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SUMMARY

The International Union for Conservation of Nature
(IUCN) Red List provides a globally-recognized
evaluation of the conservation status of species, with
the aim of catalysing appropriate conservation action.
However, in some parts of the world, species data may
be lacking or insufficient to predict risk status. If species
with shared ecological or life history characteristics
also tend to share their risk of extinction, then
ecological or life history characteristics may be used to
predict which species may be at risk, although perhaps
not yet classified as such by the IUCN. Statistical
models may be a means to determine whether there are
non-threatened or unclassified species that share the
characteristics of threatened species, however there are
no data on which model might be most appropriate or
whether multiple models should be used. In this paper,
three types of statistical models, namely regression
trees, logistic regression and discriminant function
analysis are compared using data on the ecological
characteristics of Finnish lepidopterans (butterflies
and moths). Overall, logistic regression performed
slightly better than discriminant function analysis
in predicting species status, and both outperformed
regression trees. Uncertainty in species classification
suggests that multiple analyses should be performed
and particular attention devoted to those species for
which the methods disagree. Such standard statistical
methods may be a valuable additional tool in assessing
the likely threat status of a species where there is a
paucity of abundance data.

Keywords: discriminant function analysis, Geometridae,
Lepidoptera, logistic regression, Noctuidae, regression tree
analysis, threat status

INTRODUCTION

Assessing the risk of extinction is important to determine
which species are most prone to extinction and may be
in need of human intervention. The International Union
for Conservation of Nature (IUCN) has defined categories
assessing species threat status on the basis of their risk
of extinction. Classifications largely rely on quantitative
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information, but in practice expert opinion plays a strong role.
Many different methods have been used to assess extinction
risk, including population models (McCarthy et al. 2004),
species-area correlations (Grelle 2005) and genetic analyses
(Dunham et al. 1999). Obtaining the type of data needed to
assess extinction risk can be problematic. For example, the
assessment of population size and changes in population size
can be difficult, particularly when assessing small populations
whose individuals are not easily located. Genetic data, which
may provide information about the degree of inbreeding and
gene flow among populations, is costly, especially if multiple
species are to be assessed, and may also be hard to obtain from
small populations. However, data on simple ecological or life
history characteristics can be obtained using less extensive
population monitoring, or from existing knowledge of the
natural history of species. In this paper, we assess the potential
of such data to provide an alternative and reliable measure of
extinction risk.

Among the studies that use ecological characteristics to
assess extinction risk, several different types of analyses have
been used, including multiple regression (Purvis et al. 2000;
Krüger & Radford 2008), regression tree analysis (Boyer 2008;
Davidson et al. 2009; Boyer 2010), logistic regression (Mattila
et al. 2006, 2008; Franzen & Johannesson 2007) and risk
ranking (Kotiaho et al. 2005). Several of these studies used
multiple tests to assess extinction risk, often initially analysing
single ecological or life history characters as predictor
variables, followed by one of the single type of statistical tests
mentioned above to analyse the complete data set. Bielby et al.
(2010) compared decision trees and phylogenetic comparative
methods. Here we compare three statistical approaches:
regression tree analysis, logistic regression and discriminant
function analysis. We selected these three statistical methods
primarily because they are commonly found in pre-packaged
statistical software programs and thus would be easier
for conservation managers to access and use than more
complicated programs that require writing and editing code.
Our aim was to determine if one or a combination of these
statistical methods could be used to predict the threat category,
threatened or non-threatened, of as yet unclassified species.
Such an analysis may determine whether there are unclassified
species that merit immediate attention. Reclassification of a
formerly non-threatened species to a threatened status is also
a possible outcome, and may indicate that a species is in more
immediate need of conservation management measures. The
specific situation we envision is one in which most species
within a particular taxon have been classified as threatened or
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non-threatened. If it can be shown that this classification is well
predicted by one or more of the three statistical approaches
using general ecological and life history characters (hereafter,
for simplicity, LH characters) then unclassified species of the
same taxon that share characteristics with threatened species
can be identified to help prioritize further assessments of threat
status.

