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Minimal Lagrangian submanifolds of
weighted Kim–McCann metrics

Micah W. Warren

Abstract. We explore the regularity theory of optimal transport maps for costs satisfying a Ma–
Trudinger–Wang condition, by viewing the graphs of the transport maps as maximal Lagrangian
surfaces with respect to an appropriate pseudo-Riemannian metric on the product space. We recover
the local regularity theory in two-dimensional manifolds.

1 Introduction

When giving an alternate formulation of the Ma–Trudinger–Wang regularity theory,
Kim and McCann [KM10] defined pseudo-Riemmanian metrics with signature (n, n)
on the product space M × M̄. This was followed [KMW10] by the observation that
the graph of the optimal transportation map is a volume maximizing n-dimensional
submanifold (of codimension n), with respect to a conformal modification of the
metric in [KM10]. In this note, we explore the idea that one can directly derive
regularity theory purely from the property of being maximal. If the metric is of
Kim–McCann type, a calibrated Lagrangian submanifold is either the graph of a
solution to an optimal transportation problem, or, if the manifold has topology, could
be the graph of a Lie solution to the optimal transportation problem [War11]. Here, to
keep things simple, we restrict our attention to the case when n = 2.

Recall the setting of Kim–McCann [KM10] where metrics on the product space
M × M̄ are locally given by

h = (
0 h i j̄ (x , x̄)

hT
i j̄ (x , x̄) 0 ) ,(1.1)

where

h i j̄(x , x̄) = − 1
2

∂ j̄∂ i c(x , x̄)(1.2)

for some cost function c ∶ M × M̄ → R. We assume here and in the sequel that c
is twice differentiable and satisfies the (A2) condition on N ⊂ M × M̄/C where C

is a measure zero set which we call the “cut locus.” In particular, h i j̄ (x , x̄) is non-
degenerate on N, where h defines an (n, n) signature metric.
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The underlying optimal transportation problem is to find the map between the
measures defined by bounded mass densities ρ, ρ̄ that minimizes the total cost:

∫
M

c(x , T(x))ρ(x)dx

over the space of maps T satisfying

T#ρ(x)dx = ρ̄(x̄)dx̄ .

In [KMW10], it was illustrated that when taking the conformal metric

h̃ =
⎡⎢⎢⎢⎢⎣

ρ(x)ρ̄ (x̄)
det (−∂ j̄∂ i c(x , x̄))

⎤⎥⎥⎥⎥⎦

1/n

(
0 h i j̄ (x , x̄)

hT
i j̄ (x , x̄) 0 )(1.3)

graphs of optimal transportation plans T are calibrated maximal submanifolds with
respect to this metric [KMW10, Theorem 1.1]. The conformal modification of the
Kim–McCann metric can sometimes lead to technical computational issues. So
here we point out that a weighted approach can be convenient: Consider instead
the weighted manifold

⎛
⎜
⎝

M × M̄ , h,
⎛
⎝

ρ(x)ρ̄(x̄)
det (−∂ j̄∂ i c(x , x̄))

⎞
⎠

1/2⎞
⎟
⎠

.(1.4)

One can check that the volume of an n-submanifold with this weight is the same
as the volume of the n-submanifold in the conformal setting defined by (1.3). Thus
the minimal surfaces are the same in either setting. However, instead of the minimal
surface equation occuring in the setting (1.3), in the latter setting (1.4), the manifolds
will be locally defined by the weighted minimal surface equation

H⃗ + (∇ f )N = 0,(1.5)

where

e− f =
⎛
⎝

ρ(x)ρ̄(x̄)
det (−∂ j̄∂ i c(x , x̄))

⎞
⎠

1/2

.

Here, we offer a proof-of-concept that the regularity theory can be derived geomet-
rically, obtaining yet another approach for the Ma–Trudinger–Wang regularity the-
ory. The original paper [MTW05] presents a maximum principle argument applied
to the Monge–Ampère equation, while the approach by Loeper [Loe09] is a careful
analysis of the cost function which requires less a priori regularity. The setting of Kim–
McCann offers a solid pseudo-Riemannian geometric formulation of the approach
offered by Loeper, where they identify the MTW condition as a cross-curvature
condition on the metric h, namely

Rmh(e i , e j̄ , e j̄ , e i) > 0
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Minimal Lagrangian submanifolds of weighted Kim–McCann metrics 3

whenever e i ∈ Tp M , e j̄ ∈ Tp̄ M̄ and h(e i , e j̄) = 0. The cross-curvature positivity is
preserved under conformal changes [KMW10, Remark 4.2] so if it is present in the
Kim–McCann metric (1.1) it will also be present in the metric (1.3).

