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Linear relationships in complement fixation
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INTRODUCTION

Wadsworth, Maltaner & Maltaner (1931) have shown that, over a certain range,
there is a linear relationship between the amount of complement required for 50 %
lysis of the indicator system in a complement-fixation test and the amount of
antiserum used, provided that the concentrations of antigen are adjusted so that
maximal fixation occurs.

The straight line defined in this way may be called the antiserum maxima line.
Similarly an antigen maxima line may be drawn.

Hoyle (1945-46) using influenza virus antigens, found a linear relationship
between the logarithm of the amounts of complement fixed and the logarithm of
the maximal antiserum or maximal antigen titres. Logarithmic co-ordinates have
been used by many other workers to define antiserum and antigen titres in comple-
ment fixation tests (Fulton, 1958).

We shall show that the linear relationship with arithmetic co-ordinates and the
linear relationship with logarithmic co-ordinates provide the same information in
different ways.

LINEAR RELATIONSHIPS WITH ARITHMETIC CO-ORDINATES

The equation of a straight line may be written in the slope intercept form,

y = a + bx.

The parameter b is the slope of the line and the parameter a is the point where
the straight line intercepts the y co-ordinate axis where x — 0.

I. a = 1

If x is the amount of antiserum in the primary mixture of a complement-fixation
test and y is the number of units of complement required for 50 % lysis of the
indicator system at the conclusion of the test, the antiserum maxima line can, in
many cases, be defined by the equation,

y = 1 +bx.

Similarly if x is the amount of antigen, the antigen maxima line can often be
defined by the same equation. When x = 0, one unit of complement is required for
the lysis of half the erythrocytes in the indicator system.

* Present address: Departamento de Microbiologia e Imunologia, Faculdade de Medicina de
Ribeirao Preto, Universidade de Sao Paulo, Brazil.

https://doi.org/10.1017/S0022172400039346 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400039346


96 F . F U L T O N AND J . 0 . ALMEIDA

Since one of the parameters of the straight line is determined by the fixed inter-
cept point, y = 1, the slope b is the unique characteristic of the reaction.

The numerical value of 6 can be used to define the titre of the antigen or antiserum.
In many cases, the linear relationship between x and y can only be demon-

strated over a certain range. For example, if x is the amount of antiserum, the
potency of the undiluted antigen may be insufficient to give the maximal fixation
of complement of which the larger amounts of antiserum are capable. However,
the maxima line may be extrapolated beyond the defined range to some arbitrary,
fixed value of a;, and the titre may be defined as the number of units of complement
required for 50 % lysis of the indicator system with this fixed amount.

If an antigen or antiserum maxima line can be defined by the equation,

y = 1+ bx

there is also a linear relationship between the logarithm of the number of units of
complement fixed maximally and the logarithm of the amount of antigen or
antiserum.

For, \og(y— 1) = log 6 +log a;.

After the logarithmic transformation, the slope of the straight line is no longer
a characteristic of the reaction, for the line always has unit slope. The line cuts the
ordinate axis at the point,

\og{y-l) = Iog6

and this intercept point is the unique characteristic of the reaction.
Thus, with these types of maxima lines, differences in slopes with arithmetic

co-ordinates are transformed into differences in the position of the lines with
logarithmic co-ordinates.

II. a + 1

(i) Maxima lines: a < 1. In many cases when an antigen or antiserum maxima
line is defined with arithmetic co-ordinates, although there is a linear relationship
between x and y when x is confined to a range of small positive values, if the line
is extrapolated to the ordinate axis, the point of intercept is not y = 1.

The maxima line can be defined by the equation,

y = a + bx, (a# 1)

Most commonly the intercept parameter is less than 1. An example, using
influenza virus antigens and homologous guinea-pig antiserum is shown in Fig. 1.
This antiserum maxima line is defined by the equation,

y = -1-79+14-25X
for values of x in the range,

0-3125 jul. < x ^ 1-25/tl.

Since when x = 0, 1 unit of complement is required for 50 % lysis of the indicator
system, it follows that there is not a linear relationship between x and y over the
r a n g e 0 < x < 0-3125 /A.
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In a reaction of this type using human serum and a cardiolipin antigen, Almeida
(1958) has demonstrated the non-linearity of the relationship between x and y as
the values of a; approach zero (see Fig. 12 in the reference quoted).

