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Abstract:
In this paper, we present a flexible approach to estimating parametric cumulative Prospect Theory using
Hierarchical Bayesian methods. Bayesian methods allow us to include prior knowledge in estimation and
heterogeneity in individual responses. The model employs a generalised parametric specification of the
value function allowing each individual to be risk-seeking in low-stakes mixed prospects. In addition, it
includes parameters accounting for varying levels of model noise across domains (gain, loss, and mixed)
and several aspects of lottery design that can influence respondent behaviour. Our results indicate that
enhancing value function flexibility leads to improvedmodel performance.Our analysis reveals that choices
within the gain domain tend to be more predictable. This implies that respondents find tasks in the gain
domain cognitively less challenging in comparison to making choices within the loss and mixed domains.
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1. Introduction
In this paper, we employ Hierarchical Bayesian methods (HBMs) to estimate model preference
parameters for a generalized form of cumulative ProspectTheory (PT) (Tversky &Kahneman, 1992).
In estimating PT models, researchers face significant challenges. One key challenge is to strike a
balance between building models that are sufficiently general to capture behaviour patterns while
avoiding excessive generality that leads to overfitting in-sample data and poor out-of-sample predic-
tions. Additionally, researchersmust build upon existing knowledge and theories, aiming to integrate
new insights without merely confirming prior findings. Bayesian approaches such as the HBM offer
a transparent approach for researchers to navigate these conflicting demands effectively.

These aforementioned challenges are interconnected. The Hierarchical Bayesian approach serves
as a framework for reconciling generality and parsimony on two fronts. Firstly, it permits heterogene-
ity in preferences while imposing restrictions on the extent of this heterogeneity. Secondly, because
parsimony relates not only to the number of parameters in a model but to the freedom they are
allowed, HBMs enable the integration of conditions that not only align with the theoretical founda-
tions of the models but also draw from prior empirical investigations involving these models, but in
a way that will still allow new data to modify or contradict previous work.
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At first sight PT models may not seem particularly complex or daunting to estimate. However,
given two prospects, a specific parameterizations of a PT model may have a wide range of parameter
values that would assign a reasonably high probability to choosing either, and where people have het-
erogeneous noisy preferences, the identification of parameters becomes an increasingly difficult task.
As one considers increasingly flexible aspects either in terms of value functions or probability warp-
ing, anymodel can rapidly become weakly or even non-identified in the sense of having a singular set
of parameters that will maximize the probability of the choices we are able to see. Empirical imple-
mentations of PT commonly employ restrictions that are made either without strong justification,
or in many cases, no justification at all, probably in order to make the models empirically tractable.
Yet, at the very same time, one can argue that even the most general parametric structures that are
commonly used are highly restrictive.

The advantages of employing HBMs for estimating PT models have been previously highlighted
(e.g., Nilsson et al., 2011, Balcombe & Fraser, 2015, Balcombe et al., 2019, Alam et al., 2022, Gao et al.,
2023). As emphasized by Gao et al. (2023), it is important to acknowledge that Bayesian methods are
not the sole approach to achieving what some refer to as “shrinkage” (Murphy & ten Brincke, 2018).
Moreover, the benefits of Bayesian estimation go beyond the mere utilization of priors. Equally, it
is essential to consider the extent that prior knowledge, whether theoretical or empirical, can aid in
identifying parameters in more general PT models, irrespective of whether this is done within an
explicitly Bayesian framework or not. It is crucial not to limit the use of more flexible PT models
due to a methodological stance that parsimony is permissible only if it comes in the form of “tight
restrictions”.

Our specific use of HBMs enables us to estimate a generalized value function that provides greater
flexibility around small payoffs in the set of prospects, whereby we allow each individual to be risk
seeking in low-stakes mixed prospects. The need for this extension has previously been noted in the
literature. For example, Neilson and Stowe (2002) identified limitations with employing the standard
power function (the constant relative risk aversion (CRRA)) specification and noted the need for
parameter estimation for lotteries over likely gains and unlikely gains. In addition, our model also
includes parameters allowingmodel noise to vary across the gain, loss andmixed domains.The reason
for introducing this extension into themodel specification is that there is no a priori reason to assume
that the noise we observe in the different domains will be the same. Recent evidence on the need to
incorporate this type of flexibility is presented by (Chapman et al., 2024). Finally, we have also taken
account of several aspects of lottery design in our model specification that can influence individual
respondent behaviour.