We assess this approach using data on Finnish
lepidopterans previously analysed by Komonen et al. (2004),
Kotiaho et al. (2005) and Mattila et al. (2006, 2008). Komonen
et al. (2004) used analysis of variance and linear regressions
on subsets of LH characters to assess butterfly mobility, but
did not relate this to IUCN threat status. Mattila et al. (2006,
2008) used similar analyses, running logistic regressions of
IUCN threat status on single LH characteristics and then
using multiple LH characteristics in a multinomial logistic
regression to determine the ability to classify species into
their correct IUCN threat status. Kotiaho et al. (2005)
primarily used t-tests and logistic regressions with single
LH characteristics to compare differences between threatened
and non-threatened species. The four LH characteristics
(dispersal ability, larval specificity, adult habitat breadth and
length of flight period) that they found to be significantly
related to IUCN threat status were used to create an ecological
risk ranking of all the species by ranking the species according
to each LH characteristic and then summing the four rankings.
This summed ranking was used in a logistic regression and
compared to the actual IUCN threat status of the species.

In the present analysis, we address the question of whether
the LH characteristics of a species may be used directly en
masse to predict the probability of unclassified species being
threatened or non-threatened, and identify non-threatened
species that may need reclassification of their threat status.

METHODS

Regression and classification trees

Roff and Roff (2003) initially suggested regression tree analysis
to determine factors contributing to the risk of extinction.
Several studies have since used a regression tree analysis to
assess extinction probability (Jones et al. 2006; Boyer 2008,
2010; Davidson et al. 2009). In our case study the predicted
category consisted of two states, ‘threatened’ ( = 1) and ‘non-
threatened’ ( = 0), and thus regression and classification trees
were identical. In principal, classification trees could be used
to identify each different IUCN category. We restricted the
analysis to the two states and used the regression tree approach,
owing to insufficient data.

Logistic regression

Our aim was to determine the accuracy of models created
using logistic regression at predicting the correct assignment
of a species as threatened or non-threatened based on LH
characteristics. As done with the regression trees, species
in the non-threatened category were coded as 0 and those

in the threatened category as 1. To use the model as a
mechanism for placement of a species into the threatened
or non-threatened category, we required a threshold for
the fitted value, for example 0.5, above which species were
placed into the threated category and below which they were
placed into the non-threatened category. Alternatively, we
could have selected two thresholds, such as 0.25 and 0.75,
and placed species below the lower threshold in the non-
threatened category and species above the upper threshold in
the threatened category, classifying species lying between the
two thresholds as ‘uncertain.’ We explored the consequences
of both approaches.

An important point to note in this method of analysis is
that, whereas the stopping point for the stepwise regression is
defined by a metric such as the Akaike information criterion
(AIC), the adequacy of the model in the present context was
measured by the assignment to the two categories: because
of this, it was possible for the ‘best’ model to contain more
or fewer variables than that specified by the ‘best’ stepwise
logistic model.

Discriminant function analysis

There are several covariance structures that can be
identified when performing a discriminant function analysis:
homoscedastic, spherical, proportional, group spherical, equal
correlation and heteroscedastic. Principal components can also
be specified for analysis in a discriminant function analysis.
In the analyses here, to compare statistical tests, we used
the covariance structure that correctly assigned the most
threatened species based on LH characteristics.

Determining the probability of correct assignment by
chance alone

An important consideration is the probability of assigning a
species to the correct category, threatened or non-threatened,
by chance alone. To determine this we used a simulation model
(coding in R given in Appendix 1, see supplementary material
at Journals.cambridge.org/ENC). First, we generated a
vector, V, of length N, where N was the total number of
species in the sample with ones in the first n1 rows and
zeros in the remaining N – n1 rows, the former being the
number of threatened species and the latter the number non-
threatened species. These zeros and ones were rearranged at
random in the vector. The number of correct assignments in
the threatened category, N1, was given by

N1 =
n1∑

i=1

Vi ,

that is, the number of ones in the first n1 rows, and the number
of correct assignments in the non-threatened category, N0 was

N0 = N − n1 −
N∑

i=n1+1

Vi ,
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namely the number of zeros in the remaining N – n1 rows.
The total number of correct assignments, NT, was thus
NT = N1 + N0. These three numbers were stored and the
process repeated to generate three new samples. The whole
process was replicated 10 000 times, generating a matrix with
three columns (total correctly assigned, correctly assigned
to threatened, correctly assigned to non-threatened) and
10 000 rows. From this matrix we calculated the distribution
of correct assignments. For each column we determined the
probability of correctly assigning n j species (j = 0 to N, j = 0
to n1, j = 0 to N – n1) as SJ/10000, where SJ was the number
of times nj appeared in the relevant column.

