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Steiner Coset Partitions of Groups

Fusun Akman and Papa Sissokho

Abstract. A coset partition of a group G is a set partition of G into finitely many left cosets of one or
more subgroups. A driving force in this research area is the Herzog–Schönheim Conjecture [15], which
states that any nontrivial coset partition of a group contains at least two cosets with the same index.
Although many families of groups have been shown to satisfy the conjecture, it remains open.

A Steiner coset partition of G, with respect to distinct subgroups H1 , . . . , Hr , is a coset partition of
G that contains exactly one coset of each H i . In the quest of a more structural version of the Herzog–
Schönheim Conjecture, it was shown that there is no Steiner coset partition of G with respect to any
r ≥ 2 subgroups H i that mutually commute [1]. In this article, we show that this result holds for r = 4
mutually commuting subgroups provided that G does not have C2 × C2 × C2 as a quotient, where C2
is the cyclic group of order 2. We further give an explicit construction of Steiner coset partitions of
the n-fold direct product G∗ = Cp × . . . × Cp for p prime and n ≥ 3. This construction lifts to every
group extension of G∗.

1 Introduction and main results

A coset partition of a group G is a set partition of G into finitely many left cosets of one
or more subgroups. Such subgroups necessarily have finite index in G [20]. Let P be a
coset partition of G. If H1 , . . . , Hr is an ordered list of distinct proper subgroups of G
of indices d1 , . . . , dr ≥ 2 in G and having n1 , . . . , nr ≥ 1 cosets, respectively, in P, then
we additionally say that P is an {H1 , . . . , Hr}-transversal coset partition of G, and that
the type of P is

DP = d n1
1 . . . d nr

r .

A coset partition P of type d 1
1 . . . d 1

r will be called a Steiner coset partition. (The
designation “{H1 , . . . , Hr}-transversal” is omitted when it is clear from the context.)
A Steiner coset partition is also called a pure coset partition in [1]. It was shown in [17]
that for any coset partition of an infinite group, a finite quotient of this group will have
a partition of the same type. Conversely, it was shown in [1] that given a coset partition
of a finite group, one can construct a coset partition of the same type for an infinite
group. Hence, it suffices to consider coset partitions of finite groups for the purposes of
examining the existence of certain types. The type correspondence between finite and
infinite groups still holds when we impose conditions that are invariant under taking
quotients and direct products, such as abelian groups, nilpotent groups, solvable
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2 F. Akman and P. Sissokho

groups, subgroups that mutually commute, etc. [1]. It is easy to derive the following
condition on the type d n1

1 . . . d nr
r of a coset partition by assuming that the group is

finite:
n1

d1
+⋯+ nr

dr
= 1.(1.1)

One of the main driving forces of the field of coset partitions is the Herzog–
Schönheim Conjecture [15], which states that for any coset partition P with r ≥ 2,
at least two cosets will belong to subgroups of the same index, whether the corre-
sponding subgroups are distinct or not (i.e., we will have d i = d j for some distinct
i , j and/or some n i > 1 in the type DP). Many families of groups have been shown to
satisfy the conjecture.1 In a different direction, it was shown in [1] that the conjecture
holds for up to seven distinct subgroups of an arbitrary group. It was also conjectured
that when the subgroups H i mutually commute, hence making any product of these
subgroups also a subgroup, no Steiner coset partition should exist. This conjecture was
proved for three subgroups (the statement is unconditionally true for two subgroups).
However, we found a counterexample (see Example 3.5) to this conjecture as we were
trying to extend the results from [1] to the case r = 4. More generally, we shall show
that the conjecture does hold when sufficiently many subgroups are not close to one
another. Generalizations of the counterexample, incidentally, contribute to our next
inspiration for studying coset partitions.

Fixing a finite group G and a list of distinct proper subgroups H1 , . . . , Hr with
r ≥ 2, consider mutually disjoint {H1 , . . . , Hr}-transversal coset partitions P1 , . . . ,Ps
of G. If

P1 ⊔⋯⊔Ps = G/H1 ⊔⋯⊔ G/Hr

(i.e., every coset of every subgroup H i appears exactly once in one of the partitions
P j), then we will call this family of partitions an {H1 , . . . , Hr}-transversal coset
parallelism. If, in addition, each coset partition is Steiner, then the family will be called
a Steiner coset parallelism. Parallelisms of various kinds of objects are a fundamental
theme in combinatorics and design theory. Steiner coset parallelisms are irreducible,
and they can serve as building blocks of other coset parallelisms. We will provide several
new families of Steiner coset parallelisms in Section 4.

