
7

Phase Unwrapping

7.1 Basic Concepts

In Chapters 5 and 6, we discussed the construction and filtering of a phase-wrapped
interferogram derived from two geometrically aligned single look complex images.
An example is shown in Figure 6.2 and repeated here as Figure 7.1. Each color
cycle, or fringe, represents a phase change of 2π. This can be converted to a line of
sight (LOS) distance change as

dLOS = −φ λ

4π
(7.1)

where φ is the phase change given in Equation 6.2 and λ is the wavelength of
the radar (Table 7.1). Here, the LOS direction is defined as the direction of the
ground toward the radar, so a minus sign is needed. In this case of a Sentinel-1
interferogram having a wavelength of 56 mm, one interferometric fringe represents
–28 mm of LOS deformation.

The wrapped interferogram is colorful and shows the areas around the fault
having the largest deformation, but we need to count, or unwrap, the fringes to
determine the LOS deformation difference between any two points in the image.
For example, we may want to know the surface rupture offset between two points a
and b on either side of the fault shown in Figure 7.1 (a). One could manually count
the number of fringes along the path shown by the black curve, but a computer can
do this much faster and perhaps more accurately.

In this chapter we discuss the theory and algorithms used to unwrap the phase to
produce a map of LOS deformation. It is often assumed that the unwrapped phase
is a smooth function, analogous to an analytic function in calculus. In theory, con-
verting the wrapped phase to the unwrapped phase is simple. All we need to do is
add multiples of 2π to selected pixels to ensure that the differences between adja-
cent pixels are less than |π |. For high-quality data, this process can be automated
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7.1 Basic Concepts 85

Table 7.1 Radar wavelength for commonly used satellites.

Satellite Wavelength (λ) Band

Sentinel-1, ERS, Envisat 56 mm C
ALOS-1/2 236 mm L
TerraSAR-X 31 mm X
NISAR 93 mm and 240 mm S and L
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Figure 7.1 (a) Interferogram between July 4 and July 16, 2019, showing displace-
ment due to the July 5, Ridgecrest earthquakes in radar coordinates. One fringe is
28 mm of ground deformation. Label Fmarks an area where the fringes are aliased
because the rate exceeds 2π per pixel. Label R marks the fault rupture where the
phase is discontinuous. One could count the number of fringes along the path from
a to b as a measure of the offset of the surface rupture. (b) Coherence for the inter-
ferogram shows mostly high coherence away from the main ruptures. The area of
low correlation along the main rupture zones and to the left of the ruptures with
label N causes phase noise making unique unwrapping challenging.

easily (e.g., Itoh (1982)). However, for typical 2D InSAR data, this simple approach
usually yields poor results because of five confounding effects:

1. phase noise due to areas of low coherence between the reference and repeat
images (N in Figure 7.1 (b));

2. spatial aliasing in areas where the separation between fringes is smaller than
the range or azimuth resolution of the filtered radar image (50 meters in this
example) (F in Figure 7.1 (a));
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86 7 Phase Unwrapping

SAR

B

A
layover shadow

Figure 7.2 (a) Layover occurs when the range to the top of a mountain B is less
than the range to the base of the mountain A; this produces discontinuous phase
in an interferogram. (b) A shadow occurs when there is no radar energy reflected
from the ground on the far side of the mountain; this also produces discontinuous
phase in an interferogram.

3. a discontinuity in the ground displacement due to the surface rupture (R in
Figure 7.1 (a));

4. a region of layover where the slope of the topography exceeds the incidence
angle of the radar. In the case of Sentinel-1, the incidence angle varies from
about 20° in the near range to 60° in the far range (Figure 7.2). Suppose there is
a mountain having a 30° slope facing the direction of the radar in the near range
of the image where the incidence angle is 20°, then the range to the top of the
mountain is less than the range to the bottom of the mountain so the phase will
be discontinuous;

5. similarly, if the backside of the mountain, facing away from the radar, is steeper
than the incidence angle, then there will be a slope that is not illuminated by the
radar (shadow), also resulting in discontinuous phase (Figure 7.2).