Determining the preferred method

As indicated below, regression tree analysis was not
satisfactory for either of the two data sets (butterflies or
moths) and, therefore, our further analysis focused upon
logistic regression versus discrimination function analysis.
We compared the ability of these two methods to correctly
classify species into the threatened or non-threatened category
with a χ 2 analysis. Of particular interest were those species
which were incorrectly classified according to one or both
methods: we plotted the predicted values from the logistic
regression against the predicted values from the discriminant
function analysis to see whether the species that were classified
differently fell near the 0.5 cutoff. It is safer to classify non-
threatened species as threatened than it is to classify threatened
species as non-threatened, because in the former case a species
will receive attention, but in the latter case a threatened
species that needs attention will be overlooked. Therefore, we
used the number of correctly classified threatened species in
a final comparison of methods to determine which method
was to be preferred, at least for the data sets assessed
here.

Data sets

The Kotiaho et al. (2005) butterfly data set consisted of 94
species and 13 predictor variables: family, genus, species,
abundance, distribution, distribution change, resource
distribution, extent of range, larval specificity, female size,
length of flight period, mobility and habitat breadth (see
Komonen et al. 2004 and Kotiaho et al. 2005 for variable
definitions). Because the primary criterion for listing these
species according to IUCN threat status is a function of three
‘distribution’ variables (distribution, distribution change, and
extent of range), we included these variables as predictor
variables to assess whether any of the other variables were
better at predicting IUCN threat status. After initial analysis,
these distribution variables were excluded from subsequent
analyses to determine whether any more easily accessible
variables (such as those obtainable from published natural
history descriptions) could be used to predict threat status.
One species, Glaucopsyche alexis, was listed using only
abundance as the criterion, and so this species was not used

in the analyses. Thirteen other species were excluded due to
missing data. The analysed data consisted of 18 threatened and
62 non-threatened species. The rest of the variables, excluding
resource distribution due to lack of data, were used to predict
IUCN threat status as given in the 2000 Finnish Red List
(Rassi et al. 2001). One of the principal aims of the analysis was
to investigate the ability of variables that are readily available
from published data on the natural history of a species to
determine threat status. Therefore, we ran the analyses with
and without the variable ‘abundance,’ which might typically be
difficult to estimate and, in many cases, unavailable. However,
due to the similarity of the results, only the analyses excluding
abundance are reported here (Appendix 2 provides a table of
the analyses including abundance, see supplementary material
at Journals.cambridge.org/ENC).

Two data sets on moths were used, one on noctuids (Mattila
et al. 2006) and one on geometrids (Mattila et al. 2008). These
two data sets consisted of 284 and 306 species, respectively,
and each had the same eight predictor variables: genus,
species, male size, length of flight period, larval specificity,
resource distribution, overwintering stage, and distribution
change. After we ran the analyses with each data set, we
combined them into a single data set with the added variable
‘taxonomic family’ to increase the power of the analyses and
avoid issues of non-independence by using closely related
species. In total, we excluded 40 species from the data sets due
to missing data. The analysed data consisted of 68 threatened
and 482 non-threatened species. Distribution change was
the only distribution variable for these data sets and, after
initial analysis, was, as before, excluded to determine which
other variables may be important for predicting IUCN threat
status. As previously noted, the response variable for all data
sets was binomial, threatened or non-threatened. It included
all species listed as near threatened or higher according
to the IUCN threat status as threatened and the rest as
non-threatened.

RESULTS

Among the three distribution variables used in the butterfly
data set (distribution, range position, and distribution change),
only distribution and range position were highly correlated
(r = 0.64; Table 1). Correlations between any of the
distribution variables and the other variables was highest for
distribution and mobility (r = 0.74) and distribution and
length of flight (r = 0.64), although these values were not
high enough to cause problems with collinearity since they
were < 0.90 (Tabachnick & Fidell 2007, p. 89–90). None of
the correlations among variables for the geometrid or noctuid
data sets exceeded an absolute value of 0.26 and thus did not
pose problems with collinearity.

We first examined the ability of the distribution variables by
themselves to classify species status. After this we considered
the ability of the other LH characteristics to classify species
status.
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Table 1 Correlations among the
continuous variables used in the
analyses of the butterfly data
(sample size = 18 threatened
species and 62 non-threatened
species). ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001; probabilities not
corrected for multiple test.