HBMs can accommodate a variety of individual preference distributions where the “posterior dis-
tributions” for each individual can be estimated. This means that our HBMs allow us to capture
heterogeneity in individual responses effectively bridging the gap between “representative agent”
methods and models that allow for individual effects. This is achieved in HBMs by assuming
that different individuals are drawn from a common distribution. The assumption that there is a
common distribution allows information about parameters to be “shared” or “borrowed” across
individuals (Gao et al., 2023). Another benefit from employing HBMs is that we can use priors in
model estimation. We recognize that researchers should avoid constraining models so rigidly that
estimates merely mirror their priors. But, they should feel confident in employing clear and trans-
parent parametric priors that align with consensus regions and theoretical boundaries. Embracing
an “Informative Bayesian” approach provides a transparent method for incorporating these
considerations.

The specific benefits of employing HBMs, for estimating individual respondent risk preferences,
has previously been considered by Alam et al. (2022), Balcombe and Fraser (2015), Balcombe et al.
(2019), Nilsson et al. (2011) and Gao et al. (2023), drawing on a well-established set of HBMs
(e.g.,Rossi et al., 2005, Allenby & Rossi, 2006). Within the risk literature, Balcombe et al. (2019)
examined issues regarding loss aversion when model specific parametric assumptions are relaxed
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for individual level choices. More recently, Gao et al. (2023) used HBMs to estimate individual risk
preferences and insurance purchase decisions.

In this paper, we add to the existingHBMs applications in the risk literature by introducing greater
flexibility into the estimation of the value function. When it comes to the choice of value function
to populate a PT model, there is arguably no clearly superior choice but the impact on the esti-
mates can be substantial (Stott, 2006). The range of value functionals that have been employed within
the literature is extensive (see Kobberling & Wakker, 2005, Fehr-Duda et al., 2010, Bouchouicha &
Vieider, 2017) and there continues to be ongoing debate regarding what sort of value functional to
employ. In an extensive examination of functional forms employedwithin the PT literature, Balcombe
and Fraser 2015 examined six value functions frequently encountered in the literature (i.e., power
function, quadratic function, and one and two parameter exponential and logarithm functionals) in
addition to several probability weighting functions including linear and Prelec I and II. In keeping
with Stott (2006) they found that the power utility specification was the preferred value function.
Balcombe et al. (2019) subsequently examined CRRA and constant absolute risk aversion (CARA)
utility specifications at the individual level finding in favour of CRRA. In related research presenting
a meta-analysis of loss aversion, Balcombe and Fraser (2024) provide an excellent illustration of the
scope of approaches to the estimation of PT models. In Table 3 of Brown et al. (2024) the most com-
mon value function employed in the literature is the piecewise power utility specification that yields
CRRA. The popularity of this value function is probably in no small part due to the seminal paper by
Tversky and Kahneman (1992), with almost 60% of the 522 papers examined producing estimates of
loss aversion employing a CRRA functional form. Papers were also differentiated in that they used
different levels of aggregation (e.g., representative agent vs individual estimates) and different ref-
erence points. Finally, Zrill (2024) examines the predictive ability of simple functional forms (e.g.,
CRRA) in risk settings and reports that they are useful modelling choices despite being restrictive.

The use of HBMs enables researchers to balance the competing demands of model complexity
and parsimony in a way that contributes and extends the long-standing tradition of estimating pref-
erence parameters and examining specific facets of PT using experimental data (e.g., Buschena &
Atwood, 2011, Rieger et al., 2017, Murphy & ten Brincke, 2018, l’Haridon & Vieider, 2019). We also
extend parametric estimation of PT models at the individual level taking explicit account of fre-
quently encountered aspects of lottery design. Although many specific features of lottery design and
implementation have been extensively researched (Holzmeister & Stefan, 2021) there is little research
examining these influences on parameter estimation.