What motivated our work on coset partitions originally was our ongoing program
to construct and classify subspace partitions of finite vector spaces (also called “vector
space partitions”; see [14, 16]). A subspace partition is a collection of subspaces that
cover the whole space and have mutually zero intersections. Clearly, a finite vector
space V over a field F can be identified with a field extension of F, as finite fields
of order equal to any prime power exist. Now, if we take G to be the multiplicative
group V∗ of V and H1 , . . . , Hr to be the multiplicative groups of proper intermediate
fields of the extension V/F, then {H1 , . . . , Hr}-transversal coset partitions of V∗ yield
subspace partitions of V on appending the zero vector to each coset. We were thus able

1For example, it has been proven for the group of integers [9, 17], nilpotent groups [3], pyramidal
groups [4], groups of small order [19], groups whose orders admit a certain prime factorization [12, 13],
and groups with subnormal subgroups [21]. Also see [6, 7] for some recent work.
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Steiner Coset Partitions of Groups 3

to extend our multi-coset constructions from abelian groups to the case of arbitrary
groups with mutually commuting subgroups.

Let us summarize our main results and constructions in this article, where we
consider a finite group G with a list H1 , . . . , Hr of distinct proper subgroups. Note
that the non-existence of Steiner coset partitions implies that the Herzog–Schönheim
Conjecture holds under the given conditions. Note also that the case of groups with
a list of mutually commuting subgroups encompasses all abelian, Dedekind, and
Iwasawa groups, which in turn are not completely accounted for by the families of
groups proven to uphold Herzog–Schönheim so far.2

• Suppose that the subgroups H i mutually commute. If the subgroups are far apart in
some sense, in particular, when no subgroup is included in the product of the rest,
there can be no Steiner {H1 , . . . , Hr}-transversal coset partition of G. (Theorem 1,
Corollary 2.5)

• Suppose that the subgroups H i form either one chain or two chains with respect
to the subgroup relation and that subgroups in different chains mutually commute.
Then, there exists no Steiner {H1 , . . . , Hr}-transversal coset partition of G. (Propo-
sitions 2.7 and 2.8)

• Unless G is an extension of C2 × C2 × C2, if G has four distinct, proper, and mutually
commuting subgroups H i , then Steiner {H1 , . . . , H4}-transversal coset partitions
of G cannot exist. (Theorem 2, Example 3.5)

• We exhibit Steiner coset partitions and parallelisms of solvable dihedral and dicyclic
groups, where the H i ’s do not mutually commute, but are self-normalizing con-
jugate nilpotent (Carter) subgroups. These are lifted to Steiner partitions of any
extension groups as well. (Examples 4.8 and 4.9)

• We construct Steiner coset partitions and parallelisms of all finite elementary
abelian groups with at least three factors, generalizing our r = 4 counterexample.
These are lifted to Steiner partitions of any extension groups as well. (Proposition
4.12)

2 Results with various inclusion/exclusion conditions

We include some facts and results from [1] for reference.

Lemma 2.1 Let G be a group, H, K be subgroups of G, and a, b ∈ G. Then, aH ∩ bK
is either ∅ or an (H ∩ K)-coset. In particular, an inclusion aH ⊆ bK implies H ≤ K.
Moreover, if HK = KH, then

aH ∩ bK ≠ ∅ ⇔ aHK = bHK .

Proposition 2.2 Let G be a group and H, K be distinct proper subgroups of G.
Then, there exists an {H, K}-transversal coset partition of G if and only if the sub-
group L = ⟨H, K⟩ of G generated by H and K is proper. When this is the case, any
{H, K}-transversal partition of G must be obtained by decomposing some L-cosets in

2A Dedekind group is a group all of whose subgroups are normal; an Iwasawa group is one where all
subgroups mutually commute, i.e., satisfy HK = KH.
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4 F. Akman and P. Sissokho

G completely into H-cosets and some completely into K-cosets. In particular, G has no
Steiner {H, K}-transversal partitions.

Of course, it is also possible to prove the last statement in Proposition 2.2 on its
own by observing that if P = {aH, bK} is a partition of G, then each coset must also
be a coset of the other subgroup by Lemma 2.1, resulting in H = K.

Proposition 2.3 Let G be a group and H, K , L be distinct, proper, and mutually
commuting subgroups of G. Then, there exists an {H, K , L}-transversal coset partition
of G if and only if G ≠ HKL. When this is the case, any {H, K , L}-transversal partition
of G must be obtained by decomposing some HKL-cosets in G completely into HK-
cosets, some into KL-cosets, some into HL-cosets, and then decomposing each double
coset completely into cosets of one kind. Hence, G has no Steiner {H, K , L}-transversal
partitions.

We now state and prove our first result on non-existence of Steiner partitions.

