that N is a multiperfect number (even or odd), and in particular will
improve a result of Krawczyk (1972) that 2 > (log k)/2. In fact, our Theorem 3 will
imply that 2 > (logfc)/(2 log 2), and this is clearly the best possible result of its kind,
given today's knowledge of even perfect numbers. The case k = 3 will be investi-
gated in more detail: interesting restrictions on the divisors of N when N is even
will be given (Theorem 4), and better bounds for S when iVis odd will be obtained.
The latter are given to six decimal places in Table 3, the row order being the same
as in Table 1. We will show finally that if <J(N) = 3iV and JV is odd, then # has at
least nine distinct prime factors.
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Lower bound

1.048742
1.071445
0.980982
1.000806

TABLE 3

Upper bound

1.082999
1.098613
1.045807
1.061421

Range

0.034257
0.027168
0.064825
0.060615

2. Notation and statement of results

The following notation is used henceforth.
The letters p, q and r (with and without subscripts) will always denote primes.

By p, ...,q (whether or not p and q are given values), we shall mean, unless we
indicate otherwise, all primes and only primes in [p,q\. The positive integer N
will always have prime factor decomposition

where we assume further thatpx<...<pt. The letter k always denotes an integer
greater than 1.

We write, for any s primes,

*(<7i, ••-,&)= £ ~ .
i=i 9i

and, for any x^2,

Lk(q» ...,qa; x) = - l o g { * II (1 -qT1)]Ixlog(l -X'1),

iv •••.$,; x) = R(qlt ...,q^+Lk{qx, ...,q8; x).

We shall always write 2 for R(pv ...,pt), the sum of the reciprocals of the prime
factors of N.

For any positive integer M, we define

V\MP

o{M)

The lower bounds for S when N is an odd perfect number or a quasiperfect
number are included in
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THEOREM 1. Suppose o(N)^2N. Then
(i) (/>! = 5, 2>S2(5,..., 19,41,907; 911);

(ii) ifpx > 7, 2>S2(7,...,59,307; 311);
(iii) ifPl = 3, />2 = 5, 2>S2(3,5,17,257,65537; 65539);
(iv) ifPl = 3,p2>7,Z> S2(3,7,11,29,331; 337).

We remark that the lower bounds given in Suryanarayana and Hagis (1970) for 2
when Nis an odd perfect number are, respectively in the four cases, $2(5,..., 19; 23)
52(7,...,59; 61),S2(3,5,17; 257) and S2(3,7,11; 13). It will also be shown following
the proof of this theorem that, until new (non-obvious) restrictions are found for
certain prime divisors of N or upper bounds are found for certain exponents at in
the prime factor decomposition of N, the lower bounds of Theorem 1 cannot be
further improved except at best beyond the sixth decimal place.

For completeness, we state here the best known upper bounds for 2 when N is
an odd perfect number, and give references for their proofs. These are, in the order
of Theorem 1: V5131*61) (Cohen (1978)), A2(l) (= Iog2) (Suryanarayana (1963),
Cohen (1978)), A2(3

21326145) (Cohen (1978)), and A (̂3M3*17) (Suryanarayana
and Hagis (1970)).

Upper bounds for S when N is quasiperfect are given by

THEOREM 2. Suppose a(N) = 2N+1. Then
(i) ifPl = 5,
(ii) ifpl>7,

(iii) r / ^ 1 = 3 , j

(iv) ifPl = 3,

In Abbott et al. (1973) it is shown that no quasiperfect number is divisible by
3-5 -piorp = l, 11 or 13, or by 3-5-17/? for/? = 19, 23, 29 or 31. We improve this
in

COROLLARY 1. No quasiperfact number is divisible by 3 • 5 • 17 p for p = 19,..., 101.

It will become clear that further results of this nature are easily obtained. For
example, no quasiperfect number is divisible by 3 • 7 • 11 -p for p = 13 or 17.

For multiperfect numbers, we have

THEOREM 3. Suppose a(N) = kN. Then

(i) if N is odd,

logk ifk is odd,
logA:

3lol372<:S<< l o ^
I 3 log 4/3

ifk is even;
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(ii) if N is even,

1 logfc/2 1 log2A:/3
2 3 log 3/2 2 3 log 4/3"

We shall concentrate on the case k = 3 (such numbers then being called
triperfect), since then some use can be made of results concerning odd perfect
numbers. The next theorem and its corollary give some interesting divisor properties
of even triperfect numbers, which (apart from (i) of the Theorem, which is obvious)
do not appear to have been noticed previously.