To significantly simplify the computation we restrict to the case of compact
ambient manifolds of the form M × M̄ with metric of the form (1.1) where both
manifolds have dimension n = 2. While we focus on the case where the metric is
of the Kim–McCann form (1.2), it should be possible to loosen this to more general
pseudo-Riemmanian submanifolds satisfying suitable curvature conditions. Indeed,
our approach is motivated by the paper [LS11] where general regularity results follow
from curvature conditions.

Recently Brendle–Léger–McCann–Rankin [BLMR23] have proven regularity for
maximal surfaces in pseudo-Riemannian metrics with positive cross-curvature in
general dimensions via a generalized method which applies to maximal surfaces
in manifolds of general codimension. The method is similar but slightly different:
here our strategy is to bound the Hodge dual of an alternating two form (following
[LS11]), whereas the approach in [BLMR23] is to bound the maximum eigenvalue
of a symmetric (0, 2) tensor field restricted to the submanifold. Naturally, both
approaches rely on covariantly differentiating the (0, 2) tensor twice and using the
positive curvature terms that arise via the Codazzi formula, together with the minimal
surface equation.1

2 Prelimaries

We consider the graph

� = {(x , T(x) ∶ x ∈ M} ⊂ M × M̄

for an optimal transport map

T ∶ M → M̄ .

Assume that the graph � lies in a compact subset N ⊂ M × M̄/C where C is the cut
locus where c might not be smooth. Here we choose N to be a compact subset staying
clear of the cut locus. (An important aspect of regularity theory for optimal transport
maps is the “stay-away” property, that is, there is an a priori lower bound on the
distance of the graph to the cut locus. This is typically argued in the process of a
regularity argument - but as we are focusing on an alternative approach to the local
regularity, we may steer clear of these arguments by assuming the graph stays within
a compact set avoiding the cut locus.)

Recall that for graphs of optimal transport maps, � is a Lagrangian submanifold
with respect to the symplectic form given by [KM10, (5.3)]

h i j̄dx i ∧ dx̄ j ,

and that there is a relation between this symplectic form and the metric given by

h(V , W) = h i j̄dx i ∧ dx̄ j(KV , W),(2.1)

1An early version of this article was posted on the author’s website, and set aside during the pandemic.
In the meantime, the authors of [BLMR23] developed their much more general approach.
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where

K ∶ T(p, p̄) (M × M̄) → T(p, p̄) (M × M̄)
is the map represented as

Kp, p̄ = ITp M ⊕ (−I)Tp̄ M̄

that is, K acts as the identity on TM while performing a sign change on TM̄ . Since
� is a Lagrangian submanifold, where (2.1) holds, K maps the tangent space to the
normal space along �.

Remark 2.1 In the sequel, we encounter an unfortunate collision of standard nota-
tions. When dealing with connections, we use ∇̄ to denote the ambient connection
(Levi–Civita with respect to ambient metric h), even while using M̄ , x̄ etc. to indicate
the target space of optimal transport. Fortunately, we don’t have occasion to refer to
the Levi–Civita connection on M̄ .

Claim 2.2 K is parallel.

Proof Identifying K via musical isomorphism with the symplectic form, we can
check that the symplectic form is parallel:

∇̄X h(KV , W) = Xh(KV , W) − h(K∇̄X V , W) − h(KV , ∇̄X W).

First assume that V , W are in Tp M . In this case, by [KM10, Lemma 4.1] the connection
maps Tp M to Tp M, so all terms above vanish. Similarly if both V , W are in Tp̄ M̄ . Now
consider the case that V ∈ Tp M , W ∈ Tp̄ M̄ .

∇̄X h(KV , W) = Xh(V , W) − h(∇̄X V , W) − h(V , ∇̄X W)
which is just the fact that h is parallel with respect to itself. On the other hand if roles
are reversed

∇̄X h(KV , W) = Xh(−V , W) − h(−∇̄X V , W) − h(−V , ∇̄X W).

Thus K♭ is parallel. ∎

Given a frame for the submanifold �, we may define the components of the second
fundamental form

b i jk = h(∇̄∂ i ∂ j , K∂k).

Claim 2.3 The expression for b i jk is symmetric in all three indices.

Proof Because K is parallel, K2 = I and h(K⋅, K⋅) = −h(⋅, ⋅)
0 = ∂ i h(∂ j , K∂k)
= h(∇̄∂ i ∂ j , K∂k) + h(∂ j , K∇̄∂ i ∂k)
= h(∇̄∂ i ∂ j , K∂k) − h(K∂ j , ∇̄∂ i ∂k)
= b i jk − b i k j .
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This establishes symmetry in the last two. Symmetry in the first two is well-known for
the second fundamental form. ∎

The following is the Ma–Trudinger–Wang curvature condition as uncovered by
Kim and McCann in the product manifold setting [KM10, Definition 2.3].