Theorem 1 Let G be a finite group with distinct, proper, and mutually commuting
subgroups H1 , . . . , Hr , where r ≥ 2, and H1 be a subgroup of maximal order among all
H i ’s. If the strict inclusion condition

H1⋯H i−1 � H1⋯H i−1H i(2.1)

holds for at least t values of i in {2, . . . , r} with t > log2(r), then G has no Steiner
{H1 , . . . , Hr}-transversal coset partitions. In particular, the Herzog–Schönheim Con-
jecture holds for such groups and subgroups.

Proof Suppose that a Steiner {H1 , . . . , Hr}-transversal partition of G exists, so that

∣G∣ =
r
∑
i=1

∣H i ∣.

Then, it is not possible to have ∣H i ∣ < ∣G∣/r for all i, and the inequality ∣H1∣ ≥ ∣G∣/r
holds. Consequently, we have

[G∶ H1] ≤ r.

Now, setting d i = [G∶ H1⋯H i] for 1 ≤ i ≤ r and noting that

H1 ≤ H1H2 ≤ ⋯ ≤ H1⋯Hr−1 ≤ H1⋯Hr ,

we obtain

dr ≤ dr−1 ≤ ⋯ ≤ d2 ≤ d1 ≤ r.

Since d i ∣ d i−1 for all 2 ≤ i ≤ r, it follows that whenever d i /= d i−1, we have d i−1 ≥ 2d i .
Thus, we conclude by the number of repetitions of the strict inclusion rule (2.1) that

d1 ≥ 2tdr ≥ 2t > r,

which is a contradiction. ∎

Downloaded from https://www.cambridge.org/core. 22 Jul 2025 at 21:44:39, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Steiner Coset Partitions of Groups 5

Remark 2.4 In general, log2(r) can be replaced by logb(r), where b is the smallest
prime divisor of ∣G∣.

Corollary 2.5 Let G be any group with distinct, proper, and mutually commuting
subgroups H1 , . . . , Hr , where r ≥ 2, and all r subgroups H i satisfy the non-inclusion
rule

H i ≰ H1⋯Ĥ i⋯Hr .(2.2)

Then, G has no Steiner {H1 , . . . , Hr}-transversal coset partitions.

Proof Fixing say H1 with largest order, condition (2.2) implies that

H i ≰ H1⋯H i−1 ⇒ H1⋯H i−1�H1⋯H i−1H i

for all i ≥ 2. Then, we have t = r − 1 > log2(r) for r ≥ 3 in Theorem 1. The case for r = 2
is covered by Proposition 2.2, where commutativity of subgroups is not assumed. ∎

Remark 2.6 Note that this statement applies to all direct products H1 ×⋯× Hr of
nontrivial finite groups, where the non-inclusion condition must always hold. Also,
we may just assume that all r − 1 strictness conditions (2.1) are satisfied rather than
this stronger one.

We now look at the other extreme, where all r subgroups form a chain.

Proposition 2.7 Let G be a finite group with subgroup series H1�H2� . . .�Hr�G,
where r ≥ 2. Then, G has no Steiner {H1 , . . . , Hr}-transversal coset partitions.

Proof Induction on r. We proved this for all groups and pairs of distinct subgroups
in Proposition 2.2, not necessarily forming a chain. Hence, we assume that the
statement holds for all finite groups and at most r − 1 subgroups that form a chain
for some r ≥ 3. Now, suppose that a finite group G has a transversal coset partition
P = {a1H1 , . . . , ar Hr}, where H1�H2� . . .�Hr�G. Then, any coset a i H i in P is
contained in the Hr-coset a i Hr , and every Hr-coset must be partitioned into some
cosets in P. Since ar Hr is already in P, the coset a1Hr must have a Steiner partition
by at most r − 1 other cosets in P, whose subgroups form a chain. By our induction
step, this is not possible. ∎

Proposition 2.8 Let G be a finite group with two subgroup series H1�H2� . . .�
Hr�G and K1�K2� . . .�Ks�G, where r, s ≥ 1, H i K j = K jH i for all i, j, and all r + s
subgroups are distinct. Then, G has no Steiner {H1 , . . . , Hr , K1 , . . . , Ks}-transversal
coset partitions.

Proof Induction on r + s. The case r = s = 1 is covered by Proposition 2.2, without
the assumption that H1K1 = K1H1. Assume that the statement holds for all finite
groups and a total of up to k subgroups forming two chains, where k ≥ 2. Suppose that
a finite group G has two subgroup chains as above with r + s = k + 1 ≥ 3 and admits a
Steiner transversal coset partition
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6 F. Akman and P. Sissokho

P = {a1H1 , . . . , ar Hr , b1K1 , . . . , bs Ks}.