The non-linear zone implies that with low concentrations of the reagents the
complement fixation is inhibited. The numerical value of the parameter a is a
measure of the extent of the zone of inhibition. If the titre of the antigen or anti-
serum is defined solely by the numerical value of the slope 6 of the linear part of
the maxima line, the information implicit in the parameter a is lost.
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Fig. 1. Titrationof an antiserum: arithmetic co-ordinates, y = units of complement
required for 50 % lysis, x = p\. of antiserum.
Equation defining the maxima line:

y = a + bx

= -1-79+14-2&E.
Equation defining the curve:

y = 1 + <xx0

= 1 +1096a:1-5.

If the antiserum maxima line illustrated in Fig. 1 is transformed to logarithmic
co-ordinates, a linear relationship between x and y is defined by the equation,

log (y -a) = Iog6 + logx.

This line has unit slope and therefore the reaction is characterized by the
intercept point, log b. But, again, some information is lost by including the
parameter a in the ordinate scale.

7 Hyg. 60, 1
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(ii) Maxima lines: a > 1. Occasionally the intercept parameter of a maxima
line is greater than 1. Since when x = 0, 1 unit of complement is required for 50 %
lysis of the indicator system, there is, in this case also, a non-linear zone as the
values of x approach zero.

Almeida (1958) gives an example of this type of reaction which occurs with
highly avid systems that rapidly fix complement as soon as a very small amount of
the antigen-antibody complex begins to appear in the primary mixture (see fig. 19
in the reference quoted).

(iii) Complement fixation with antigen or antiserum in excess. Almeida (1956) has
shown that if an antiserum is titrated by complement fixation with a fixed con-
centration of antigen which is in excess for the whole range of antiserum dilutions,
there is a linear relationship between the amount x of antiserum and the number, y
of units of complement required for 50 % lysis of the indicator system.
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Fig. 2. (a) Isohaemolytic curves for 3 and 6 units of complement: arithmetic co-
ordinates. (6) Titration of an antiserum: arithmetic co-ordinates, y = units of
complement required for 50 % lysis, x = /tl. of antiserum. A. Maxima line. B. With
30 /tl. of antigen. C. With 60 /tl. of antigen.

The use of a fixed concentration of antigen in excess simplifies the test because
a much larger number of reaction mixtures is required to locate the maxima
points.

The antigen can only be used in excess within the range defined by a family of
isohaemolytic curves where all the curves are parallel to one another; if they are
not parallel, there will not be a linear relationship between x and y. If the iso-
haemolytic curves are not only parallel to each other but also parallel to the
corresponding co-ordinate axis (type I), the linear relationship defined in the
excess zone will be identical with the maxima line. If, however, the parallel
isohaemolytic curves are not parallel to the corresponding co-ordinate axis (type II),
the numerical value of the intercept point, a, will depend on the concentration of
the antigen. With a relatively large excess, the parameter a will take a large
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negative value, but as the selected, concentration of antigen is reduced, the value
of the parameter a converges to the value of a for the maxima line. For any of the
lines in the zone of antigen excess, the numerical value of the slope b' is the same,
but is not necessarily equal to the slope of the maxima line. An example is shown
in Fig. 2.

As in the case of maxima lines, the complement-fixation reaction is characterized
uniquely by the slope, b' in the range of values of x where the linear equation is
valid. But the numerical value of the parameter, a, is no longer necessarily a
measure of the zone of inhibition.

Similar linear relationships can be demonstrated when antigens are titrated with
excess antiserum.

Although lines in excess zones are more easily determined than maxima lines,
the simplification is at the cost of the information about the extent of the non-
linear zone.

LINEAR RELATIONSHIPS WITH LOGARITHMIC CO-ORDINATES

If an antigen or antiserum maxima line is defined by the equation

y = a + bz

there is also a linear relationship between \og(y — a) and logo;, for

log(y-a) = logft + logx.
This line has unit slope.

In the special case when a = 1, there is a linear relationship between the
logarithm of the number, (y — 1) of units of complement fixed and log x, for

log(«/-l) = logfc + logz.
This line also has unit slope.

If the parameter a is not equal to 1, there is an excellent linear relationship
between the logarithm of the number of units of complement fixed maximally and
loga;.

This logarithmic maxima line is defined by the equation,

log(y- l ) = loga + /?loga;.
The slope of this line is /?.

In Fig. 1, the antiserum maxima line with arithmetic co-ordinates is defined by

the equation, y = _ 1-70+14-25*.

But another antiserum maxima line with logarithmic co-ordinates is defined by the
e c*u a t i o n ' log(y- l ) = l-04 + l-51ogz.