Definition 2.1 The metric h is strictly regular, if whenever (x , x̄) ∈ N and

0 ≠ ∂ i ∈ Tx M
0 ≠ ∂ j̄ ∈ Tx̄ M̄

h(x , x̄)(∂ i , ∂ j̄) = 0

then the curvature of the metric h satisfies

Rmh (∂ i , ∂ j̄ , ∂ j̄ , ∂ i) > 0.

Note that the metric h̃ will also satisfy this property [KMW10, Remark 4.2].

3 Special coordinate charts at a point

We start by fixing arbitrary Riemannian metrics g1 , g2 on M , M̄ .
Let (p, p̄) ∈ M × M̄ . Given {e1 , e2} an oriented g1-orthonormal basis for Tp M, we

may take exponential coordinates (w.r.t g1) near p for a neighborhood of M , and then
do similarly for an oriented orthonormal basis for Tp̄ M̄ , giving us a local product
neighborhood U × Ū . In this U × Ū , we have

h = (
0 h i j̄ (x , x̄)

hT
i j̄ (x , x̄) 0 ) .

Now take a local change of coordinates

φ ∶ Ũ → Ū

so that

φ(0) = p̄(3.1)

Dφ = h i j̄ (p, p̄)−1(3.2)

as h i j is nondegenerate. After this coordinate change, the metric at the point (p, p̄)
with respect to the basis on U × Ũ becomes

h = ( 0 I
I 0 ) .(3.3)

Now forgetting the old vertical basis vectors here, consider the new ones {ē1 , ē2} that
occur after transformation Dφ. These are not expected to be orthonormal with respect
to g2 but satisfy

h(e i , ē j) = δ i j
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and
1

C1
≤ ∥ē i∥g2

≤ C1(3.4)

for some universal constant C1 depending on bounds on h i j̄ (p, p̄)−1 and our choice
of g2 .

Now given a g1-orthonormal {e1 , e2} basis at p and a graphical manifold �, let g
be the induced metric from h on �, that is

g11 = h(e1 , e1) etc.

This can be diagonalized by an orthogonal rotation of {e1 , e2} so we may assume that
the expression of the metric g is diagonal for our choice of {e1 , e2}: There will be
positive λ1 , λ2 such that

∥e i∥2
g = λ2

i , i = 1, 2.(3.5)

⟨e1 , e2⟩g = 0
⟨e i , e j⟩g1 = δ i j

and WLOG λ1 ≥ λ2 . (Here we use e i in two senses, identifying e i first as an abstract
tangent vector on the manifold M, which is measured by g1, but also as a tangent vector
to the submanifold �, which is measured by h, restricting to the metric g, which is
positive definite on � as the submanifold � is spacelike).

It will be convenient to use the orthonormal basis with respect to g ∶

∂1 =
1
λ1

e1

∂2 = 1
λ2

e2

so that

∥∂1∥g = ∥∂2∥g = 1.

Using (3.5) and (3.3)

∂1 = ( 1
λ1

, 0, λ1 , ∗)

∂2 = (0, 1
λ2

, ∗, λ2)

(here ∗ indicates we haven’t determined this value from (3.5) and (3.3)) and then (3.3)
with the fact that � is Lagrangian gives us (still only at the point)

∂1 = ( 1
λ1

, 0, λ1 , 0)(3.6)

∂2 = (0, 1
λ2

, 0, λ2).
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At the point (p, p̄), consider also the orthonormal basis for the normal space

n1 = ( 1
λ1

, 0,−λ1 , 0)(3.7)

n2 = (0, 1
λ2

, 0,−λ2)

which can be extended to a normal frame via

n i ∶= K∂ i .

Now with respect to the Euclidean systems on U × Ũ we have the representation

DT = ( λ2
1 0

0 λ2
2

) .(3.8)

4 Setup before the covariant differentiation

Our goal is to prove the following theorem, which is a special case of general work by
Ma–Trudinger–Wang and Loeper.

Theorem 4.1 Suppose that T is a smooth optimal transport plan from an oriented com-
pact two-dimensional manifold M to an oriented compact two-dimensional manifold
M̄ with respect to a cost function c which satisfies a positive cross-curvature condition
(Definition 2.1), for measures ρ and ρ̄ which are given. Assume that the densities of ρ, ρ̄
are smooth and bounded away from zero, and that the graph of T lies in an a priori
determined compact set N on which c is smooth. Then with respect to any given metrics
g1 and g2 on M and M̄ , the derivative DT satisfies an a priori bound:

∥DT∥ ≤ C(g1 , g2 , c, ρ, ρ̄,N),

where

∥DT∥ = max{∥DT (V)∥g2
∣ V ∈ Tx M , ∥V∥g1

= 1} .