The group G is completely partitioned into Hr Ks-cosets and every coset in P is
contained in some Hr Ks-coset, which means that each Hr Ks-coset is partitioned by
cosets in P. Since ar Hr ∩ bs Ks = ∅, we have ar Hr Ks ∩ bs Hr Ks = ∅ by Lemma 2.1,
and either of these two Hr Ks-cosets can contain at most r + s − 1 = k cosets in P.
Without loss of generality, assume that Ks ≰ Hr , so that ar Hr ⊊ ar Hr Ks . Then, either
all cosets in P that are contained in ar Hr Ks belong to the chain of H i ’s, in which
case Proposition 2.7 applies, or else, ar Hr Ks contains cosets from P belonging to
both chains, in which case our induction step applies. We conclude that the Steiner
partition P cannot exist. ∎

3 Induced coset partitions and Steiner partitions into cosets of four
subgroups

We state two results that relate partitions of a group G to partitions of subgroups and
quotients of that group. Note that G need not be finite.

Lemma 3.1 Let P be a coset partition of a group G and H be a subgroup of G. Then

{aK ∩ H∶ aK ∈ P, aK ∩ H ≠ ∅}
is a coset partition of H.

Lemma 3.2 Let P be an {H1 , . . . , Hr}-transversal coset partition of a group G and
N be a normal subgroup of G contained in H1 ∩⋯∩ Hr . Then, the quotient map G →
G/N generates an {H1/N , . . . , Hr/N}-transversal coset partition of G/N of the same
type as P.

The converse of the last statement is also true. Every partition of a group induces
a partition of any extension of that group with the same type (we note that this was
stated in [1] for the case of direct products).

Lemma 3.3 Let G , H be groups and ψ∶G → H be an epimorphism with kernel N.
Then, any partition PH = {a1K1 , . . . , an Kn} of H induces a partition

PG = {ψ−1(a jK j)∶ 1 ≤ j ≤ n}
of G with the same type as PH . Hence, coset partition types of H are in one-to-one-
correspondence with all coset partition types of G where the cosets belong to subgroups
that contain N.

Proof The (not necessarily distinct) subgroups K1 , . . . , Kn of H lift to subgroups
ψ−1(K j) = κ j of G containing N, where K i = K j ⇔ κi = κ j and [G∶κ j] = [H∶ K j] for
all i , j by the correspondence theorem. Picking α j ∈ G such that ψ(α j) = a j for all j,
we obtain a partition PG = {α jκ j}n

j=1 of G. Indeed, we have

G = ψ−1(H) = ψ−1 ⎛
⎝

n
⋃
j=1

a jK j
⎞
⎠

=
n
⋃
j=1

ψ−1(a jK j) =
n
⋃
j=1

α jκ j ,
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Steiner Coset Partitions of Groups 7

and if i ≠ j, then

α iκi ∩ α jκ j = ψ−1(a i K i) ∩ ψ−1(a jK j) = ψ−1(a i K i ∩ a jK j) = ∅. ∎

In this section, we will prove the following result.

Theorem 2 Let G be any group and H, K , L, M be distinct, proper, and mutually
commuting subgroups of G. If G is not an extension of C2 × C2 × C2, then G has
no Steiner {H, K , L, M}-transversal partitions. On the other hand, if G is any group
extension of C2 × C2 × C2, then G does admit a Steiner partition into four cosets.

Corollary 3.4 Let G be a finite group and H, K , L, M be distinct, proper, and mutu-
ally commuting subgroups of G. If ∣G∣ is not divisible by 8, then G has no Steiner
{H, K , L, M}-transversal partitions.

The following example shows that C2 × C2 × C2 has a Steiner partition with four
cosets, and hence, so does any extension of this group by Lemma 3.3, proving the last
statement in Theorem 2.

Example 3.5 Let G be the direct product of three cyclic subgroups of order two, say

G = ⟨a1 , a2 , a3⟩ = H × K × L, where H = ⟨a3⟩ , K = ⟨a1a3⟩ , L = ⟨a2a3⟩ ,

and let M = ⟨a1a2a3⟩ be a fourth subgroup of G. Then, G has the following Steiner
{H, K , L, M}-transversal coset partition:

{H, a2K , a1a2L, a1 M}.

Suppose that G is a group with distinct, proper, and mutually commuting sub-
groups H, K , L, M. Now, if G ≠ HKLM, then any {H, K , L, M}-transversal partition
of G must also partition each HKLM-coset, and the cosets in a Steiner {H, K , L, M}-
transversal partition of G would be distributed among the HKLM-cosets. Thus, some
HKLM-coset (and by translation, the group HKLM itself) would have a Steiner
partition into two or three cosets, which we proved to be impossible. Hence, it suffices
to give a proof for G = HKLM. Also note that when no subgroup is contained in the
product of the rest, the non-existence of a Steiner partition follows unconditionally
from Corollary 2.5. In summary, it suffices to prove the theorem when we can write
G = HKL or G = HK.