Before going into the phase unwrapping algorithms, it is instructive to review the
properties of analytic functions. Let’s assume we have a perfect wrapped interfer-
ogram with none of the five confounding effects discussed earlier and we want to
unwrap the phase. After unwrapping the phase, it will be an analytic function of
two variables x-range and y-azimuth x = (x, y). Consider the integration of the gra-
dient of the phase around any closed path C containing area A. Assuming the phase
is continuous, and has continuous derivatives, this closed-path integral will be zero.

∮

C

∇φ · dx = 0 (7.2)
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7.1 Basic Concepts 87

Also, by Green’s theorem, we have the following relationship relating the path
integral of the phase gradient to the area integral of the curl of the phase gradient
(Ghiglia and Pritt, 1998)

∮

C

∇φ · dx =
∫ ∫

A

(
∂2φ

∂x∂y
− ∂2φ

∂y∂x

)
dxdy. (7.3)

We can shrink this area down to the resolution size of the interferogram and com-
pute the integrand on the right side of Equation 7.3. In theory this should be zero.
If it is significantly different from zero, then the path integral around that point is
not zero. Goldstein et al. (1988) call this point a residue as an analogy to a residue
from the integration of a function around a pole in the complex plane. The residue
reflects a phase discontinuity of N2π where N defines the integer unwrapping error.

We have performed these derivatives in Equation 7.3 using the phase gradients
of the Sentinel-1 data (Figure 7.3 (a,b)) for the Ridgecrest earthquake and arrive
at the residue maps shown in Figure 7.3 (c–f). Because of phase noise and other
effects, the residue is never exactly zero. However, this analysis clearly reveals
large residues, both positive and negative. For example, there is a concentration of
residues along areas of surface fracture (Figure 7.3 (e)). Most of the phase unwrap-
ping algorithms perform an analysis to first identify the residues and then avoid the
residue areas during phase unwrapping.

A wide variety of algorithms have been developed to address these issues.
The algorithms fall into two main categories: global and local (Ghiglia and Pritt,
1998). Local algorithms begin at a single pixel and expand outward along paths
that cover the entire image, while global algorithms attempt to find an approx-
imate solution that fits all pixels simultaneously (Ghiglia and Pritt, 1998). We
first discuss a global algorithm that uses a Fourier transform approach for phase
unwrapping. This and the other global methods, more completely discussed in
Ghiglia and Pritt (1998), are mathematically elegant and sometimes computation-
ally efficient, but they suffer from long-wavelength unwrapping errors caused by
residues. The local algorithms are more accurate and have the special property that
when the unwrapped phase is re-wrapped, the result matches the starting wrapped
phase so they simply add N2π to each pixel; these algorithms seek the integer phase
ambiguity that minimizes some objective function, such as minimizing the phase
gradient. We discuss the Goldstein et al. (1988) residue-cut algorithm and then the
more widely used Statistical-Cost, Network-Flow Algorithm for Phase Unwrap-
ping (SNAPHU) (Chen and Zebker, 2002). The notes later on the Goldstein and
SNAPHU algorithms are derived from the excellent papers by Chen and Zebker
(2000, 2001).
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Figure 7.3 (a, b) Range and azimuth phase gradients for the Ridgecrest earth-
quakes. (c, e) Residue given in Equation 7.3. High residue, both positive and
negative, occurs in areas of higher phase noise and surface ruptures. A zoom of
a small surface rupture, having a phase offset of less than one fringe, shows a line
of enhanced dipolar residue. (d, f) Divergence of the phase gradient (Equation 7.6)
is used in the Fourier transform unwrapping algorithm.
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7.2 Fourier Transform Algorithm 89

7.2 Fourier Transform Algorithm

The first method considered is a global one that uses the Helmholtz identity, fol-
lowed by a 2-D Fourier analysis, to perform the integration. Let the observed phase
gradient be given by

u(x) =

(
∂φ

∂x
,
∂φ

∂y

)
=
R∇I − I∇R
R2 + I2

(7.4)

where we use the real R (x) and imaginary I (x) parts of the interferogram to com-
pute the gradient (i.e., Equation 6.13). Using the Helmholtz decomposition, the
phase gradient vector field can be decomposed as the sum of an irrotational vector
(curl-free) field and a solenoidal (divergence-free) vector field

u (x) = −∇φ +∇× ψ (7.5)

where φ is a scalar potential (i.e., unwrapped phase) and ψ is a vector potential.
We assume that the phase is a conservative function so the rotational part of the
vector field must be zero everywhere. As shown by Ghiglia and Pritt (1998), this
corresponds to minimizing the integral of the square of the difference between the
observed phase gradient and the recovered gradient. For real phase gradient data,
the five factors described above introduce a rotational component that should be
eliminated. This is accomplished by taking the divergence of Equation 7.5 since, by
definition,∇ · ∇ × ψ = 0. The phase and phase gradient are now related by Poisson’s
equation (Ghiglia and Pritt, 1998; Sandwell and Price, 1998).