Choose g1 , g2 to be arbitrary Riemannian metrics on M , M̄. These metrics will be
fixed and will serve as a gauge against which to obtain estimates. We assume that M is
oriented, so on any neighborhood U we can take an oriented orthonormal (w.r.t g1)
frame {e1 , e2} for U . Now define

Ω = [g1 (e1 , ⋅) + h1(e1 , ⋅)] ∧ [g1 (e2 , ⋅) + h1(e2 , ⋅)](4.1)

to be a two-form on U × M̄ . One can check that this does not depend on the choice of
oriented orthonormal frame {e1 , e2} so using a partition of unity, we may extend Ω
to a well-defined form everywhere where h is defined on M × M̄ . Our goal is to show
that the maximum value of the Hodge dual of this two-form restricted to � is a priori
bounded.
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4.1 Jacobian condition

Given charts, the objects ρ, ρ̄ can be represented by measure densities, so when we
write down the Jacobian equation satisfied by an optimal map (or more generally, a
map whose graph is calibrated as in [KMW10]):

det DT(x)ρ̄(T(x)) = ρ(x)
we are implictly using coordinate systems on both sides to define det DT(x) and each
of the densities. Given a choice of metric g1 we can define ρ (x) to be a well-defined
density by letting

ρ(x) = dρ
dVg1

and similar for ρ̄. Fixing these metrics, if

0 < 1
μ1

≤ ρ ≤ μ1

0 < 1
μ2

≤ ρ̄ ≤ μ2

we may conclude that
1
Λ

≤ det DT ≤ Λ(4.2)

in any coordinates with dVg1(x) = dVg2 (T(x)) = 1. By (4.2) it follows that there exists
Λ (h, g1 , g2 , ρ, ρ̄) (maybe slightly different from previous Λ) such that

1
Λ

≤ λ1 λ2 ≤ Λ(4.3)

provided the measure densities are continuous and bounded away from 0 and M , M̄
are compact.

4.2 Maximum principle argument

With the metric g on �, we may consider the scalar function

w ∶= ∗Ω∣�
that is, the ratio

w = Ω∣� (∂1 , ∂2)
dVg (∂1 , ∂2)

for any tangent frame ∂1 , ∂2 . This function attains a maximum value at some point
(xmax , T(xmax)) ∈ �.

Claim 4.2 Theorem 4.1 follows from an a priori bound on the function w.

Proof Suppose w(x) ≤ C̄ . Then for any x , choosing special coordinates (3.5) (3.6),
(3.7), and (3.8) we get (see Claim 6.2)
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w(x) = Ω(∂1 , ∂2)
1

= 1
λ1 λ2

(1 + λ2
1 ) (1 + λ2

2) ≤ C̄ .

From (3.8) and (3.4), we have

∥DT(e i)∥g2
= ∥λ2

i ē i∥g2
≤ λ2

i C1

thus

max{∥DT (V)∥g2
∣ V ∈ Tx M , ∥V∥g1

= 1} ≤ ΛC̄C1 . ∎

Theorem 4.1 will be proved as follows: Go to (xmax , T(xmax)) and apply the
maximum principle. This requires an expression for the covariant derivative of Ω
computed in the next section.

5 The covariant differentiation

Lemma 5.1 Suppose that � = (x , T(x)) is a submanifold with mean curvature vector
H⃗ and Ω is as described in (4.1). At (xmax , x̄max) ∈ �, with frames defined by (3.6) and
(3.7) we have

∑
k
∇∂k∇∂k Ω(∂1 , ∂2) −∑

k
∇̄∂k ∇̄∂k Ω(∂1 , ∂2)

= ∥B∥2 Ω(∂1 , ∂2) + 2∑
k

Ω(B(∂k , ∂1), B(∂k , ∂2))

+ 2∑
k
{∇̄∂k Ω(B(∂k , ∂1), ∂2) + ∇̄∂k Ω(∂1 , B(∂k , ∂2))} + ∇̄H⃗ Ω(∂1 , ∂2)

−∑
p
{Rmh (∂2 , ∂1 , ∂2 , np)Ω(np , ∂2) + Rmh (∂1 , ∂2 , ∂1 , np)Ω(∂1, np)}

−∑
s
{(∇̄∂1 H⃗ ⋅ np)Ω(np , ∂2) + (∇̄∂2 H⃗ ⋅ np)Ω(∂1 , np)} .

Here, ∥B∥2 is the positive norm of the second fundamental form B for the submanifold
�, and, Rmh is the curvature tensor of h.