We can easily eliminate the extreme case G = HK.

Lemma 3.6 Let G = HKLM, a finite group that is the product of four distinct, proper,
and mutually commuting subgroups H, K , L, M, where L, M ≤ HK (so that G = HK).
Then, G does not admit a Steiner {H, K , L, M}-transversal coset partition.

Proof Recall that aH ∩ bK ≠ ∅ if and only if aHK = bHK by Lemma 2.1. In this
case, we do have aHK = bHK = HK = G for all a, b ∈ G, so any coset partition of G
into at least one coset from each of H and K is impossible. ∎

We are now ready to prove the remaining case for Theorem 2.
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8 F. Akman and P. Sissokho

Proposition 3.7 Let G = HKLM, a group that is the product of four distinct, proper,
and mutually commuting subgroups H, K , L, M, where M ≤ HKL (so that G = HKL).
Assume that G is not equal to the product of any two subgroups among H, K , L, M,
and that it is not an extension of C2 × C2 × C2. Then, G does not admit a Steiner
{H, K , L, M}-transversal coset partition.

Proof First note that none of H, K , L can be contained in one of the other two,
as this would make G a product of two subgroups. Also, if one subgroup, say L, is
contained in M, then G = HKL = HKM, so that we may replace L with the larger
subgroup M. (Two subgroups among H, K , L cannot both be in M, as then G would
be the product of two subgroups.) Hence, by relabeling, we may assume that none of
H, K , L is contained in any of the remaining three subgroups of G. We do not mind if
M itself is contained in H, HK, etc.

Suppose that we have a Steiner partition of G of the form

G = aH ⊔ bK ⊔ cL ⊔ dM ,(3.1)

where the coset representative a can be chosen from G/HK by translating all cosets
of the partition by the same element of G if necessary. Then, HK ∩ aH = ∅, as left
cosets of H must intersect HK = KH in full, if at all, by Lemma 2.1. Consider the coset
partition of HK induced by intersection. The coset bK will similarly be present in full
or not at all in this new partition. First, let us consider the case where bK ∩ HK = ∅.
Then, we have

HK = c(HK ∩ L) ⊔ d(HK ∩ M)

(we take the liberty of not changing the symbols for coset representatives as we
intersect down, understanding that the representatives may of course change). Note
that it is not possible to have only one of cL and dM intersecting HK; if HK = HK ∩ L
or HK = HK ∩ M, then HK is contained in L or M, contradicting our assertion that
H, K cannot be contained in L or M. Proposition 2.2 states that there is no Steiner
coset partition of a group into cosets of two distinct subgroups. Hence, we must have
HK ∩ L = HK ∩ M as a subgroup of index 2 in HK. But then, it follows that

[G∶ L] = [HKL∶ L] = [HK∶ HK ∩ L] = 2,

which indicates that G is the disjoint union of two cosets of L, one of which is dL.
Hence, H, K , M ≤ L, a contradiction. Then, we conclude that bK must be part of the
induced partition of HK:

HK = bK ⊔ c(HK ∩ L) ⊔ d(HK ∩ M).

Once again, one coset is not enough, because HK is not contained in K , L, M. How
about just bK and one more coset? This is also not feasible, as neither of the conditions
K = HK ∩ L or K = HK ∩ M is acceptable.

We continue with this three-coset partition of HK. By Proposition 2.3, a Steiner
partition into three distinct cosets is not possible. We must have either K = HK ∩ L =
HK ∩ M or two of the subgroups equal, with index two in the third, which must in
turn have index two in HK. The first option is not possible, as K is not contained
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Steiner Coset Partitions of Groups 9

in L or M. Similarly, K and HK ∩ L, or K and HK ∩ M, cannot be the two equal and
smaller subgroups among these three. We conclude that HK ∩ L = HK ∩ M ≤ K, with

[HK∶ K] = [K∶ HK ∩ L] = [K∶ HK ∩ M] = 2.

An immediate corollary is that

[H∶ H ∩ K] = [HK∶ K] = 2.

Since H and K have interchangeable roles, the following is indicated as well: HK ∩ L =
HK ∩ M ≤ H, and

[HK∶ H] = [K∶ H ∩ K] = [H∶ HK ∩ L] = [H∶ HK ∩ M] = 2.