This line is shown in Fig. 3.
A logarithmic maxima line is characterized by two parameters, loga and /?.

To use all of this information, Fulton (1958) defined the titre of the antigen or
antiserum as the dilution which will fix maximally one unit of complement. This
dilution is located by extrapolating the logarithmic maxima line to the loga;
co-ordinate axis when \og(y— 1) = 0.

7-2
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If /? = 1, the intercept point is

loga; = —loga.

In this special case, a = b, where 6 is the slope of the corresponding maxima line
with arithmetic co-ordinates.

If /? 4= 1, the intercept point is
, - l o g a
loga; = s -.

Here a 4= b.
In the example in Fig. 3, the titre of the antiserum is

and so, x = 0-2023/d.

— 1-04 _
loga; = - T £ - = 1-306
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Fig. 3. Titration of an antiserum: logarithmic co-ordinates, (y— 1) = units of
complement fixed, x = [A. of antiserum. Equation defining the logarithmic maxima

log(2/-l) = loga + yjloga;
= l-04+l-51oga:.

The component volumes of this complement-fixation test were 20/4., therefore,
the titre of the antiserum is 1/99.

The introduction of the parameter /? 4= 1 is a consequence of the non-linear zone
in the reaction for small values of a;, when arithmetic co-ordinates are used. For if
the equation with logarithmic co-ordinates is transformed to arithmetic co-
ordinates, a curve is defined for which y = 1 when x = 0. The equation of the
curve is y = 1 + ax$. The logarithmic maxima line shown in Fig. 3 is reproduced in
Fig. 1 after transformation to arithmetic co-ordinates. The steep part of the curve
is congruous with the arithmetic maxima line. The titre of the antiserum derived
from the arithmetic maxima line is 1/77 (0-26 /A.). The corrected titre, 1/99, derived
from the logarithmic maxima line, allows for the non-linear zone.
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If the complement-fixation test is made by titrating antigen or antibody with an
excess of the other reagent, the titre cannot be determined from the straight line
defined by the equation

log(«/-l) = loga-h/tflogx.

For example, if an antiserum is titrated with an excess of antigen and a straight
line is defined with arithmetic co-ordinates

y = a + b'x

the numerical value of the parameter, a, depends on the concentration of antigen,
that is, the position of the line but not the slope of the line depends on the antigen
concentration.

If logarithmic lines analogous to logarithmic maxima lines are drawn, both their
positions and their slopes will depend upon the concentration of the antigen, and
they do not define a unique titre.

However, it is easy to obtain a linear relation in excess zones using logarithmic
co-ordinates, for

log(y-a) =

As before, the characteristic of the reaction is the intercept point, log6', but some
information is lost by including the parameter a in the ordinate scale.

COMPARISON OF THE PRINCIPAL METHODS OF TITRATION

The titre of an antigen or antiserum derived from a logarithmic maxima line
reflects both the characteristic slope of the complement-fixation reaction and the
extent of the non-linear zone with small amounts of antigen or antiserum. How-
ever, maxima lines are difficult to determine and in many practical applications
the characteristic slope of the reaction provides sufficient information; for these
purposes, titration in excess zones is more convenient. For example, if an antiserum
is titrated with a constant amount of antigen in excess, the characteristic slope of
the reaction when arithmetic co-ordinates are used is unaffected by choosing
different antigen concentrations over a wide range. In order to determine the
corresponding maxima line, a precise amount of antigen must be selected for each
antiserum dilution in the titration.

It is often necessary to titrate a number of antisera with one antigen. If maxima
lines are defined, the antigen concentrations must be adjusted independently for
each antiserum. If only the characteristic slope is determined a single antigen
concentration may usually be chosen for the titration of all the antisera.

OUTLINE OF A COMPLEMENT-FIXATION TEST

A new design for a complement-fixation test defining the characteristic slope of
an antigen-antiserum reaction is proposed. The antigen and the antiserum must
not be anticomplementary over the range of dilutions used, and the specificity of
the reaction must have been established.

The plate method of complement fixation is used (Fulton & Dumbell, 1949;
Fulton, 1958).
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Preliminary titration of complement

A geometric series of complement dilutions is prepared (log factor 0-05), using
borate-saline as diluent (Wadsworth, 1947). For Maltaner & Almeida (1949) have
shown that if either the antiserum or the antigen in the main test contains phos-
phate ions, anticomplementary effects may be observed if a diluent containing
magnesium salts is used. 0-4 ml. of each complement dilution is transferred to a
set of glass tubes and to each is added 0-8 ml. of diluent and 0-8 ml. of a 0-1 %
suspension of sensitized sheep cells.