∇2φ = −∇ · u (7.6)

For a finite region, the outward component of the phase gradient should be zero
along the boundaries (Ghiglia and Romero, 1994); ∇φ · n = 0, where n is the out-
ward normal. An example of the divergence of the phase gradient is shown in
Figure 7.3 (d,f). The 2-D Fourier transform of Equation 7.6 is

4π2
(
k2x + k

2
y

)
Φ (k) = i2π

[
kxUx (k) + kyUy (k)

]
(7.7)

where k =
(
kx, ky

)
are the wavenumbers and the forward and inverse 2-D Fourier

transforms of a function f (x, y) are given as

F (k) =
∫ ∞
−∞

∞∫
−∞

f (x, y)e−i2π(kxx+kyy)dxdy =F2
[
f
]

f (x) =
∫ ∞
−∞

∞∫
−∞

F
(
kx, ky

)
e+i2π(kxx+kyy)dkxdky =F−12 [F].

(7.8)
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90 7 Phase Unwrapping

Solving for the total unwrapped phase, we find

φtot (x) =F−12

⎧⎪⎪⎨⎪⎪⎩
ik ·F2 [u]

2π
(
k2x + k2y

)
⎫⎪⎪⎬⎪⎪⎭
. (7.9)

For a finite size region, the Fourier transform is replaced by a Fourier series. The
zero phase-gradient boundary condition is satisfied if a 2-D cosine transform is used
(Ghiglia and Romero, 1994). In practice, one takes the 2-D Fourier transform of
each component of the phase gradient with a sine transform in the gradient direction
and the cosine transform in the orthogonal direction. Then the result is scaled by the
wavenumbers in Equation 7.9. Finally, one takes the inverse 2-D cosine transform
to recover the total phase.

An example of topography derived from stacked phase gradients from ERS inter-
ferograms, combined with a 90-m Unites States Geologic Survey (USGS) reference
topography, is shown in Figure 7.4 (Sandwell and Sichoix, 2000). This topography
was developed so it could be removed from individual interferograms to isolate
the phase caused by interseismic deformation. At that time (year 2000), the topo-
graphic phase was the largest error source in the recovery of deformation because
the near-global, 30-m resolution, SRTM topography had not been collected (Farr
et al., 2007).

Stacking of phase gradients increases the effective interferometric baseline,
which increases the topographic signal to atmospheric noise ratio. As discussed
next, the relatively low-resolution USGS reference topography is needed to
minimize long-wavelength unwrapping error.

A major issue with the Fourier transform unwrapping approach is that simply
removing the rotational part of the phase gradient introduces errors in areas where
there are residues. In this case of topographic recovery, there is significant layover
in the mountain areas, which results in long-wavelength errors in the unwrapped
phase and thus errors in the recovered topography. There are three approaches to
mitigating these errors. (1) One can replace the Fourier transform inversion Equa-
tion 7.6 with a weighted least-squares inversion where the weights are related to
the density of the residues (Ghiglia and Pritt, 1998). The main problem with this
approach is the least-squared design matrix becomes extremely large and may
exceed even today’s computer capabilities. Moreover, there is no guarantee that
when this phase is re-wrapped, it will match the phase of the original interferogram.
(2) One can use a remove–restore approach to retain the long-wavelength topog-
raphy from an existing low-resolution topography model. In this case (Figure 7.4),
the USGS topography was removed during the formation of each interferogram
and the phase gradients were computed and stacked. After Fourier unwrapping the
residual stack, the residual phase was high-pass filtered and the USGS model was
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Figure 7.4 Topography (meters above WGS84 ellipsoid, 500-m contour interval,
radar coordinates) of the Salton Sea area (see inset map) includes the southern
segments of the San Andreas Fault (yellow) and GPSmonuments (red). This image
combines the long-wavelength accuracy of the USGS 90-m DEM with the short-
wavelength (< 6 km) phase gradient information from a stack of 25 ERS SAR
images. The combined DEM has 16-m postings and a vertical accuracy of 10 m.

restored. (3) Iterating this remove–restore approach results in a DEM having both
long-wavelength accuracy and short-wavelength resolution.