Incidentally, since HK ∩ L ≤ H ∩ K, we have

[H∶ HK ∩ L] = [H∶ H ∩ K] = 2 ⇒ HK ∩ L = HK ∩ M = H ∩ K .

In the boxed expression, taking intersections with H and K give us

H ∩ K = H ∩ L = H ∩ M = K ∩ L = K ∩ M .

We also deduce that

[G∶ L] = [HKL∶ L] = [HK∶ HK ∩ L] = 4.

As our choice of HK was arbitrary, the same indices hold when we permute H, K , L.
That is, we have

[G∶ H] = [G∶ K] = 4 and H ∩ K = L ∩ M , etc.

Finally, we note that

[HM∶ M] = [H∶ H ∩ M] = 2,

and that [G∶ M] = 4 by (1.1), as the remaining subgroups have index 4 in G. This
implies [M∶ H ∩ M] = 2. Setting J equal to the common mutual intersections of the
four subgroups, our findings so far are shown in a partial diagram of subgroups of G
in Figure 1.

We note that J has index two in each subgroup in {H, K , L}, hence is normal in all.
But then xJ = Jx for all x in G, because G = HKL and the subgroups H, K , L mutually
commute. That is, J ◁ G, and G/J is a group of order 8. Thus, G/J is isomorphic to
one of the 5 possible groups of order 8, namely, {C8 , C4 × C2 , C2 × C2 × C2 , D4 , Q8}.
Moreover, by the correspondence theorem on subgroups of quotients, G/J has at
least four subgroups of order two (H/J , K/J , L/J , M/J) and at least four subgroups
of order four: HK/J , HL/J , KL/J , HM/J (note that HK = KL or HM = KL, etc., is
not possible without violating the non-inclusion conditions we have set). Therefore,
G/J ≅ C2 × C2 × C2. Since this situation is excluded in the hypothesis, such a partition
P cannot exist. ∎
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10 F. Akman and P. Sissokho

Figure 1: Interactions of subgroups of G.

4 Constructions of Steiner partitions and parallelisms

We borrow from [1] the following general existence result for parallelisms.

Proposition 4.1 (Proposition 27 in [1, Proposition 27]) Let G be a finite group with
distinct, proper subgroups H1 , . . . , Hr , and P be an {H1 , . . . , Hr}-transversal coset
partition of G of type (rn1) n1 . . . (rnr) nr . Suppose that there exists a subgroup � of
G with the following properties:
(a) � commutes with all H i , 1 ≤ i ≤ r;
(b) � intersects each H i trivially;
(c) ∣�∣ = r;
(d) For all i, there exists a list of coset representatives a i

1 , . . . , a i
n i

for H i in P, such that
it is also a list of nonequivalent coset representatives for the group �H i (that is,
a i

j�H i ∩ a i
k�H i = ∅ for j ≠ k); and

(e) Elements of � commute with all coset representatives in P.
Then, the collection {γP}γ∈� of {H1 , . . . , Hr}-transversal coset partitions, where

γP = {γC∶C ∈ P},

forms an {H1 , . . . , Hr}-transversal coset parallelism of G.

We derive two main corollaries of this construction.

Corollary 4.2 (Corollary 31 in [1, Corollary 31]) Let G be a group and H be a subgroup
of index r such that NG(H) = H. Assume that � = {γ1 , . . . , γr} is an abelian subgroup
of G that is complementary to H (i.e., G = H� and � ∩ H = {1}). Then
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(a) The set � is a full set of right coset representatives for H in G;
(b) The subgroups H i = γ−1

i Hγ i are distinct for 1 ≤ i ≤ r, and also complemented by �;
(c) The collection P = {γ1H1 , . . . , γr Hr} is a Steiner {H1 , . . . , Hr}-transversal coset

partition of G; and
(d) The partitions γ1P, . . . , γrP form a Steiner {H1 , . . . , Hr}-transversal coset paral-

lelism of G.

Corollary 4.3 Let G be an abelian group with a list of r ≥ 4 distinct subgroups
H1 , . . . , Hr of index r, where each is complemented by a subgroup � = {γ1 , . . . , γr} of
order r in G. Suppose that there exists a Steiner {H1 , . . . , Hr}-transversal partition P

of G. Then, the r partitions γ iP with 1 ≤ i ≤ r form a Steiner {H1 , . . . , Hr}-transversal
coset parallelism of G.