Proof To begin, extend tangent vectors {∂1 , ∂2} by taking these to be the coor-
dinate derivatives with respect to normal coordinates on g. Then we differentiate
covariantly with respect to g ∶

∇∂k Ω(∂1 , ∂2) = ∂k Ω(∂1 , ∂2) − Ω(∇∂k ∂1 , ∂2) − Ω(∂1 ,∇∂k ∂2)

and again

∇∂k∇∂k Ω(∂1 , ∂2) = ∂k {∂k Ω(∂1 , ∂2) − Ω(∇∂k ∂1 , ∂2) − Ω(∂1 ,∇∂k ∂2)}

−
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇∂k ∂k Ω(∂1 , ∂2) − Ω(∇∇∂k ∂k ∂1 , ∂2) − Ω(∂1 ,∇∇∂k ∂k ∂2)
∂k Ω(∇∂k ∂1 , ∂2) − Ω(∇∂k∇∂k ∂1 , ∂2) − Ω(∇∂k ∂1 ,∇∂k ∂2)
∂k Ω(∂1 ,∇∂k ∂2) − Ω(∇∂k ∂1 ,∇∂k ∂2) − Ω(∂1 ,∇∂k∇∂k ∂2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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= ∂k {∂k Ω(∂1 , ∂2) − Ω(∇∂k ∂1 , ∂2) − Ω(∂1 ,∇∂k ∂2)}

− { ∂k Ω(∇∂k ∂1 , ∂2) − Ω(∇̄∂k (∇∂k ∂1)T , ∂2)
∂k Ω(∂1 ,∇∂k ∂2) − Ω(∂1 , (∇∂k (∇∂k ∂2))T)

}

discarding terms that vanish when taking normal coordinates. (Implicity Ω is iden-
tified with its restriction to �; normal covariant differentiation is via the connection
on normal bundle.) Now repeat with respect to the ambient connection:

∇̄∂k ∇̄∂k Ω(∂1 , ∂2) = ∂k {∂k Ω(∂1 , ∂2) − Ω(∇̄∂k ∂1 , ∂2) − Ω(∂1 , ∇̄∂k ∂2)}

−
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇̄∂k ∂k Ω(∂1 , ∂2) − Ω(∇̄∇̄∂k ∂k ∂1 , ∂2) − Ω(∂1 , ∇̄∇̄∂k ∂k ∂2)
∂k Ω(∇̄∂k ∂1 , ∂2) − Ω(∇̄∂k ∇̄∂k ∂1 , ∂2) − Ω(∇̄∂k ∂1 , ∇̄∂k ∂2)
∂k Ω(∂1 , ∇̄∂k ∂2) − Ω(∇̄∂k ∂1 , ∇̄∂k ∂2) − Ω(∂1 , ∇̄∂k ∇̄∂k ∂2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Computing the difference, using definition of second fundamental form

B(∂k , ∂ j) = ∇̄∂k ∂ j −∇∂k ∂ j

we get

∇∂k∇∂k Ω(∂1 , ∂2) − ∇̄∂k ∇̄∂k Ω(∂1 , ∂2) = 2∂k {Ω(B(∂k , ∂1), ∂2) +Ω(∂1 , B(∂k , ∂2))}

(5.1)

+Ω(∇̄∂k (∇∂k ∂1)
T − ∇̄∂k ∇̄∂k ∂1 − ∇̄∇̄∂k ∂k ∂1 , ∂2)

+Ω(∂1 , (∇∂k (∇∂k ∂2))
T − ∇̄∂k ∇̄∂k ∂2 − ∇̄∇̄∂k ∂k ∂2)

− 2Ω (B(∂k , ∂1), B(∂k , ∂2)) + B(∂k , ∂k)Ω(∂1 , ∂2).

Summing over k, recalling that we have chosen an orthonormal basis at the point

H⃗ = B(∂k , ∂k).

Noting also that in normal coordinates (introducing Bk1 ∶= B(∂k , ∂1) etc., as short-
hand)

∇̄∂k ∇̄∂k ∂1 −∇∂k∇∂k ∂1 = ∇̄∂k {∇∂k ∂1 + Bk1} −∇∂k∇∂k ∂1

= ∇̄∂k {�l
k1∂ l + Bk1} −∇∂k (�l

k1∂ l)
= {∂k�

l
k1∂ l + �l

k1 (∇∂k ∂ l + B(k, l)) + ∇̄∂k Bk1} − (∂k�
l
k1∂ l + �l

k1∇k ∂ l)
= ∇̄∂k Bk1 .(5.2)

Now in the first line of (5.1) we may use

∂k Ω(Bk1 , ∂2) = ∇̄∂k Ω(Bk1 , ∂2) + Ω (∇̄∂k Bk1 , ∂2) + Ω (Bk1 , ∇̄∂k ∂2)

together with (5.2) to get

∇∂k∇∂k Ω(∂1 , ∂2) − ∇̄∂k ∇̄∂k Ω(∂1 , ∂2) = 2∇̄∂k Ω(Bk1 , ∂2) + 2∇̄∂k Ω(∂1 , Bk2)(5.3)
+ ∇̄H⃗ Ω(∂1 , ∂2) + 2Ω (Bk1 , ∇̄∂k ∂2)
+ Ω (∇̄∂k Bk1 , ∂2) + Ω(∂1 , ∇̄∂k Bk2).
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Now using the alternating nature of Ω and tangential and normal decomposition, we
have

Ω(∇̄∂k Bk1 , ∂2) = Ω ((∇̄∂k Bk1)T + (∇̄∂k Bk1)N , ∂2)

= Ω (((∇̄∂k Bk1) ⋅ ∂1) ∂1 , ∂2) + Ω ((∇̄∂k Bk1)N , ∂2)

= −Bk1 ⋅ Bk1Ω(∂1 , ∂2) + Ω ((∇̄∂k Bk1)N , ∂2) .