The set of lottery tasks used in this paper are described in detail by (Balcombe & Fraser, 2024).
The experimental design employed PT model parameter priors that reflect the high-density regions
of the consensus distributions in the PT literature (Tversky & Kahneman, 1992). The approach to
experimental design aimed to minimize the impact of prior information in the experimental design
on the resulting model parameter estimates. In addition, the set of tasks always includes prospects
where there is a sure-thing option, that is an outcome of a lottery that if selected guarantees payment
of the amount stated ex ante, can effectmodel performance.Many researchers reduce task complexity
by employing a sure-thing option (e.g., Bruhin et al., 2010, Falk et al., 2018, l’Haridon&Vieider, 2019)
but this can induce certainty effect bias, where respondents chose options that have payoffs that are
certain but cannot be explained by expected utility theory (EUT). Kahneman and Tversky (1986)
view the certainty effect as a framing bias, but it can potentially be understood as a phenomenon that
arises because respondents choose options that they can more easily understand (albeit because of
framing). Interest in the certainty effect is ongoing, see Zilker and Pachur (2022) and Frydman and
Jin (2022).

The set of lottery tasks also include prospects with either two or three payoffs. This design fea-
ture is justified because it provides greater insights into the nature of probability weightings. This, in
turn, enhances model estimation and identification. We, explicitly take account of this feature in our
experimental design.
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Both of the lottery design features considered can in principle change the degree of task com-
plexity. Task complexity, that is the cognitive difficulty associated with undertaking a task, has been
examined in various research areas, including stated preference discrete choice experiments (e.g.,
Pfeiffer et al., 2014, Johnson et al., 2017, Regier et al., 2014) and the risk literature in terms of
similarity of prospect pairs (e.g. Buschena & Atwood, 2011, Buschena & Zilberman, 1999) and
with regard to preference reversals (Loomes & Pogrebna, 2017). Amador-Hidalgo et al. (2021) and
Andersson et al. (2016) report that as task complexity increases, that the number of inconsistent
choices increases. Inconsistent choices also increase as the realization of the probabilities of the pay-
offs get closer because the computation required by a respondent to identify the preferred option
becomes harder. The impact of task complexity has also been discussed in relation to the legitimacy
of rank dependency (see Bernheim & Sprenger (2020) and Bernheim et al. (2022)).

The importance of task complexity more generally in decision making in relation to lotteries has
also been examined by Enke and Shubatt (2023).This is part of a wider research agenda (Oprea, 2022,
Oprea, 2024) that is assesses how complexity can in fact generate empirical results that are associated
with PT that is, loss aversion and probability weighting, even when there is no explicit risk involved
in the decision. These findings suggest that designing risk tasks that are cognitively less complex is
required if risk preferences are to be identified. This would also indicate that taking account of task
complexity in an experimental design is also important if key features of PT are to be identified.

As we will show, the least flexible model specification generated model parameter estimates for
curvature in the loss domain that are above unity. This is broadly inconsistent with the proposed
view within PT that people are generally “risk-seeking” in the loss domain (Tversky & Kahneman,
1992, Wakker, 2010). However, we find that by allowing for a more generalized value function that
also takes account of uncertainty effects, which is enabled by our use of HBMs, improves statistical
model performance and yields estimates that are consistent with being below or at one. Our findings
remain stable across alternative specifications of the value function. Importantly, we find evidence
that both probability warping and certainty effects seem more prominent in the loss domain, and
in a sense less consistent with what we would loosely characterise as consensus values. Probability
weightings in the gain domain are directionally the same as in Tversky and Kahneman (1992) but
to a lesser degree. However, for the probability weightings, we find in the loss domain that they are
strongly opposite to that proposed in Tversky and Kahneman (1992).