Remark 4.4 The condition NG(H) = H in Corollary 4.2 by itself is sufficient to
create a Steiner partition of G. If γ1 , . . . , γr is any complete set of right coset repre-
sentatives of H in G, then we have

G = Hγ1 ⊔⋯⊔ Hγr = γ1(γ−1
1 Hγ1) ⊔⋯ ⊔ γr(γ−1

r Hγr) = γ1H1 ⊔⋯⊔ γr Hr ,

where H1 , . . . , Hr are distinct. However, such Steiner partitions cannot arise from
mutually commuting proper conjugate subgroups H i . Indeed, the so-called “conjugate
permutable” subgroups H must be subnormal [11]; then H is either the whole group
(not proper) or normal in a strictly larger subgroup (not self-normalizing).

Examples of self-normalizing subgroups are plenty.

Proposition 4.5 [5] Every finite solvable group G has a nilpotent subgroup that is self-
normalizing. Furthermore, all such subgroups (now called Carter subgroups) must be
conjugates. If G is additionally nilpotent, then it must be the unique subgroup of itself
that is self-normalizing.

And there may be more.

Remark 4.6 [8] If a finite non-solvable group has a self-normalizing subgroup, then
all such subgroups must still be conjugates [22].

Below is an example of a non-solvable family of finite groups with “Carter”
subgroups and Steiner coset partitions.

Example 4.7 [1] Although not solvable for r ≥ 5, the symmetric group Sr exhibits
conjugate self-normalizing subgroups for r ≥ 3. Let H j = S[ j] denote symmetric group
on {1, . . . , r}/{ j}. Then, all H j are self-normalizing and distinct, giving rise to a
Steiner partition of Sr as in Remark 4.4. The right coset representatives for H1
are (1), (12), (13), . . . , (1r). When r = 4, the Klein four-subgroup of A4 serves as a
complement to H1, to produce a Steiner coset parallelism of S4 via Corollary 4.2.
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12 F. Akman and P. Sissokho

We will exhibit two families of solvable groups and Carter subgroups with Steiner
coset parallelisms as in Corollary 4.2. We refer the reader to [18] for the notation and
structure of the groups involved. Our first example is from [1].

Example 4.8 Let Dn denote the dihedral group of order 2n, where n = 2k r, k ≥ 0,
and r ≥ 3 is odd. A presentation of this group is given by

Dn = ⟨a, b∶ an = b2 = 1, ba = a−1b⟩ .

Then, the subgroups H = ⟨ar , b⟩ (of order 2k+1 and index r) and � = ⟨a2k ⟩ (of order r)
satisfy the conditions of Corollary 4.2. The group Dn is also nilpotent when n is a
power of 2, in which case the unique self-normalizing subgroup is itself.

Example 4.9 The dicyclic group Dicn of order 2n (n even) is a modification of the
quaternion group Q8, where the generator i (a fourth root of unity) is replaced by a
higher even root of unity. Its presentation is

Dicn = ⟨a, b∶ an = b4 = 1, ba = a−1b, an/2 = b2⟩ .

When n is a power of 2, the dicyclic group is nilpotent. If n = 2k r, k ≥ 1, and r ≥ 3
is odd, then the subgroups H = ⟨ar , b⟩ (of order 2k+1 and index r) and � = ⟨a2k ⟩ (of
order r) satisfy the conditions of Corollary 4.2. Note that since b2 commutes with both
generators, the subgroup ⟨b2⟩ is normal in Dicn , and we have Dicn/⟨b2⟩ ≅ Dn/2 [18].
Indeed, this isomorphism induces the Steiner partition and the parallelisms described
in Example 4.8 via Lemma 3.2.

Example 4.10 Let G be a finite group and � be a normal subgroup of G such that
∣�∣ and [G∶�] are coprime. Then by the Schur–Zassenhaus Theorem, there exists a
complement H of �, and all such complements are conjugates. If � is also abelian and
NG(H) = H, then H and � satisfy the conditions of Corollary 4.2. One example of this
is the dihedral group Dn where n is odd, which becomes a special case of Example 4.8:
we have � = ⟨a⟩ and H = ⟨b⟩.

Let us now turn our attention to a different class of examples and generalize our
construction in Example 3.5 to all finite elementary abelian groups G = Cn

p with p
prime and n ≥ 3. For convenience, we will identify G with Fn

p . If G = ⟨a1⟩ × ⋯ × ⟨an⟩
in our multiplicative notation, then a vector (or “index”) J = ( j1 , . . . , jn) ∈ Fn

p will
correspond to

aJ
def=a

j1

1 ⋯a jn
n ∈ G ,

so that

aJ aK = aJ+K and (aJ)i = a(i J) .

Note that J = (0, . . . , 0) if and only if aJ = 1. We will denote the linear forward-shift
map from the subspace of vectors with two zero components at the end to Fn

p by

J = ( j1 , . . . , jn−2 , 0, 0) ↦ J′ = (0, j1 , . . . , jn−2 , 0).
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Lemma 4.11 Let J , K ∈ Fn
p have the last two components equal to zero. Then for any

x ∈ Fp , we have

xJ + J′ = xK + K′ ⇒ J = K .