Characteristic Abundance Distribution Range
position

Mobility Length of
flight

Female
size

Distribution –0.42∗∗

Range position –0.48∗∗∗ 0.64∗∗∗

Mobility –0.55∗∗∗ 0.74∗∗∗ 0.42∗∗∗

Length of flight –0.24∗ 0.64∗∗∗ 0.29∗ 0.57∗∗∗

Female size –0.10 0.07 −0.11 0.31∗∗ 0.19
Distribution change –0.33 0.32∗∗ 0.17 0.35∗∗∗ 0.21∗ –0.10

Regression trees

Distribution variables only
A significant regression tree, with two nodes was obtained
(p = 0.0002) using only the distribution variables from the
butterfly data set. This split in the regression tree was based
on distribution and correctly classified 94% of threatened
species and 95% of non-threatened species. When we used
the variable distribution change in a regression tree analysis on
the geometrid data, the pruned regression tree was significant
(p = 0.0006) and had two nodes, but all threatened species
were misclassified as non-threatened. The threatened species
did not have any defining range of distribution change to use
to divide the data. When we used only distribution change in
a regression tree analysis on the noctuid data set, the pruned
regression tree was significant (p = 0.0002) and had five nodes
with a misclassification rate of 11%. Using distribution change
in a regression tree analysis on the combined moth data set,
we found that the pruned regression tree was significant (p
= 0.0002) and had four nodes, but all threatened species
were misclassified, again indicating no defined range for the
threatened species.

Other LH variables
Using variables from the butterfly data set not explicitly used
for determining IUCN threat status (family, mobility, larval
specificity, habitat breadth, female size, and flight length), a
pruned tree could not be created because only one terminal
node was produced during the cross-validation. Thus, in this
case, regression tree analysis could not discriminate threatened
from non-threatened species.

When all the variables (male size, length of flight period,
larval specificity, and overwintering stage) except distribution
change were used from the geometrid data set, a non-
significant pruned tree with two nodes resulted (p = 0.2826),
but no threatened species were correctly classified because
both nodes were classified as non-threatened in the regression
tree. Thus, breaking the data down into these two nodes based
on length of flight period did not allow for enough subdivision
of the data to correctly assign IUCN threat status. When all
the variables from the noctuid data set or the combined data
set (male size, length of flight period, larval specificity, and
overwintering stage) except distribution change were used, a
pruned tree could not be created because only one terminal
node was produced during the cross-validation.

We conclude that for these data sets regression tree analysis
did not result in a satisfactory prediction of threat status.

Logistic regression

Distribution variables only
Species with probabilities greater than 0.5 were classified as
threatened and those below as non-threatened. A stepwise
logistic regression using the distribution variables from the
butterfly data set retained the variables distribution and
distribution change and was able to correctly classify 94% of
threatened species and 95% of non-threatened species. The
logistic regression on distribution change in the geometrid
data set correctly classified 7% of threatened species and
99% of non-threatened species. Using the noctuid data set
or the combined data set, the logistic regression was unable to
correctly classify any threatened species.

Other LH variables
We restricted the logistic regression analysis to additive
models only (interactions were excluded) because the butterfly
data set was limited. Incorporating all the variables except
the distribution variables and abundance produced a model
that correctly assigned 67% of threatened and 95% of non-
threatened species when the fitted value cutoff point was
0.50 (Table 2). This cutoff point (0.5) for the fitted values
produced the highest correct assignment for both threatened
and non-threatened species. The alternate criterion of 0.25 as
the cutoff point for the non-threatened species and anything
greater than 0.75 as a cutoff point for the threatened species
correctly assigned 39% of the threatened species and 79% of
the non-threatened species, with 21 ambiguous species. Moth
data produced a similar response to the cutoff values (results
not shown), so we opted to use the 0.5 cutoff for all reported
classification assignments for the logistic regressions.

The stepwise logistic regression on the geometrid data
set using all variables except distribution change included
interactions due to a larger sample size and retained all
variables and their interaction terms except the four-way
interaction. This regression correctly assigned 47% of the
threatened species (and was able to correctly classify all but
one of the non-threatened species (F47,263 = 2.84, p < 0.001;
AIC = 168.11; Table 3). The stepwise logistic regression using
all the variables from the noctuid data set except distribution
change retained all the variables and their interaction terms,
did poorly at correctly assigning threatened species, but well at
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Table 2 Classification of threatened and non-threatened species by logistic regression and discriminant
function analysis for the butterfly data, when the distribution variables and abundance are excluded from the
analysis. Regression tree analysis was excluded because a pruned tree could not be created. When multiple
analyses were performed, such as when different structures were used for discriminant analysis, only the
analysis with the best result is given. ‡Probability of correctly predicting by chance alone at least as many as
observed by a given method.