The structure of the paper is as follows. We begin in Section 2 by outlining our generalized PT
model. Section 3 presents our econometric specification which extends the standard PT model and
in Section 4 we briefly describe the experimental data employed in our analysis. In Section 5, we
report our results and in Section 6 we conclude.

2. Econometric specification
2.1. The value function
Define an ordered prospect𝒵 = ((x, ..., xK,) , (p1, ..., pK)) where pk is the probability of the kth payoff
xk where x1 ≤ x2 ≤ ... ≤ xK . A prospect is said to be a gain (G) (loss, (L)) prospect if the payoffs (with
positive probability) are non-negative (negative). A prospect is said to be mixed (M ) if it contains
both positive and negative payoffs. Let j = 1, ..., J denote the jth individual who has to complete
t = 1, ...,T tasks which involves choosing between two prospects. The prospects are not necessarily
ordered from smallest to largest payoff, but it is assumed that the respondent is able to order them.
In outlining the functions below, we initially suppress the j, and t subscripts to simplify notation.

There is an array of potential value functions that can be employed. Six forms over the positive
domain are given in Stott (2006), though a number of these nest or approximate others as special
cases. Some value functions are only defined over the positive range and thus need to be generalized
to be used in the context of PT which requires assigning utility to both negative as well as posi-
tive payoffs. However, these utility functions can be employed in a “piecewise” fashion. That is, two
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distinct utility/value functions u+ (x) , u− (x) are defined where u+ (x) is the utility for a positive
payoff (x> 0) and u− (x) is the utility for a negative payoff (x< 0). These two are “joined” at zero and
they employ an additional parameter λ such that piecewise utility becomes

u (x) = I(x≥0)u+ (x) + 𝜆I(x<0)u− (x) (1)

This transformation can be used to give additional flexibility or to define utility over negative as well
as positive regions.

Bouchouicha and Vieider (2017) provide a good discussion of four piecewise functions. These
include the two most popular parametric functions employed in the context of risk, the CARA and
the CRRA, but also a restricted version of the EXPO (Saha, 1993) of the CARA function along with
the normalized logarithmic (NLL) utility function.

Since it was used by Tversky and Kahneman (1992) the CRRA form has been the predominant
one implemented within PT, with the linear version second and CARA third (see Brown et al., 2024,
Table 3).There has been limitedwork comparing alternativemodels, but Stott (2006) recommends the
power CRRA form with models estimated at the individual level in the gain domain with Balcombe
and Fraser (2015) obtaining a similar result on the same data. By contrast Bouchouicha and Vieider
(2017) find that the both the CARA and NLL version to be superior using a model estimated at the
representative agent level (and no mixed domains). Alternatively, Balcombe et al. (2019) find the
CRRA to outperform the CARA employing a HBM framework most similar to the one employed
here.

We believe that there should be ongoing research examining the performance functional forms in
full PT models. However, this task is complicated by the interactive nature of the different function-
als, representation of noise and treatment of exogeneity. Here, we follow the most trodden path and
employ the CRRA in a “power parameterisation”

v (x, 𝜃) = I(x≥0)x𝛼 − I(x<0)𝜆 |x|𝛽 (2)

where I(.) denotes an indicator function which is equal to one where the condition in the brackets is
satisfied. We define the set of model parameters as 𝜃 = (𝛼, 𝜆, 𝛽) where 𝛼 > 0, 𝜆 > 0, and β> 0.
However, we generalize this to allow for a “wobble” in small payoff regions as explained below.

2.1.1. Flexibility of the value function near zero
A possible feature of risky behaviours is that they may differ for smaller payoffs relative to larger ones
in a way that requires the curvature of a value function that is not reflected by CRRA or CARA. With
this in mind we introduce an alteration of the value function that creates a “wobble” in the value
function close to zero. We present the general case below, but in order to motivate the “wobble”, let
us first examine the simplified piecewise power-utility function below:

v (x, 𝛼) = I(x≥0)x𝛼 − I(x<0) |x|𝛼 (3)

The function [3] has a constant relative risk aversion coefficient (CRRA) of ±(1 − 𝛼) that is positive
in the gain domain and negative in the loss domain if α< 1. Thus, any risky version prospect with the
same expected value as a safer one will have positive utility difference in favour of the safer option in
the gain domain for any value for 0 < 𝛼 < 1, but a negative utility difference for the safer option in
the loss domain.