The phase gradient stacking followed by Fourier unwrapping and an iterative
remove–restore is a viable approach for topographic recovery. However, for mea-
suring surface deformation, the long-wavelength errors of the Fourier transform
method are not acceptable. Moreover, since the existing DEMs from the SRTM
mission (Farr et al., 2007) and, more recently, the TerraSAR Tandem-XDEM (Zink
et al., 2014) are available for accurate topographic phase removal, thus Fourier
transform unwrapping approach is rarely used today.
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92 7 Phase Unwrapping

7.3 Branch Cut (Goldstein) Algorithm

As discussed earlier, the main objective of 2-D phase unwrapping is to integrate
the measured phase gradient to uniquely recover the total phase. If we start the
integration at point a, then the phase at point b is the integral of the phase gradient
along a path connecting the two points

φ (x, y) =

b∫

a

∇φ · dx+φ (xa, ya). (7.10)

Of course, there is an unknown constant of integration φ (xa, ya). Assuming the true
interferogram represents a continuous function such as topography, surface defor-
mation, or atmospheric delay, the integration of the phase gradient, around any
closed loop, should be zero. The occurrence of nonzero phase closure, or residue,
is somewhat predictable. Images with low coherence typically contain high densi-
ties of residues, which can make unwrapping challenging. Topographic layover and
shadows typically create lines of residues along the edge of the layover. Abrupt dis-
continuities due to surface faulting or glacier movement also generate residues. It is
possible that entire regions of the interferogram may be isolated from other regions
by residues and the associated branch cuts. In these cases, ad hoc assumptions
(e.g., there are minimal phase jumps between isolated regions) may be necessary
to ensure a reasonable result.

To identify the residues, consider a wrapped interferogram as a 2-D array of
normalized phase values as shown in Figure 7.5. Because the phase is wrapped,
all the values lie between 0 and 1. If the absolute value of the phase difference
between two cells is greater than 0.5, then there is a phase wrap and one must
add or subtract 1 to obtain stay within the 0.5 phase difference. Let’s check some
examples for phase closure. Consider the closure at node A. Summing the phase
difference counterclockwise from the upper left corner, we have −.9+.8−.1+.2. The
first two cell differences exceed 0.5, so we add 1 to the first and subtract 1 from the
second so
closure at cell A is +.1 −.2 −.1 +.2 = 0
closure at cell B is +.1 −.1 −.2 +.2 = 0
closure at the + cell is +.2 +.3 +.2 +.3 = +1
closure the – cell is −.2 −.3 −.1 −.4 = −1
In this small grid, there are two residues with opposite signs. To confirm
the residues cancel, we integrate around a loop containing both residues
+.2+.3+.1−.3−.1−.4−.1+.3 = 0. Therefore, to achieve path independence with the
phase gradient integration, the path cannot cross between the + and – residues. A
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Figure 7.5 (a) The numbers represent a 2-D array of normalized wrapped phase.
Summation of the wrapped phase gradient around loops should be zero unless
there is a + or – residue. Any phase gradient integration that passes between these
two residues will have an unwrapping error, so they are connected by a branch cut
(gray line). (b) Two ways to connect residues will result in different unwrapping
results. Adapted from Chen and Zebker (2000) with permission from the ©Optical
Society of America.

line connecting the two residues is called a branch cut. If a negative residue is con-
nected to a positive residue, the two residues are concealed, and no further branch
cuts are needed. If both residues were positive, then the branch cut would need to
be extended to include two negative residues or neutralized by extending to the
edge of the image.

The Goldstein algorithm (Goldstein et al., 1988) first analyzes the wrapped phase
to identify all the residues. Then the branch cuts are grown in a tree-like manner
such that every residue is on a neutral tree where a tree is a set of connected branch
cuts. A branch cut can also extend to the edge of the image where it is neutralized.
The phase gradient integration path is not allowed to cross any cuts, so no path
includes an unbalanced residue.