Analysis Threatened Non-threatened

Predicted p‡ Predicted p
Logistic regression, 0.5 cutoff 12/18 <0.0001 59/62 <0.0001
Stepwise logistic regression 10/18 0.0005 57/62 <0.0001
Discriminant function analysis – homoscedastic 10/18 0.0005 56/62 <0.0001

assigning non-threatened species (21% and 96% respectively;
F61,244 < 0.001, p = 1; AIC = 2887.41; Table 3). The stepwise
logistic regression on all variables from the combined data set
except distribution change retained all the variables and their
four-way interaction terms except the interaction involving
family, male size, larval specificity and overwintering stage,
correctly assigned one-third of threatened species (29%), and
was able to correctly assign almost all the non-threatened
species (96%; F112,477 < 0.001, p = 1; AIC = 4687.5; Table 3).

Discriminant function analysis

Distribution variables only
Discriminant function analysis produced results that were not
quite as good as the logistic regression at classifying threatened
and non-threatened species (88% and 89%, respectively)
using only the distribution variables from the butterfly data
set. For the geometrid, noctuid and combined data sets 90%,
100% and 96% of threatened species, respectively, were
correctly classified, and 52%, 46% and 53% of non-threatened
species were correctly classified using just distribution change.

Other LH variables
The discriminant function analysis on the butterfly data set
including all variables except the distribution variables and
abundance was significant (Table 2), correctly classifying 56%
of threatened species and 90% of non-threatened species.
Weighting was highest for family and habitat breadth when
classifying threatened species.

The discriminant function analysis for the geometrid data
set including all the variables except distribution change
performed best using the principal components model, and
correctly classified 27% of the threatened species and 95% of
the non-threatened species (Table 3). The best discriminant
analysis including all the variables from the noctuid data set
except distribution change used the equal correlation model
and correctly assigned 88% of non-threatened species and
32% of threatened species. The best discriminant analysis
on the combined data set including all variables except
distribution change used the equal correlation model also,
and assigned 94% of non-threatened species, but only 19% of
threatened species.

Which method is best?

Logistic regression and discriminant function analysis were
able to correctly classify a significant number of threatened and
non-threatened species for most analyses. Using the butterfly
data set, the logistic regression and the discriminant function
analysis did not differ in the number of correctly classified
threatened and non-threatened species (χ 2 = 0.078, df =
1, p = 0.7804). However, using the combined moth data,
the logistic regression and the discriminant function analysis
did differ significantly in the number of correctly classified
threatened and non-threatened species (χ 2 = 6.416, df = 1, p
= 0.0113).

Logistic regression and discriminant function analysis
agreed on the classification (Table 4), rightly or wrongly,
of all but two of the threatened butterfly species, with
the logistic regression classifying the species ‘correctly’
according to the published IUCN red list. Interestingly, the
incorrectly classified butterfly species did not cluster about
the intersection of the 0.5 cutoff (vertical and horizontal
lines in Fig. 1) demarking the transition from threatened
to non-threatened species for each analysis (the moth data
could not be plotted this way because the fitted values for
the logistic regression were all 0s and 1s). The two species
that were correctly classified by the logistic regression, but
not the discriminant function analysis, were not notable
outliers. In one case, the species lies close to the ‘decision’
boundary for the discriminant function analysis, while in
the other case, the species lies close to the ‘decision’
boundary for the logistic regression. For such species the
discrepancy in the analyses invites closer inspection. While
the logistic regression correctly classified more species than
the discriminant function analysis, the difference overall is
relatively minor, and we recommend that both methods be
used, with additional attention being paid to those species
classified differently.

DISCUSSION

All of the analyses on the butterfly data and most of the analyses
on the moth data sets were able to correctly assign a significant
number of threatened and non-threatened species. Regression
tree analysis was not very helpful in classifying species in the
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Figure 1 Plot of the logistic regression (LR) fitted values versus
the discriminant function analysis (DFA) predicted values for the
butterfly data, indicating the two methods have approximately a 1:1
relationship in their prediction of threat status.

two data sets, although previous analyses have suggested it
may be a promising tool (Roff & Roff 2003; Jones et al. 2006;
Boyer 2008, 2010; Davidson et al. 2009). Importantly, the
approach here did not fail because it incorrectly classified
species. For the present data sets, it failed because no trees
could be produced. Thus, we recommend that this approach
still be tried for other data sets.