Under [3], if we take two prospects that have the same expected value but simply scale them (by
multiplying all the payoffs by some number), then the scaled up version will have a larger utility
difference (in absolute terms) relative to the smaller option, but the sign of that utility difference
would always be the same. What we wish to consider, however, is that people might not be consistent
with this behaviour in the sense that a scaled version of two prospects might not have the same signed
utility difference in the upper ranges of 𝛼. For example, given an even chance of zero and x or a sure
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x

2
, one might expect that the sure-thing will be chosen for some value of x, but when scaled down

such that the choice is between zero and sx and sx

2
for some values of s< 1 and α< 1. That is, they are

risk averse for the larger prospect but risk seeking for the smaller.
In order to reflect this possible behaviour, we modify the value function so as to allow flexi-

bility around small payoffs. Specifically, we consider a logistic component (the “wobble”) with the
parameters ω1 and ω2 that will determine the curvature of the value function:

𝜑 (x, 𝜔1, 𝜔2) = 1
1 + 𝜔1e−𝜔2x

(4)

where 𝜔1, 𝜔2 > 0

In order to allow a difference between the loss (L) and gain (G) domains, we multiply the power
components by this logistic component that is potentially different across the domains:

v (x, 𝜃, 𝜔) = I(x≥0) x𝛼𝜑 (x, 𝜔G) − I(x<0)𝜆 |x|𝛽 𝜑 (x, 𝜔L) (5)
where 𝜔 = (𝜔G,1, 𝜔G,2, 𝜔L,1, 𝜔L,2)

It should be evident that for very large payoffs the utility will be approximately equal to the standard
power utility as the payoff x becomes large. Equally, it should be evident that as ω1 becomes small
then utility will be arbitrarily close to power utility. However, the behaviour of the utility for prospects
involving the smaller amount may be quite different.

This parameterization allows for the modification of risk seeking and risk aversion behaviour
depending on the size of the gambles. Importantly, however, in our empirical application we do not
assume that adjustments to utility are the same in both domains and we allow the parameters 𝜔1, 𝜔2
to be domain specific.

The behaviour above essentially extends into comparing choices for small fair mixed prospects
with large prospects from any domain.Theutility differences are approximately invariant to the trans-
formed utility providing any one of the payoffs is large (positive or negative). Small mixed gambles
will, however, have the potential for reversals.

2.1.2. A note on the “loss aversion” parameter 𝜆
Within the existing literature 𝛼 = 𝛽 is commonly imposed for model estimation. In this case the
parameter λ has commonly been interpreted as a measure of loss aversion providing λ> 1. However,
unless 𝛼 = 𝛽, the value of λ is dependent on the denomination (e.g., pounds, pence, dollars or
cents) of the payoffs such that alternative values for λ can be obtained with identical data simply by
redenominating the payoffs.

Brown et al. (2024) observe that 221 out of 302 studies employing the CRRA formulation impose
α = β but do not comment on whether this restriction was imposed without pre-testing. Tversky and
Kahneman (1992) themselves shied away from promoting the CRRA form used in their paper, char-
acterizing it only as a way to parsimoniously describe their data. Their imposition of α = β is made
without discussion, perhaps because without this restriction the role andmeaning of λ becomesmud-
died (see Balcombe et al., 2019). However, given the array of possible functional form specifications,
it is unsurprising that many researchers have followed the lead of Tversky and Kahneman (1992).
Our perspective is that there is no strong theoretical nor empirical reason to impose α = β other than
as one which clarifies the interpretation of λ.