As shown in Figure 7.5, there are a variety of ways the residues can be con-
nected. The Goldstein algorithm makes the connections by attempting to minimize
the overall length of the branch cuts in an image. One deficiency in the Goldstein
algorithm is that branch cuts may be connected in a way to enclose a region in
the interferogram so when the path-filling integral is performed, these regions will
retain their original wrapped phase.

7.4 Minimum Cost Flow (SNAPHU) Algorithm

The minimum cost flow (MCF) algorithm, as implemented in the SNAPHU pro-
gram (Chen and Zebker, 2002), also begins with identifying all the residues in
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94 7 Phase Unwrapping

the image. However, it differs in the way the residues are connected. For both
algorithms, the unwrapped phase is identical to the original wrapped phase when
re-wrapped. The MCF algorithm attempts to minimize the total number of phase
gradient cycles added to the original image.

The MCF algorithm has two variants depending on whether the phase unwrap-
ping is optimal for recovering topography in moderate baseline interferograms
or surface deformation in small baseline interferograms. In both cases, the trees
are connected in a way that tree branches never cross (i.e., minimum spanning
tree), so the phase is unwrapped everywhere. Different interferogram applications
may benefit from different objective functions. For example, interferograms for
refining topography that are dominated by errors caused by layover differ from
interferograms associated with surface ruptures.

An example of the unwrapped phase for the Ridgecrest earthquakes is shown in
Figure 7.6. These data were first filtered with a 120-m wavelength Gaussian fil-
ter followed by a Goldstein filter. The phase was unwrapped using the SNAPHU
algorithm with the discontinuity option set to 60 radians. Unwrapped phase was
converted to LOS displacement using Equation 7.1. Figure 7.6 (a), in radar coor-
dinates, matches the wrapped phase shown in Figure 7.1 (a). The integration path
from a to b is largely free of residues, so the surface offset can be measured. Note
many areas along the rupture where there are small discontinuous zones. These are
mostly phase unwrapping errors. These areas should be masked using a coherence

Figure 7.6 (a) LOS deformation in radar coordinates for the Ridgecrest earth-
quakes. There are many small unwrapping errors along the main ruptures. (b) Same
LOS map in geographic coordinates with a 200-mm contour interval shows a
maximum LOS offset of more than 1.6 m.
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7.5 Nearest-Neighbor Algorithm and Loop Closure 95

threshold (Figure 7.1 (b)) or masked manually using the fault trace mapped by geol-
ogists after the earthquakes. The right LOS image is in geographic coordinates. The
red/blue regions show motion toward/away from the radar, so the NW-SE trending
rupture has right-lateral motion while the smaller orthogonal rupture has left-lateral
motion as expected.

7.5 Nearest-Neighbor Algorithm and Loop Closure

The SNAPHU algorithm attempts to unwrap the phase everywere including bodies
of water where the phase is completely decorrelated. Unwrapping of decorrelated
areas dramatically increases the computer time and also introduces phase errors.
There are two approaches to minimizing unwrapping errors and computer time.
First, areas of noisy phase (e.g., water and coherence < 0.1) could be set to zero,
which dramatically speeds the unwrapping. However, this can produce unwrap-
ping errors in nearby areas having high coherence. Consider an interferogram in
a coastal area (Figure 7.7). To speed the unwrapping, one resets the phase over
the ocean to zero. Next suppose the phase on the land has a ramp parallel to the
coastline. The phase unwrapping on the land will attempt to recover this coastline-
parallel ramp. However, the phase unwrapping in the ocean will attempt to recover
zero phase. There will be a large discontinuity at the coastline, so the MCF algo-
rithm may resolve the conflict by introducing a phase unwrapping error over the
land and/or ocean. Of course, the unwrapping error over the land will need to be
corrected.

unwrapping 
error

Figure 7.7 Unwrapped phase for Sentinel-1 track 071 covering Southern Cali-
fornia in radar coordinates. The area includes Los Angeles, San Diego, and the
coastal waters. (a) The phase was unwrapped after setting the water areas to zero
phase. This causes an unwrapping error shown by the red arrow. (b) The phase was
unwrapped after setting water areas to the phase at the nearest land area. There is
no coastal unwrapping error.
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96 7 Phase Unwrapping