THEOREM 4. Suppose a(N) = 3N.
(i) If2\\N, then N/2 is an odd perfect number.

(ii) If22-3-5\N, thenN= 120.
(iii) If2z-3-l\N,thenN = 672.

COROLLARY 2. Suppose a(N) = 3N.
(i) If2a\\N and 3\N, then a^3 (mod4) (except if N = 120); if 2a\\N, then

a&5 (mod 6) (except if N = 672).
(ii) If3b\\N, then b^3 (mod4) and b^5 (mod6).

(iii) If 5C|| AT and 221N, then c&5 (mod 6).

The following improvement of Theorem 3 for odd triperfect numbers will be
proved.

THEOREM 5. Suppose a(N) = 3N. Then

(0 if Pi <= 5,

S3(5,...,139; 149)<S<A3(52312331*);

(ii) ifPl>l,

53(7,..., 523; 541) < S < AaQ) = log 3;

(iii) ifpx = 3,p2 = 5,

i + S1^,... ,19,41,907; 911)<S<A3(3a521323126143314);

(iv) ifp1 = 3,pi>7,

HS2(7, . . . .59,307; 311)<S<A3(32132616).

Finally, we will prove

THEOREM 6. If a(N) = 3N and N is odd, then N has at least nine distinct prime
factors.
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3. The lemmas

The following two lemmas are basic in deriving lower bounds for 2. The first is
a simple generalization of Lemma 1 in Suryanarayana and Hagis (1970), but we
prove it here for completeness.

LEMMA 1. Suppose o(N)>kN. Then

0) Z>Sk(p1,...,p8;q),

where 1 < J ^ ( - 1 , andps<q^p)l+1.

PROOF. We have

t t p?(+i-i

and so

Thus

So, taking logarithms,

kU(l-PT1)< ft (1-/T1)"1-
i=l i=s+l

log \k n (i -pA < - i iog(i -p?) = i s i

1 ,t i

°— \
% jqij

t

(

1 +y
WPi J=2

1

Pi

1 ^ 1
• jqj~x i=g+i Pi

Rearranging this, we obtain (1), as required.

Note that the proof of Lemma 1 is readily adjusted to show that if cr(AO > kN
and q^plt then
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LEMMA 2. The function f, where

is increasing on [2, oo).

This is essentially Lemma 2 in Suryanarayana and Hagis (1970), and is easily
proved.

It follows that if r<q, then

(3) l _ l o g ( l r )

Hence if rlt..., ru are any primes less than q and, in Lemma 1, {px,...,ps} is a subset
of fa rj, then

This will be a common means of applying (3).
The next two lemmas will be used in obtaining upper bounds for 2.

LEMMA 3. Suppose <J(N) = zN, z> 1, and let M<N be a divisor ofN.IfN is an
odd perfect square, then

P\M P o\M) 4 P\N,P*MP

(where an empty sum on the right, for example when M = 1, is defined to be zero).

PROOF. An empty product in this proof is defined to be 1. Put

M=hp>i<

for integers b^,...,^ with 0<i f <af for each i. Then

i=l,p,|M\ />i />f/

since JV is a perfect square. In Cohen (1978), it is shown that
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SO

o(M) < /I 1 \
Z>~W n expU+Arf)-

M i=l,p,tM \Pi TpJ/
Taking logarithms,

„ 1 1 ~ 1

and the result follows.

LEMMA 4. IfO^x^i, then

PROOF. Put #(» = 1 +*-exp(3xlog4/3). Then g(0) = g($) = 0. Since g"(x)<0
for all x, we have g(x) > 0 for 0 < x < J, as required.

Our final lemma is used in proving Theorems 4 and 6.

LEMMA 5. Ifo(N) = kN and M is any divisor of N, then U(M)^k.

PROOF. We have k = U(N) = SdlJV 1/rf ^ II(M).

4. Proofs of the theorems

PROOF OF THEOREM 1. (i) Put 52(5,..., 19,41,907; 911) = Av We will consider a
mutually exclusive and exhaustive set of possibilities for the prime factors pv ...,ps

of N, showing in each case that 2 > Ax. We are given that px = 5.
Supposep2^ll. Using (1) and (3), we have

S>S2(5,11,...,r;g)

for any q^ 13, and where r is the greatest prime less than q. Computations show
that the right-hand expression increases with q until q = 43 and is again less when
q = 47. We observe that the numerator in the expression for 1 (̂5,11, ...,43; 47)
is negative. Thus, using Lemma 2,

S2(5,11, ...,43; q')<Sz(5,11, ...,43; 47),

for any prime q'>47, so that, by (3),

5,ll r';q')<S2(5,U 43; 47),
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where r' is the greatest prime less than*/'. Hence S2(5,11, ...,r; q) is greatest when
9 = 43 and r = 41. Since 52(5,11, ...,41; 43)>^4X, we need only consider the
possibility p2 = 7.