2.2. The probability weighting function
In PT, respondents are assumed to modify the decumulative and cumulative distributions of the
products in the G and L domains respectively to obtain “decision weights”. Given this, we present
the probability weighting function in a form that is consistent with how PT requires respondents to
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determine their preferred choice. Formally, denote D (p) and C (p) as the decumulative and cumu-
lative functions over the probability simplex p, (where p has been ordered from smallest to largest x)
and they are defined as

C (p) = (p1,
2

∑
i=1

pi,
3

∑
i=1

pi, ..., 1) (6)

D (p) = (1, 1 − p1, 1 −
2

∑
i=1

pi, ..., pk) (7)

Also, denote the inverse operators such that C−1 (C (p)) = p and D−1 (D (p)) for any simplex p .
In common with much of the literature (Wakker, 2010, Gao et al., 2023), we employ the Prelec II
probability weighting function, whereby for some vector 𝛾 = (𝛾1, 𝛾2) > 0

q (p, 𝛾) = exp(−𝛾2(− ln(p))𝛾1)) (8)

The domain specific decision weights (w) are

w+ (p, 𝛾) = D−1 (q (D (p) , 𝛾)) (9)
w− (p, 𝛿) = C−1 (q (C (p) , 𝛿))

where 𝛿 = (𝛿1, 𝛿2) > 0, and across domains can be combined to give

w (x, 𝛾, 𝛿) = I(x<0)w− (p, 𝛿) + I(x≥0)w+ (p, 𝛾) (10)

The Prelec II function is linear at 𝛾1 = 𝛾 = 1 and 𝛿1 = 𝛿 = 1 and can generate a wide range of
transformations, including the “inverse S” shapes favoured by PT (Wakker, 2010). While the domain
specific decision weights sum to unity, mixed domain weights do not in general have this property.

2.3. Systematic utility
PT is not a stochastic theory in the sense that it attributes a probability to the decisions that people
make. For this reason, we define the utility given by PT as systematic utility which must then be
embedded in a probabilistic model of choice. Systematic utility of a prospect is, under PT (using the
definitions [3] and [10]):

V (𝒵, Ω0) = ∑
k

w (xk, 𝛾, 𝛿) v (xk, 𝜃, 𝜔) (11)

where Ω0 = (𝜃, 𝜔, 𝛾, 𝛿)

2.3.1. Allowing for complexity bias
In our model, we generalize this relationship by allowing the respondents to prefer (i.e., be biased
towards) the sure-thing option that is used in the experimental design in an effort to reduce task
complexity. Take a prospect pair 𝒫 = (𝒵a,𝒵b) where 𝒵b = (xb, pb) . In our lottery data 𝒵b will
always be the sure-thing where any zero probability payoffs are zero, whereas 𝒵a can involve either
one or two non-zero payoffs (with non-zero probability). Denote the number of non-zero payoffs in
𝒵a as n0. It then follows that respondents are assumed to have the respective utilities:

Va (𝒵a, Ω0, 𝜂) = (1 + 𝜂)I(n0=1)V (𝒵a, Ω0) + I(n0=2)V (𝒵a, Ω0)
Vb (𝒵b, Ω0, 𝜋) = 𝜋LI(xb<0)V (𝒵b, Ω0) + 𝜋GI(xb≥0)V (𝒵b, Ω0) (12)

where 𝜋 = (𝜋G, 𝜋L) (13)

The parameter η will deviate from zero if the simpler prospect is more or less preferred than would
otherwise be suggested by the systematic utility in [11]. In this case, we assume that the simpler
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prospect requires 𝒵a to have only one non-zero payoff (with non-zero probability). This means that
our estimate of η assesses the preferences of respondents in regard to this aspect of choice complexity.

Turning to π, these are assumed to be constant parameters, where πL will deviate from one if there
is bias for or against the sure loss, and πG will deviate from one if there is bias for or against a sure
gain.

2.4. Stochastic linkage
We assume that respondents make decisions based ostensibly on utility differences. However, it is
possible that not only is the systematic utility of a domain-specific, but also the “noise” components
are as well. Thus, in our flexible model specification, we allow for the possibility that given choices in
different domains may not be as predictable even when the utility differences are the same.