Here we have used

0 = ∇̄∂k (Bk1 ⋅ ∂ j)
= ∇̄∂k Bk1 ⋅ ∂ j + (Bk1 ⋅ ∇̄∂k ∂ j)
= ∇̄∂k Bk1 ⋅ ∂ j + Bk1 ⋅ Bk j .

Now let

∥B∥2 = −(Bk1 ⋅ Bk1 + Bk2 ⋅ Bk2) ,

where the positivity suggested is appropriate as Bk j are time-like vectors, and (5.3)
becomes (also repeating the computation in the above lines for the last term in (5.3))

2∇̄∂k Ω(Bk1 , ∂2) + 2∇̄∂k Ω(∂1 , Bk2) + ∇̄H⃗ Ω(∂1 , ∂2) + 2Ω (Bk1 , ∇̄∂k ∂2)(5.4)

+ ∥B∥2 Ω(∂1 , ∂2) + Ω ((∇̄∂k Bk1)N , ∂2) + Ω (∂1 , (∇̄∂k Bk2)N) .

The Codazzi equation holds in pseudo-Riemannian manifolds: If X , Y , Z are vectors
on � and and η a normal vector, then

∇̄X (B(Y , Z)) ⋅ η − ∇̄Y (B(X , Z)) ⋅ η = Rmh (X , Y , Z , η) .

In our case, this gives at (xmax , x̄max)

(∇̄∂k B1k) ⋅ η = (∇̄∂1 Bkk) ⋅ η + Rmh (∂k , ∂1 , ∂k , η)

thus

(∇̄∂k B1k)N = (∇̄∂1 H⃗ ⋅ np + Rmh (∂2 , ∂1 , ∂2 , np)) npq nq ,

where we are using the negative definite npq ∶= np ⋅ nq (which is just (−δpq) at
(xmax , x̄max)). So now we have

Ω ((∇̄k Bk1)N , ∂2) = Ω ((∇̄∂1 H⃗ ⋅ np + Rmh (∂2 , ∂1 , ∂2 , np)) npq nq , ∂2) .(5.5)

Substituting this into (5.4) (also with appropriate expressions for swapped indices
1 and 2) using the fact that npq is negative definite provides the expression in the
statement of the Lemma. ∎
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6 Curvature and other computations with eigenvalues

First we need:

Claim 6.1 At (xmax , x̄max) ∈ �, with frames defined by (3.6) and (3.7) we have

Rmh(∂2 , ∂1 , ∂2 , n1) = −Rmh(∂1 , ∂2 , ∂1 , n2)

= R1̄221̄ (
λ1

λ2
)

2
− R12̄2̄1 (

λ2

λ1
)

2
,

where

R1̄221̄ = Rmh(E1̄ , E2 , E2 , E1̄), etc.

for E i ∈ Tp M and E j̄ ∈ Tp M̄ .

Proof Note that in the Kim–McCann metric [KM10, Lemma 4.1], these compu-
tations become massively simplified by the fact that the only curvature terms that
do not vanish are those with two barred and two unbarred indices, so there will be
at most six nontrivial terms in the expression for Rm(∂2 , ∂1 , ∂2 , n1). Straightforward
computations using the symmetries of the curvature tensor and (3.6), (3.7) yield the
result. ∎

Claim 6.2 At the point (xmax , x̄max) we have

Ω (∂1 , n1) = 0

Ω (∂1 , n2) = 1
λ1 λ2

(1 + λ2
1 ) (1 − λ2

2)

Ω (∂2 , n1) = − 1
λ1 λ2

(1 − λ2
1 ) (1 + λ2

2)

Ω (∂2 , n2) = 0

Ω (∂1 , ∂2) = 1
λ1 λ2

(1 + λ2
1 ) (1 + λ2

2)(6.1)

Ω (n1 , n2) = 1
λ1 λ2

(1 − λ2
1 ) (1 − λ2

2).

Proof Straightforward calculation noting that at the point

(dx i + d y i) ∂ j =
1

λ i
δ i j (1 + λ2

i )

(dx i + d y i) n j =
1

λ i
δ i j (1 − λ2

i ) . ∎

Now combing the above two lemmas, we get the following.