We now repeat this form of argument, in a much abbreviated but obvious
fashion, to show in turn that we need only consider the possibilities

p3 = U,...,p6 = 19.

p3> 13 => 2>maxS2(5,7,13, ...,r; q) = S2(5,7,13, ...,31; 37)>AV

/>4Ssl7=>Z>maxS2(5,7,11,17,...,r; q) = 52(5,7,11,17,...,29; 31) >AV

S>maxS2(5,..., 13,19, ...,r; q) = 52(5,..., 13,19,23,29; 31)>AV

S>max52(5,..., 17,23,...,r;q) = S2(5,..., 17,23,29;

If p1 is either of 23,..., 37, then

ifp7>43, then, by (1),

Hence we need only consider the possibility p1 = 41.
If p8 is either of 43, ...,887, then Z>fl(5,.... 19,41,887)>^1; if/>8^911, then,

by (1), S>S2(5,..., 19,41; 911)>/*1. The only remaining possibility is p8 = 907.
In that case, by (1),

S>52(5,..., 19,41,907; 911) = ^ ,

and the proof is complete.
(ii) Put 52(7, ...,59,307; 311) = A2. The proof is similar to that above, and the

scheme used there is used here to show in turn that we need only consider the
possibilities px = l,...,plz = 53.

=>S>maxS',(ll,...,/•;?) = 5^11,....113;

7,13 r; q) = 52(7,13,...,89;

19^S>max52(7,11,13,19, ...,/•; q) = 5,(7,11,13,19, ...,73,79)>yJ2.

,..., 17,23, ...,r; q) = S2(7,..., 17,23, ...,71;

https://doi.org/10.1017/S1446788700021376 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021376


378 Graeme L. Cohen [10]

X>maxS2(7,...,19,29,...,r;q) = S2(7,...,19,29,...,71 ;73)>A2.

S>maxS2(7,. . . ,23,31,. . . ,r;q) = S2(7,...,23,31,...,67; 71)>A2.

2>max5'2(7,...,29,37,...,r;qr) = 5'2(7,...,29,37,...,67; 71)>A2.

pa^4l=>I,>maxS2(7, ...,31,41, ...,/•; g) = S2(7, ...,31,41, . . . ,61; 67)>,42.

7, ...,37,43, ...,r;qr) = 52(7, ...,37,43, . . . ,61;

2>maxS2(7,..., 43,53,. ..,r;q) = S2(7,..., 43,53,59,61 ;67)>A2.

X>maxS2(7,...,47,59,...,r;q) = S2(7,...,47,59,61;

UPli>7l, then, by (1),

ifpu = 67, then, by (1),

if Pu = 61 and pis^ 137, then, by (1),

ifPu = 61 andp15 is either of 67,..., 131, then

2>/?(7,..., 53,61,

Hence we need only consider the possibility pu = 59.
Ifp15 is either of 61, ...,293, then S>i?(7,...,59,293)>^2; if/>15>311, then, by

(1), S>S2(7, ...,59; 31l)>Ai. There remains the possibility p15 = 307, in which
case, by (1),

S>S2(7,...,59,307;311) = ^2,

and we are finished.
(iii) Our improvement over the lower bound in Suryanarayana and Hagis (1970)

for this case is in the eighth decimal place only. The proof is similar to those of the
other parts of this theorem, and is omitted.

(iv) Put 52(3,7,11,29,331; 337) = A4. We are given that/?! = 3. Ifp^U, then,
by (1), S>52(3; 11)>^44, so we need only consider the possibility p2 = 7.

If />3>17, then, by (1), S>52(3,7; 17)>^4; if p3=l3, then, by (1),
3,7,13; 17)>^44. Hence we need only consider/^ =11.
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If pt is either of 13, ...,23, then S>/?(3,7,11,23)>^4; if/>43s37, then, by (1),
S>S2(3,7,11;37)>,44; if />4 = 31, then, by (1), S>S2(3,7,11,31; 37)>^4 .
Hence we need only consider pA = 29.