Proof By linearity of the map J ↦ xJ + J′, it suffices to show that the kernel of this
map is trivial. Suppose that xJ = −J′. If x = 0, we are done. If x ≠ 0, then we can show
by induction on k, for 1 ≤ k ≤ n − 2, that

j1 = 0, j2 = 0, . . . , jn−2 = 0. ∎

Proposition 4.12 Let n ≥ 3, p be a prime, and G = Cn
p = ⟨a1⟩ × ⋯⟨an⟩ ≅ Fn

p . Let
t = 1 ∈ F2 if p = 2, and for p > 2, let t be any element of the nonempty set

Fp/{(−x)n−2(x + 1)∶ x ≠ 0, −1}.

For each s ∈ Fp and J = ( j1 , . . . , jn−2 , 0, 0) ∈ Fn
p , define a subgroup

Hs , J = ⟨aJ as
n−1 an⟩

of G and a coset

Cs , J = aJ′ ast
1 as

n−1 Hs , J

of Hs , J in G. Then, this family of cosets forms a Steiner {Hs , J ∶ s ∈ Fp , J = ( j1 , . . . , jn−2 ,
0, 0) ∈ Fn

p}-coset partition of G. Moreover, the subgroup

� = ⟨a1⟩ × ⋯ × ⟨an−1⟩
of G yields a parallelism of Steiner coset partitions of G as in Corollary 4.3.

Proof We first note that the cyclic subgroups Hs , J (of order p) are all distinct:
suppose that

Hs , J ∩ H�,K ≠ ⟨1⟩ ⇔ Hs , J = H�,K

⇔ ∃ x ∈ F∗p such that aJ as
n−1 an = (aK a�

n−1 an)x

⇔ ( j1 , . . . , jn−2 , s, 1) = (xk1 , . . . , xkn−2 , x�, x)
⇔ x = 1, s = �, and J = K .

Next, since there are

p ⋅ pn−2 = pn−1

subgroups Hs , J , if we can prove that their cosets are mutually disjoint, then we will
have shown the existence of a Steiner partition of G as indicated. Suppose that we have
Cs , J ∩ C�,K ≠ ∅. Then, there exist x , y ∈ Fp such that we have the following equality
in Fn

p , where eu is the uth standard basis vector:

J′ + st e1 + s en−1 + x J + sx en−1 + x en = K′ + �t e1 + � en−1 + y K + �y en−1 + y en ,

which immediately implies that x = y. Hence, we obtain the simpler equality

(J′ − K′) + x (J − K) + (s − �)t e1 + (x + 1)(s − �) en−1 = 0.
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14 F. Akman and P. Sissokho

If s = �, then this gives us J = K by Lemma 4.11, and hence, Cs , J = C�,K . If s ≠ �, then
we have the following equations satisfied by x in Fp :

(s − �)t + ( j1 − k1)x = 0
( j1 − k1) + ( j2 − k2)x = 0

⋮ = ⋮
( jn−3 − kn−3) + ( jn−2 − kn−2)x = 0
( jn−2 − kn−2) + (x + 1)(s − �) = 0.

Multiplying equations by powers of x, we obtain

(s − �)t + ( j1 − k1)x = 0
( j1 − k1)x + ( j2 − k2)x2 = 0

⋮ = ⋮
( jn−3 − kn−3)xn−3 + ( jn−2 − kn−2)xn−2 = 0
( jn−2 − kn−2)xn−2 + (x + 1)(s − �)xn−2 = 0.

Thus, we obtain the value

(s − �)t = −( j1 − k1)x = ( j2 − k2)x2 = −( j3 − k3)x3 = ⋯ = (−x)n−2(x + 1)(s − �),

and

t = (−x)n−2(x + 1).

The values x = 0 and x = −1 contradict the choice of a nonzero t, and finish the non-
intersection proof for p = 2. For p > 3 and x ≠ 0, −1, the value of t is again inconsistent
with our choice.

Finally, the subgroup � of G has order pn−1 and intersects each subgroup Hs , J triv-
ially inside the abelian group G. The parallelism now follows from Corollary 4.3. ∎

Remark 4.13 Each Steiner coset partition γP = γ{Cs , J ∶ s ∈ Fp , J = ( j1 , . . . , jn−2 ,
0, 0) ∈ Fn

p} within the parallelism {γP ∶ γ ∈ �} in Proposition 4.12 is an affine vector
space partition [2]. For q = 2, these affine vector partitions are closely related to
subcube partitions [10]. These connections will be further explored elsewhere.
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