The problem is that the phase over the ocean is completely wrong. Even if
the ocean phase was not replaced by zero, this land unwrapping error could still
occur because the random ocean phase will unwrap toward zero. To avoid this con-
flict, Shanker and Zebker (2009) and Lindsey et al. (2014) recommend filling the
phase in the water areas with the wrapped value at the closest coastline using a
near-neighbor algorithm. This approach corrects the phase unwrapping error over
the land and dramatically speeds the unwrapping over the ocean. Of course, the
unwrapped phase over the ocean will be inaccurate, so it will need to be masked.

The second approach to minimize unwrapping errors, or at least identify the
errors, is to use a phase closure constraint when multiple interferograms are avail-
able. This is also called 3-D phase unwrapping since the constraint is applied over
the time dimension. Consider three SAR images, A, B, and C, that are well cor-
related. One can construct three interferograms (i.e., phase difference maps) φBA,
φCB, and φAC. Of course, the sum of the wrapped phase from these three interfer-
ograms should be zero. (Note there can be a small misclosure due to multilooking
(Zheng et al., 2022)). After unwrapping these three interferograms, the sum of the
phase will not necessarily be zero because of the unknown constant of integration.
If each interferogram has no unwrapping errors, then one expects that the sum of
the three unwrapped interferograms will be a constant of N2π over the entire area.
Note that the phase closure can be forced to zero by adding this constant to any of
the three interferograms. Suppose further that one of the interferograms has a small
area with an unwrapping error of, say, 4π. After the global correction, the sum of
the interferograms will be 4π over that small area and zero everywhere else. Using
this approach, one can identify the region where the unwrapping error occurred but
not necessarily which interferogram has the unwrapping error.

Next consider the case where there are hundreds of interferograms (Figure
7.8). These interferograms will have N2π integer ambiguities after the phase is
unwrapped. If not properly corrected, this ambiguity term will affect every pixel in
radar acquisitions and introduce a random walk-type error that will bias the time
series. The use of the phase closure constraint to solve for N2π integer ambigui-
ties in unwrapped interferograms is common practice in InSAR time series analysis
(e.g., Hussain et al. (2016)). The approach is to form all possible three-way loops
in a set of interferograms so the problem can be written into the form of a mini-
mization problem with integer unknowns (Fattahi, 2015). An example is shown in
Figure 7.8 using 468 Sentinel-1 interferograms (Xu and Sandwell, 2019). Before
solving for the ambiguities, there were typically 300 out of 1 207 loop misclosures
in well-correlated areas. After solving for the ambiguities, there were less than 20
misclosures out of 1 207 in the well-correlated areas. Note that in the poorly corre-
lated areas, the number of misclosures remains high 300–400 out of 1 200, so this
type of analysis is also good at identifying areas with unreliable results. These areas
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7.6 Summary 97

Figure 7.8 (a) Number of nonclosing loops for each pixel before applying the
unwrapping ambiguity correction for 81 Sentinel-1 scenes over California (468
interferograms and 1 207 loops). (b) Number of nonclosing loops after correction.
Reprinted with permission from IEEE Transactions on Geoscience and Remote
Sensing.

of high phase misclosure should also be masked or assigned larger uncertainties in
any further analysis, such as stacking or time series.

7.6 Summary

Phase unwrapping is one of the most challenging and computing-intensive aspects
of radar interferometry. The concept is simple. One selects a starting point in the
image and integrates the phase gradient outward to fill the scene with unwrapped
phase. If the path encounters a phase jump of greater than π or less than −π, the
algorithm subtracts or adds 2π to recompute the gradient. For noise-free wrapped
phase data with no discontinuities, all integration paths between any two points
in the image have the same phase offset. This implies that integration around any
closed path will have zero phase offset. Because real interferograms are noisy and
have phase discontinuities due to layover, shadowing, and surface ruptures, there
are points in the interferogram (residues) where closed path integration is either
2π or −2π.
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98 7 Phase Unwrapping

The global unwrapping approach uses a least squares algorithm to remove, or
downweight, the residues and solve for the global unwrapped phase. These global
algorithms usually suffer from large-scale errors. Moreover, when the total phase
is re-wrapped, the results no longer match the original unwrapped phase.