To do this, the stochastic choices are modeled by allowing for different levels of noise across the
three domains of choice:

𝜌 (𝒵a,𝒵b, 𝜌) = 𝜌GI (𝒫 ∈ 𝒢) + 𝜌LI (𝒫 ∈ ℒ) + 𝜌MI (𝒫 ∈ ℳ)
where 𝜌 = (𝜌G, 𝜌L, 𝜌M) (14)

where 𝒢 denotes the set of all gain domain pairs, ℒ denotes the set of all loss domain pairs and ℳ
denotes the set of all mixed domain pairs.

2.4.1. Model noise specification
The model we present employs what has become the conventional approach to incorporating noise
into a PT model. We view using a PT model within a HBM Logit as an approximation of a Random
Utility Model (RUM). While the PT is deterministic, its use within the HBM Logit, assumes that
people use PT stochastically. Thus, we would see the model as one where people are able to formulate
a random utility about a prospect, but where the deterministic assumptions about preferences are
replaced with stochastic versions.That is, respondents are allowed tomake what would be considered
preference reversals within a deterministic framework and are stochastically transitive rather than
transitive in a deterministic sense. That said, the claim that one is implementing an approximation
to a RUM, is not the same as saying that one has given an explanation as to how such stochastic
behaviour comes about.

Importantly, the warping of probabilities within PT was largely introduced as way of rationalizing
empirical behaviours such as the “Allais paradox”. While replacing the independence axiom with
comonotonic independence is an elegant generalisation, the PT literature is arguably vague on why
comonotonic preferences might occur. Additionally, complexity of prospects have no explicit role
within PT, and while PT is an explicitly domain sensitive theory, it does not suggest whether levels of
noise in one domain should be the same or different.

In the light of this, it is worth considering how and why complexity effects and warping might
occur. Vieider (2024) introduces the Bayesian Inference Model (BIM) where warping, inter alia, may
occur because people add “cognitive noise” to signals. The BIM also treats the payoffs as subject to
“cognitive noise” through the act of “mental decoding”. The BIM model is Bayesian in the sense that
once it is assumed that there is noise in the probabilities and payoffs, there is Bayesian updating of the
quantities using a prior, and the parameters that determine the extent of the updating determine the
probability of choice. A survey respondent would use priors to adapt such perceived noisy quantities
when making decisions seems inherently plausible. However, the BIM would also work if people
believed that there was noise in the quantities they are given (i.e., not due to cognitive processes).
Vieider (2024) demonstrates that the parameters of the noise and prior distributions combine to give a
rationalization as towhynoisy choicewould occur.He also shows that the formof this equationwould
be similar to probability warping of the Goldstein & Einhorn (1987) type. If one adopts this type of

https://doi.org/10.1017/eec.2025.10012 Published online by Cambridge University Press

https://doi.org/10.1017/eec.2025.10012


Experimental Economics 9

approach, then either differential noise or domain-specific priors would suggest different behaviours
across domains.

In Vieider (2024) noise is ascribed to logged ratios of the prospect attributes, where one of the
prospects is a sure thing, and the other is a two-payoff prospect, but states that the approach could be
extended to multi attribute “wagers”. The BIM approach, as implemented in Vieider (2024), requires
comparison across states in the construction of log-ratios and the attachment of priors to these ratios.
As such, it is not clearly amenable to a RUM framework that requires a random utility to be assigned
to each prospect. However, the essential idea that the outcomes and probabilities are received or used
by respondents as being noisy and are updated in a Bayesian way opens the door to a multitude
of parameterizations to which randomness is assigned, some of which might be compatible with a
RUM. However, we also believe that the role of complexity within these approaches requires fur-
ther thought and investigation, as we would contend that much noise will arise from the calculation
of parameters rather than the underlying quantities (probabilities and outcomes) themselves, with
greater complexity leading to potentially greater noise.