Corollary 6.3 As above,

Ω(Rmh(∂2 , ∂1 , ∂2 , np)np , ∂2) + Ω(∂1 , Rmh(∂1 , ∂2 , ∂1 , np)np)

= 2 1
λ1 λ2

(λ2
2 − λ2

1 ){R1̄221̄ (
λ1

λ2
)

2
− R12̄2̄1 (

λ2

λ1
)

2
} .
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Proof As Ω (∂ i , n i) = 0 we have

Ω (Rmh(∂2 , ∂1 , ∂2 , np)np , ∂2) + Ω (∂1 , Rmh(∂1 , ∂2 , ∂1 , np)np)

= Rmh(∂2 , ∂1 , ∂2 , n1)
1

λ1 λ2
(1 − λ2

1 ) (1 + λ2
2)

+ Rmh(∂1 , ∂2 , ∂1 , n2)
1

λ1 λ2
(1 + λ2

1 ) (1 − λ2
2).

From Claim 6.1 the expression becomes

= 1
λ1 λ2

[R1̄221̄ (
λ1

λ2
)

2
− R12̄2̄1 (

λ2

λ1
)

2
]{ (1 − λ2

1 ) (1 + λ2
2)

−(1 + λ2
1 ) (1 − λ2

2)
}

= 2 1
λ1 λ2

(λ2
2 − λ2

1 ){R1̄221̄ (
λ1

λ2
)

2
− R12̄2̄1 (

λ2

λ1
)

2
} . ∎

Claim 6.4 Suppose that λ2 ≤ 1 ≤ λ1 . Then for some constant C2 depending on
∥D f ∥g1×g2

, g1 , g2 and Λ

2Ω (B(∂k , ∂1), B(∂k , ∂2)) ≥ −∥B∥2

3
(1 + λ2

1 )(1 + λ2
1 )

λ1 λ2
− C2(1 + λ4

1 ).

Proof The minimal surface equation

H⃗ = −(∇ f )N

can be expressed in normal coordinates as the following

b111 + b221 = −∇ f ⋅ n1

b112 + b222 = −∇ f ⋅ n2 ,

By Claim 2.3 we then have

bk22 = −∇ f ⋅ nk − bk11 .

Now

2Ω (B(∂k , ∂1), B(∂k , ∂2)) = ∑
k ,s , p

2bk1sbk2pΩ(ns , np)

= ∑
k

2bk11bk22Ω(n1 , n2) +∑
k

2bk12bk21Ω(n2 , n1)

= ∑
k

2 (bk11bk22 − bk12bk21)
1

λ1 λ2
(λ2

1 − 1)(λ2
2 − 1)

= ∑
k

2 (bk11 (−∇ f ⋅ nk − bk11) − b2
k12)

1
λ1 λ2

(λ2
1 − 1)(λ2

2 − 1)

= 2∑
k

bk11 (−∇ f ) ⋅ nk
1

λ1 λ2
(λ2

1 − 1)(λ2
2 − 1)
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− 2∑
k
(b2

k11 + b2
k12)

1
λ1 λ2

(λ2
1 − 1)(λ2

2 − 1)

≥ −( 1
β ∑

k
∥B∥2 ∣∇ f ⋅ nk ∣2 +

β
4
) . 1

λ1 λ2
(λ2

1 + 1)(λ2
2 + 1),(6.2)

where we may drop the term in the second-to-last line using (λ2
2 − 1) ≤ 0.

Next, recalling that in our product system coordinates (with respect to Euclidean
metric)

∥∂k∥g1×g2
= ∥nk∥g1×g2

≤
A
BBC 1

λ2
k
+ C2

1 λ2
k

we may use (4.3) to conclude that

∣∂1∣ , ∣n1∣ ≤
√

Λ + C2
1 λ2

1

∣∂2∣ , ∣n2∣ ≤
√

Λλ2
1 + C2

1 Λ.

or

∣∂k ∣ ≤ C0

√
1 + λ2

1 .(6.3)

Then evaluating

∇ f ⋅ nk = D f (nk) ≤ C0

√
1 + λ2

1 ∥D f ∥g1×g2
≤ C′2(1 + λ2

1 )1/2

for some C′2 that depends on ∥D f ∥g1×g2
, C0 and Λ. Thus letting β = 3 (C′2)

2 (1 + λ2
1 )

in (6.2) gives the result. ∎

Claim 6.5 For some constants C3 , C4 depending on ∥D2Ω∥g1×g2
and Λ.

2 (∇̄∂k Ω(Bk1 , ∂2) + ∇̄∂k Ω(∂1 , Bk2)) ≥ −∥B∥2

3
(1 + λ2

1 )(1 + λ2
2)

λ1 λ2
− C3 (1 + λ4

1 )

and

∑
k
∇̄∂k ∇̄∂k Ω(∂1 , ∂2) ≥ −C4(1 + λ4

1 ).