The total volume in the tubes is 2-0 ml. but since the concentrations of the
reagents is the same as those used in the plate method when the total volume is only
0-1 ml., the unit of complement denned in the tubes is also the unit of complement
required for the plates.

The set of tubes is placed in a water-bath at 37° C. for 45 min. and, with the
unlysed cells in suspension, the degree of haemolysis is measured with a
nephelometer.

The initial dilution of complement which lyses half the cells defines the unit.

Isohaemolytic curves

A geometric series of nine dilutions of antiserum and of nine dilutions of antigen
is prepared in borate-saline. The series should have a log factor of about 0-2, but a
larger factor may be chosen if a greater range must be covered.

Three plates are set out with the antiserum as the row variable and the antigen as
the column variable. On each plate the tenth row and the tenth column are controls
which contain no antiserum and no antigen, respectively.

For the first plate, the plate constant is 3 units of complement, for the second
6 units, and for the third 9 units of complement. The plates are kept overnight at
4° C. for primary fixation. Complement suffers very little deterioration when the
dilution contains at least 3 units. When the plates are set out, the residue of the
dilution of complement containing 3 units is preserved in a glass tube at 4° C.
Next day, when the plates are removed from the refrigerator, this stored comple-
ment is titrated again on a fourth plate by setting out in triplicate, one, two and
three drops of the dilution originally containing 3 units. Diluent is added so that
each of the nine reaction mixtures is composed of three drops and contains 1, 2 or
3 units of complement.

The indicator system is added to all the plates which are then kept at 37° C. for
2 hr. Reactions are evaluated in terms of antigen or antiserum required for 50 %
lysis, and a set of three isohaemolytic curves is drawn using logarithmic co-ordinates.
In reading the plates the mixtures showing 50 % lysis should be recorded first by
rows and then by columns.

The titration of antiserum

Choose a dilution of antigen in about the middle of the range where the three
isohaemolytic curves are parallel to one another; this dilution is the plate constant
for the titration of the antiserum. Prepare an arithmetic series of nine dilutions
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of the antiserum covering the range indicated by the isohaemolytic curves for the
chosen dilution of antigen.

Titrate the complement in glass tubes as before, and prepare dilutions containing
3, 6 and 9 units; keep these dilutions in an ice bath. On a plate, set out the anti-
serum dilutions in rows, and the complement in triplicate as the column variable;
the tenth column is a serum control with 3 units of complement. Finally add the
chosen dilution of antigen.

As before the complement dilution containing 3 units is preserved for titration
next day. At the conclusion of the test, the reactions are evaluated in terms of the
antiserum required for 50 % lysis with 3, 6 and 9 units of complement added
initially.

Using as co-ordinates the number of units required for 50% lysis and the
corresponding amounts of antiserum, fit a straight line to the nine observed points
using the method of least squares. The titre of the antiserum is defined as the slope
of this line. Confidence limits can be derived by an analysis of variance. When
a number of antisera are to be titrated with the same antigen, it will usually be
possible to choose the antigen concentration to be used for all the antisera by
reference to isohaemolytic curves of the antigen with one of the sera.

The titration of antigen

From a set of isohaemolytic curves, an antiserum dilution is chosen in about the
middle of the range when they are parallel to one another. With this antiserum
dilution as a plate constant, the row variable is an arithmetic series of antigen
dilutions, and the column variable, as before, 3, 6 and 9 units of complement in
triplicate.

SUMMARY

Over a certain range there is a linear relationship between the amount of comple-
ment required for 50 % lysis and the amounts of one of the variables in the primary
reaction mixture of a complement-fixation test when the third variable is present
in a quantity sufficient to allow maximum fixation.

If this linear relationship were maintained as the concentration of the selected
variable is progressively reduced, there would also be a linear relationship between
the logarithms of the amounts of complement fixed and the logarithms of the
amounts of the selected variable; in this case, the line with logarithmic co-ordinates
will necessarily have unit slope.

When the fixation of small amounts of complement by several virus systems is
measured, an approximately linear relationship using logarithmic co-ordinates
has been demonstrated, but in many cases the line does not have unit slope. In
this range, therefore, there is not a linear relationship when arithmetic co-ordinates
are used.

A new design for a complement-fixation test is proposed, using isohaemolytic
curves.
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