If p5 is either of 31,...,317, then S > £ ( 3 , 7 , ll,29,317)>/44; if />s^337, then,
by (1), 2>S2(3,7,11,29; 337) > ^ 4 . The only remaining possibility is p5 = 331, in
which case, by (1),

2 > S2(3,7,11,29,331; 337) = At.

This completes the proof of Theorem 1.

Since these proofs involve a complete enumeration of possibilities, it follows,
in (i) for example, that the lower bound for £ cannot be increased beyond
S2(5,..., 19,41,907; oo), the limit of the increasing function S2(5,..., 19,41,907; x)
as X-+OQ, unless it can be shown either that not all of 5,.. . , 19,41,907 can be
divisors of N, or that the exponents on these primes in the prime factor decompo-
sition of N can be restricted in a way to allow an improvement of Lemma 1.
We observe that xlog(l — x"1)-*-— 1 as x->oo; so a calculation of

S A - . 19,41,907; oo),

and comparison with S2(5,..., 19,41,907; 911), shows that, with the proviso above,
our lower bound for 2 in (i) can be improved at best in the eighth decimal place.

With corresponding provisos, calculating S2(7, ...,59,307; oo) allows an im-
provement in the seventh decimal place at best for the lower bound in (ii), calculating
S2(3,5,17,257,65537; oo) allows an improvement in the eighth decimal place at
best for the lower bound in (iii), and calculating S2(3,7,11,29,331; oo) allows an
improvement in the seventh decimal place at best for the lower bound in (iv).

PROOF OF THEOREM 2. The following results from Abbott et al. (1973) are required.
If N is a quasiperfect number, then N is an odd perfect square, with at least five
distinct prime factors, and such that the smallest exponents on 3 and 5, if factors
of iV, are 4 and 6 respectively.

We prove (ii) first. Since N is an odd perfect square, we may apply Lemma 3,
with z = 2 + l/N and M = 1. We obtain:

1 1
<log2+—-——

2N 4p;

since N>2p\.
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(i) We know that 5e\N. Applying Lemma 3, with z = 2 + \/N and M = 56, we
have

since N>2p\.
(iii) As above, since 3456|A^ and N>2p\, Lemma 3 implies 2<A2(3456), as

required.
(iv) Since 34|JV and N>2p\, we similarly obtain here S < A2(34), as required.

PROOF OF COROLLARY 1. If TV is quasiperfect and divisible by 3 • 5 • \l-p, where p
is one of 19,..., 101, then

S>7?(3,5,17,101)>A2(3456),

contradicting Theorem 2(iii).

PROOF OF THEOREM 3. (i) If k is odd, then o(N) is odd and it is clear that N must
be a perfect square. In this case, Lemma 3, with z = k and M = 1, gives

If k is even, then, using Lemma 4,

k -

so

as required.
The lower bound is given by (2), with q = 3.
(ii) Using Lemma 4,

Hence

logfc>logf+31ogf-(S-i),

leading to the required upper bound for S.
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Also,

k < A (1 -PJ1)-1 = 2 n (1 -pj1)-1,
t=l i=2

and it is clear that we may use (2), with q = 3 and kj2 in place of k, to give

' 1 log^/2
ttPi 3 log 2/3'

The given lower bound for 2 then follows.
This completes the proof of Theorem 3.

We will verify here the remark in the Introduction that Theorem 3 implies that
2>(log£)/(21og2). When N is odd, this is immediate, since 3 log 3/2 < 2 log 2.
When N is even, we have, since k > 2,

1 log^2_ _ _ _ ! _ / log32/27\
2+31og3/2 31og3/2\ 2logk ) S

* 3log3/2^ 21og2 j 1 O g / C"21og2-

PROOF OF THEOREM 4. (i) Put N = 2M, so (2, M) = 1. Then

a(N) = o(2)(j(M) = 3<T(M).

But a(N) = 3N= 6M, so a(M) = 2M.
(ii) We are given that 31N and 51N. We cannot have 221| N, for then o(22) = 71 iV

and n(22-3-5-7)>3, contradicting Lemma 5. Suppose 23||iV. If both 3||iV and
51| N, then W= 120M, with (120, M) = 1. We can only have M = 1 (whence
JV = 120, a solution of o{A0 = 3N), since if there were a prime divisor /? of M,
then n(23-3-5-p) = n(23-3-5)n(/0 = 3II(/0>3, and Lemma 5 is contradicted.
We cannot have 23\\N and either 32\N or 52|iV, since n(23325)>II(23523)>3,
and we cannot have 2*\N, since II(24-3-5)>3. These final assertions complete the
proof of (ii).