Proof Recalling (6.3)

∣∇̄∂k Ω(Bk1 , ∂2)∣ ≤ ∥DΩ∥g1×g2
∥∂k∥g1×g2

∣bk1s ∣ ∥ns∥g1×g2
∥∂2∥g1×g2

≤ ∥DΩ∥g1×g2 ∑
k ,s

∣bk1s ∣ (C0 (1 + λ2
1 )

1/2)
3

≤ ∥B∥2

12
(1 + λ2

1 ) (1 + λ2
2)

λ1 λ2
+ 48 ∥DΩ∥ 2

g1×g2
C6

0
λ1 λ2

(1 + λ2
2)

(1 + λ2
1 )

2 .
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Noting that λ1 λ2
(1+λ2

2)
is controlled, and repeating the same computation for ∣∇̄∂k Ω(∂1 ,

Bk2)∣ gives the first inequality.
For the next inequality we may directly compute

∣∑
k
∇̄∂k ∇̄∂k Ω(∂1 , ∂2)∣ ≤ 2 ∥D2Ω∥g1×g2

[C0

√
1 + λ2

1 ]
4

. ∎

Finally, we bound terms involving the mean curvature.

Claim 6.6 For some constants C5 , C6

∇H⃗ Ω(∂1 , ∂2) ≥ −C5 (1 + λ4
1 )

−∑
s
{(∇̄∂1 H⃗ ⋅ n1)Ω(n1 , ∂2) + (∇̄∂2 H⃗ ⋅ n2)Ω(∂1 , n2)}

≥ −∥B∥2

3
(1 + λ2

1 )(1 + λ2
2)

λ1 λ2
− C6 (1 + λ4

1 ) .

Proof Note that

(∇ f )N = ((∇ f ) ⋅ ns) ns pnp

= (d f (ns)) ns pnp ,

thus we have (recall (6.3))

∥H⃗∥g1×g2
= ∥(∇ f )N∥

g1×g2

≤ ∣d f (ns)∣ ∥np∥g1×g2

≤ ∥D f ∥g1×g2
C2

0 (1 + λ2
1 ) .

Then

∣∇H⃗ Ω(∂1 , ∂2)∣ ≤ ∥D f ∥g1×g2
∥DΩ∥g1×g2

C4
0 (1 + λ2

1 )
2 .

Next, note that

(∇̄∂1 H⃗ ⋅ n1) = ∇̄∂1 (∇̄ f )N ⋅ n1

= (∇̄∂1 (∇̄ f ) − ∇̄∂1 (∇̄ f )T) ⋅ n1

= ∇̄2 f (∂1 , n1) −∑
k
(∂k f ) b1k1

≥ −∥D2 f ∥g1×g2
C2

0 (1 + λ2
1 ) −

∥B∥2

6
− 2 ∥D f ∥2

g1×g2
C2

0 (1 + λ2
1 ) .

The inequality follows from adding the terms and using

∣Ω (∂1 , n2)∣ , ∣Ω (n1 , ∂2)∣ ≤
1

λ1 λ2
(1 + λ2

1 ) (1 + λ2
2). ∎
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7 Finish It

We return to the maximum principle argument.

Proof of Theorem 4.1 Pick an xmax in � where the function w is maximized. The
scalar function w = Ω

dVg
is simply the Hodge dual of Ω∣�. Covariant differentiation

commutes with the Hodge operator, so

∇∂k∇∂k Ω (∂1 , ∂2)
dVg (∂1 , ∂2)

= ( Ω
dVg

)
kk

≤ 0.

Assume that λ2 ≤ 1; If not, then λ1 ≤ Λ and we immediately have a bound on w .
Applying Lemma 5.1, and all the claims in the previous section, we have

0 ≥ ( Ω
dVg

)
kk

≥ −(C2 + C3 + C4 + C5 + C6) (1 + λ4
1 )

+ 2 1
λ1 λ2

(λ2
1 − λ2

2){R1̄221̄ (
λ1

λ2
)

2
− R12̄2̄1 (

λ2

λ1
)

2
}

≥ −C10 (1 + λ4
1 ) + 2 1

Λ
(λ2

1 − Λ)
⎛
⎝

R1̄221̄ (
λ2

1
Λ

)
2

− R12̄2̄1
⎞
⎠

.

Now the components R1̄221̄ are with respect to the vectors that are uniformly
bounded and bounded away from zero in our gauge metrics, so R1̄221̄ has a known
lower bound. We may conclude that

λ1 ≤ C20

and thus

w(xmax) =
(1 + λ2

1 ) (1 + λ2
2)

λ1 λ2
≤ C̄ = 2Λ(1 + C2

20).

Considering Claim 4.2, Theorem 4.1 is proved. ∎
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