There was a decrease in the percentage of correctly classified
species when a stepwise logistic regression was used on the
butterfly data set and on several moth regressions. As noted
above, this is not unexpected, as the criterion for the best
fitting model is not the same as the criterion for the stopping
point in the stepwise regression. Thus, for logistic regression
analysis, a second step, namely a comparison of the models
predicting correct assignment is called for, which can be done
using simulation (Appendix 1, see supplementary material
at Journals.cambridge.org/ENC). Since we were primarily
focused on the category the species fell within, and not
necessarily how good individual variables were at classifying
the species, a case could be made for leaving all the variables
in the model, because including variables will not increase
the misclassification rate. Comparing the full model and the
stepwise model may then be a useful way to identify the
ecological characteristics that have the strongest correlation
with IUCN threat status, and which variables increase the
number of correctly assigned species, even if the difference is
not significant.

The overall correct classification rate can be highly
misleading. For example, suppose that 90% of species
were classified as non-threatened and the statistical analysis
classified all species as non-threatened, then the overall correct
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Table 4 Comparison of classifications by logistic regression and discriminant function analysis for threatened
butterfly and moth species.

Logistic regression
classification

Discriminant function
analysis classification

Number of threatened butterfly
species classified as indicated

Number of threatened
moth species classified
as indicated

Threatened Threatened 10 8
Non-threatened Threatened 0 5
Threatened Non-threatened 2 19
Non-threatened Non-threatened 6 36

classification rate would be 90%, which appears to be very
good but is actually of little use. This issue was particularly
evident in the moth data sets, and illustrates the importance of
analysing the ability of the statistical analysis to classify species
into each category, as done here. When methods of comparison
such as these are used, classification to both categories should
always be reported.

Overall, the logistic regression gave the best results based on
the number of correctly predicted threatened species, followed
by the discriminant function analysis. All variables can be used
in these analyses, so deciding among variables is not an issue.
Given the ease with which the analyses can be performed,
we suggest that multiple analyses be undertaken to identify
species that may not be consistently classified as threatened.

Suggested reassessments based on the current analysis

The butterfly species Boloria frigga, B. freija, and B. thore,
were classified as threatened by logistic regression and
discriminant function analysis, although the IUCN does not
list them as threatened. These species may be at an increased
risk of extinction. Kotiaho et al. (2005) assigned these species
ecological risk rankings of 4, 11, and 15, respectively, and our
results support a reassessment of their IUCN threat status.
Discriminant function analysis classified Pyrgus centaureae as
threatened; Kotiaho et al. (2005) assigned an ecological risk
ranking of 8 to P. centaureae, and thus its threat status may
also merit reassessment, although the first three species would
be a priority.

For the moth data sets, five non-threatened species were
classified as threatened by both logistic regression and
discriminant function analysis. All the misclassified moth
species fall in the family Noctuidae. Cucullia gnaphalii,
Dryobotodes eremita and Orthosia populeti were classified
as threatened when the noctuid data set was used. D.
eremita, Abrostola triplasia and A. tripartita were classified
as threatened when the combined data set was used. We
suggest that the threat status of all these species merits re-
evaluation; an IUCN threat listing would attract appropriate
conservation management, thus enhancing these species’
chance for recovery.

We have shown that a variety of statistical analyses can
produce useful assessments of threat status and that readily-
available data on ecological and LH characteristics may be
used to identify species that merit reassessment of their threat

status. Extending the analyses beyond the geographical area
of interest should be undertaken cautiously, as important
variables may change in different locations and at different
scales (Nylin & Bergstrom 2009). In particular, if abundance
is to be used as a variable, understanding its relationship to
the species being assessed is essential to determine whether
a positive or negative relationship to distribution can be
generalized (see the following articles for a debate on positive
and negative density-distribution relationships: Paivinen et al.
2005; Blackburn et al. 2006; Blackburn & Gaston 2009;
Komonen et al. 2009, 2011; Kotiaho et al. 2009; Selonen
& Helos 2010). These caveats notwithstanding, the present
results suggest that ‘off-the-shelf’ statistical methods such as
logistic regression and discriminant function analysis can be
extremely valuable in determining the IUCN threat status of
a species in areas where there is only limited abundance data.

CONCLUSIONS

Standard statistical analyses may be applied to ecological
and life history characteristic data to produce an assessment
of threat status where there is limited abundance data.
Applying these methods to Finnish butterfly and moth species
datasets produced results that were highly consistent with
present IUCN threat listings, and identified a few additional
candidates that probably deserve increased attention and
monitoring. Identifying species that merit reassessment
is crucial to allocating conservation management efforts
appropriately.
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