(iii) If 23||iV, then <r(23) = 15|3Ar, so 5 \N; we are given that 3|iV, so, since we
know also that 7\N, we have a contradiction, by (ii). Also, we cannot have 2A\\N,
for then o(24) = 3l\N, and II(24-3-7-31)>3, contradicting Lemma 5. Suppose
2S\\N. If both 3||JV and 7\\N, then N=672, a solution of o(N) = 3N, as in the
corresponding part of the proof of (ii). We cannot have 25|| N and either 32| N or
7«|JV. for n(2*327)>n(24723)>3, and we cannot have 2«\N, for II(2e-3-7)>3.
These assertions complete the proof of (iii), and of Theorem 4.
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PROOF OF COROLLARY 2. (i) Suppose 2a\\N and 3\N, and suppose a=3 (mod4).
Put a = 4n-l(n>l). Then CT(2°) = 2 4 n - l = 1 6 " - 1 , so I6n-1\3N. But
15 |16 r e - l , so 5\N, and, by Theorem 4(ii), we have a contradiction unless a = 3
and iV = 120. Next, suppose 2a||jV, where a=5(mod6) . Put a = 6m-\ (wi^l).
Then <j(2a) = 2 6 m - l = 64m-l |3JV. But 6 3 | 6 4 m - l , so 3\N and 1\N, and, by
Theorem 4(iii), we have a contradiction unless a = 5 and N = 672.

(ii) Suppose 3b\\N, where i = 3 (mod4). Put b = An-1 (nSs 1). Then

But 80181™-1, so 40|iV. Since b^3, we have a contradiction of Theorem 4(ii).
Next, suppose 3b\\N, where 6 s 5 ( m o d 6 ) . Put Z> = 6 m - l ( m ^ l ) . Then
cr(36) = (3 6 m - l ) /2 = (729m-l)/2|3./V. But 728 |729 m - l , and 728 = 23-7-13, so
22-7-13|iV. Since b^5, we obtain a contradiction via Lemma 5, since
n(22-35-7-13)>3.

(iii) Suppose 5C\\N and 22\N, and suppose c = 5 (mod6). Put c = 6 n - l (n^ 1).
Then a(5c) = (56re-1)/4 = (15625"-1)/4|3N. But 15624| 15625"-1, and

15624 = 23-32-7-31.

Hence 22 • 3 • 551N, and we have a contradiction, by Theorem 4(ii).

PROOF OF THEOREM 5. We observe, as in the proof of Theorem 3(i), that N must
be a perfect square. The upper bounds will be obtained in each part, except (ii), by
finding a mutually exclusive and exhaustive set of possibilities for certain divisors
of N, and stating, as a consequence of Lemma 3, that S < X3(M) for each such
divisor M of N.

(i) Put 5 1 = A3(5
23123314). If 54|iV, then S<A3(54)<51. If 52||iV, then

a(52) = 31|iV, so 312|iV. i n this case, either 314|JV, and then S < A3(52314)<51, or
312||iV. If 52312||iV, then 3312|iVsince <r(312) = 3-331; since 3|CT(3312), but 3)(N,
we must in fact have 3314|N. Then 2 < A3(5

2312331*) = Bx, and we have obtained
the desired upper bound.

For the lower bound, we use (1) and (3):

S>max5 3 (5 , . . . ,r; q) = S3(5,..., 139; 149)

(in the same fashion as in the proof of Theorem 1).
(ii) The upper bound is given by Theorem 3(i). For the lower bound, by (1) and

(3),

S>max51
3(7) . . . ,r; q) = 53(7, . . . ,523; 541).
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(iii) Put B3 = A3(32521323126143314). If 34|JV, then Z < A3(34)<53; if 5*| Â , then
Z<Xi(5

i)<B3. Hence we suppose 3252||JV. Then l3i312\N, since cr(32) = 13,
<r(52) = 31. In that case, if 134|iV, then 2 < A3(3252134312)<53, and if 3l*\N, then
2<A3(3252132314)<53. So we suppose in addition that 132312||JV. Then 612|JV
since cr(132) = 3-61, and 3312|JV since c<312) = 3-331. However, we cannot have
both 612\\N and 3312||yV since 3|a(612) and 3|o(33l2), and we would have 33\N.
If 6121| N, then 9721N since 971 a(612); but 972||'Ar since 31 a(972). Then 9741N, and
S<A3(32521323126129743314)<53. If 3312\\N, then 72|JV since 7|a(3312); but
VftN since 3|a(72). Then 74|iV, and E<A3(325274)<Ba. Finally, if 61*3314|iV,
then S < A3(3