Local path-following algorithms are usually more successful. The basic
approach is to first identify all the residues by summing phase differences around all
2 × 2 cells in the wrapped phase image. Once these residues are found by thresh-
olding, the algorithms connect them with branch cuts so the sum of the residues
along the branch cut is zero. The selection of branch cuts and their assembly into
trees is nonunique.

The Goldstein algorithm attempts to minimize the total length of the branch cuts.
However, branch cuts can close on themselves, so large areas of the interferogram
may be isolated from the path integration and remain unwrapped. One can place
the starting point of integration inside this isolated area, but there is an unknown
N2π ambiguity between the unwrapped phase inside the area and outside the area.
Given additional information such as GNSS measurements, one could solve for the
N2π ambiguity.

TheMCF flow algorithm, as implemented in the SNAPHU computer code (Chen
and Zebker, 2001), selects the branch cuts to minimize the total number of cycles
added to the phase gradient. The branch cuts are connected such that when the
growing tree becomes neutral, the next nearest charge is connected to the nearest
branch to form a minimum spanning tree. An important property of this tree is that
it never closes on itself so every point in the interferogram is connected to every
other point and the path-filling integral will unwrap everywhere. Like the Goldstein
approach, when this unwrapped phase is re-wrapped, it exactly matches the original
unwrapped interferogram.

Just because the unwrapping is complete, it is not necessarily correct. Bod-
ies of water, where phase recovery is impossible, takes an enormous amount of
computer time and can produce phase unwrapping on land near the coastlines. To
reduce these unwrapping errors, Shanker and Zebker (2009) recommend filling the
phase in the water areas with the wrapped value at the closest coastline using a
near-neighbor algorithm. This approach dramatically speeds up the unwrapping,
including the water areas, but also allows for an accurate phase change along the
coastlines.

Phase unwrapping errors can be identified when three or more SAR acquisitions
are available for an area. For three SAR images, one can form three interferograms
and unwrap their phase. The sum of the three interferograms should have a constant
ambiguity of N2π everywhere. If part of the summed interferogram has a different
ambiguity, then at least one of the three interferograms has a phase unwrapping
error. With the hundreds of SAR images available today from missions such as
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Sentinel-1, one can construct and unwrap thousands of interferograms. The sum-
mation of unwrapped phase around closed loops will reveal both local and global
phase ambiguities. A minimum norm algorithm can be used to approximately solve
for the global ambiguities. The remaining local ambiguities reveal areas where
there are significant unwrapping errors distributed throughout the interferograms.
These high-ambiguity areas can be masked and not used in quantitative analyses.

Later in Chapter 11 we will discuss the use of continuous GNSSmeasurements to
check the global ambiguities and bring the LOS deformation maps into an absolute
system. Of course, these InSAR observations are still contaminated with atmo-
spheric delays. After correcting the global ambiguities, the set of interferograms
can be used to construct LOS time series. This is also discussed in Chapter 11.

7.7 Problems

1. Write a function in your favorite language/tool to create a sine wave that ranges
in amplitude between −2π and 2π over one wavelength and display the image.
Then create a wrapped version using atan2() or arctan2(). Then either manually
or automatically, unwrap the wrapped version by adding 2π to selected intervals.
Hint: Calculate the difference between adjacent pixels going from left to right.
If the difference is larger than π, subtract 2π from the remaining series. If the
difference is less than −π, add 2π.

2. Repeat exercise 1 but add 10% noise to the wrapped version and then try
unwrapping.

3. Calculate the residue for nodes C, D, E, and F in Figure 7.5.

Figure 7.9 A phase change image for the 2017 Sefid Sang M 6.1 earthquake in
Iran. This image is from Sentinel-1 data for a descending track.
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100 7 Phase Unwrapping

4. Why is it 4π instead of 2π in Equation 7.1 converting phase change to
displacement?

5. Figure 7.9 is an example of a wrapped phase change for the 2017 Sefid Sang M
6.1 earthquake in Iran. The data is from a descending track of Sentinel-1. How
much LOS displacement has occurred between the two red points in Figure 7.9?
Is the center of the pattern moving toward or away from the radar?
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