2521323126143314) = Ba. This establishes our upper bound.
For the lower bound, we simply observe that

£3(3, ...,r;x) = L2(5,...,r; x)

for any r ^ 5 , and the result follows from Theorem l(i).
(iv) Put Bt = A3(3

213261«). If 34|Ar, then 2 < A3(3
4) < 54 . Otherwise, 32||JV, in

which case 1321N. If then 1341 JV, then 2 < A3(3
2134) < 54 , so suppose that 3213211N.

Then 612\N since 61|<T(132). We cannot have 61«||JV since 5|a(614) but 5J(N; if
616|iV, then S < A3(32132616) = B4. Hence we suppose also that 612||JV. But then
9T21A^ since 971 CT(612), and S < A3(32132 612 972) < 54, establishing our upper bound.

For the lower bound, the result follows, as in (iii), from Theorem l(ii).
The proof of Theorem 5 is complete.

PROOF OF THEOREM 6. We must show that t*s 9. Certainly, t > 8, for if f ^ 7, then
S</?(3, . . . , 19)<0.96, contradicting Theorem 5. We now suppose t = 8, and will
show that this also leads to a contradiction.

The primes 3, . . . , 19 must divide N, for otherwise ^ 7 >23 and

E<2?(3,..., 17,23,29)<0.9809,

contradicting Theorem 5. Also, we cannot have/>8^41, since R(3,..., 19,41)<0.98,
so p8 = 23, 29, 31 or 37, and we may write

ft _ 3261526J726S Jl2b4l326sl7266 I9267JJ268)

as N is a perfect square. Straightforward computation shows that if bx > 2, then in
fact bx Js 11, for each of o(32i), 3 ^ / s£ 10, has at least one prime divisor exceeding 37.
Similarly, either b2 = 1 or Z>2>8, either bz = 1 or 63>6, b&^5, b6^5, b^4, and
bs ^ 4 (for each possible ̂ g).

We cannot have b2 = l, since thenps = <r(52) = 31, and

n m c 3 5 " 5 " 2 7 1 1 1 3 1 7 1 9 - 3 1 - 3 -
"Vv;<2 4 6 1 0 1 2 16 18 3 0 >

but of course H(N) = 3. Similarly, we cannot have b^ = 1, for then
> 3 - ' A 7 1 1 1 3 n i 9 , 2 3 ^

2 4 6 10 12 16 18 22 '
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so we suppose for now that bx = 2. Then pa^ 37, since

3-3^* 5 7 H_ 13 17 19 37

2 Y610' l2 ' l6 ' l8 '36

If b3 = 1, then p8 = 23 or 29, since

3 - 3 ^ 5 7-7-2 11 13 17 19 31
~~2~'X~~6~ To'l2'T6 18'3O<

But then n(3451672ll213lo17lo198
jp|)>3, contradicting Lemma 5. Hence b3>6

(when bx = 2). However, this too is impossible, since

n(3 4 516 71211213101710198/?8) > 3,

whether ps = 23, 29 or 31. Hence the assumption bx = 2 is untenable.
Thus 6 ^ 1 1 . Since n(3 2 2 5 1 6 7 2 H 2 13 1 0 17 1 0 19 8 ^>3 for ps = 23, 29 or 31, so

ps = 37. We cannot have b3 = 1, since

3 5 7 - 7 ~ 2 11 13 17 19 37
2 T ~ 6 ~ ' l 0 ' l 2 " l 6 ' l 8 - 3 6 '

so bz~&6. We then have the final contradiction, which proves the theorem:
n(32 2 5 " 71211213101710198 378) > 3.

ADDED IN PROOF: Since this paper was prepared for publication, it has come to
my notice that Theorem 6 was proved by McDaniel (Wayne McDaniel (1970), 'On
odd multiply perfect numbers', Boll. Un. Mat. Ital. (4) 3, 185-190). Also relevant is
that certain divisor properties of Nwhen o(N)=3Nwere investigated by Steuerwald
(Rudolf Steuerwald (1954), 'Ein Satz iiber naturliche Zahlen N mit o(N)=3N\
Archiv der Math. 5, 449-451).
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