Importantly, we think there is a distinction between the existence of uncertainty and its explana-
tion.We view that estimating riskmodels assuming aHBMLogit is consistentwith the approximation
of a RUM. Random utility does not strictly assume deterministic preferences although there is a
non-stochastic component which happens to be non-linear in the case of PT or EUT models.

2.5. Model summary
We now have the full set of model parameters

Ω = (𝛼, 𝜆, 𝛽, 𝜔, 𝛾, 𝛿, 𝜌, 𝜋, 𝜂)
It then follows that the stochastic utilities are

U (𝒵a, Ω) = 𝜌 (𝒵a,𝒵b, 𝜌)Va (𝒵a, Ω0, 𝜂) + ea (15)
U (𝒵b, Ω) = 𝜌 (𝒵a,𝒵b, 𝜌)Vb (𝒵b, Ω0, 𝜋) + eb

where ea and eb are Gumbel distributed. With this specification, it follows that the probability of 𝒵a
being preferred is

Pr ob (U (𝒵a, Ω) > U (𝒵b, Ω)) = exp (U (𝒵a, Ω))
exp (U (𝒵a, Ω)) + exp (U (𝒵b, Ω)) (16)

With this model specification, the elements of Ω are:

• 𝛼, 𝜆, 𝛽 are the parameters that determine the conventional power value functions;
• ω are the parameters that allow additional flexibility for the power value functions close to zero;
• 𝛾, 𝛿 are the parameters that capture the probability warping of the probability weighting

function;
• ρ are the parameters that determine the noise (across all the domains); and
• 𝜋, 𝜂 are the parameters that capture the certainty effect and task complexity.

All parameters with the exception of ω will have “representative agent” versions but are also
estimated at the individual level.

3. Model estimation
As indicated in the Introduction, we employ a HBM to estimate a logit model specification, using
Hamiltonian Monte Carlo Markov Chain (HMCMC) simulation using the software PyStan1. This

1For documentation about Pystand visit https://pystan.readthedocs.io/en/latest/. All Pystan code used in estimation is
available on GitHub along with the data herein and copies of survey instruments.
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form of estimation requires the likelihood function to be specified along with each of the priors
and we outline them below. PyStan (or more generally Stan) uses a version of HMCMC that is
referred to as the No-U-Turn Sampler (NUTS, seeHoffman & Gelman, 2014). As with all MCMC
algorithms this requires a phase at the beginning which allows the sampler to find a high-density
region as well as to finding “tuning parameters” that help the sampler to operate efficiently. For
all results here in we set this phase to have 2,000 iterations, followed by a further 1,250 iterations
using eight independent chains which provide 10,000 sample values to summarize the posterior
distribution.

Convergence of MCMC has a slightly different meaning in the context of Bayesian estimation
compared to Maximum-Likelihood, and is generally inferred by statistics such as the R-hat statistic
(Vehtari et al., 2019), along with “trace-plots” for the sample statistics. For all of the models presented
here the R-hats were within what is considered to be tolerance ( < 1.05). We present these in the
Appendix (Figures A2 and A3).

3.1. The likelihood
Equation [16] gives the probability of choosing option A for a given set of parameters.TheHBM logit
allows for each respondent to have their own preference parameters, such that we can define yj,t = 1
if the jth person chooses the non-sure option A in the tth task. Therefore, we can write:

Pr ob (yjt = 1|Ωj) =
exp (Uj (𝒵a,t, Ωj))

exp (Uj (𝒵a,t, Ωj)) + exp (U (𝒵b,t, Ωj))
(17)

The parameters for the jth individual determine this probability. These are:

Ωj = (𝛼, 𝜆, 𝛽, 𝜔1,L, 𝜔2,L, 𝜔1,G, 𝜔2,G, 𝛾1, 𝛾2, 𝛿1, 𝛿2, 𝜌G, 𝜌L, 𝜌M, 𝜋L, 𝜋G, 𝜂)
j

where all parameters except {𝜔1,L, 𝜔2,L, 𝜔1,G, 𝜔2,G, } are respondent specific.
The ω parameters will only shift the mean value for all respondents who complete the set of

prospect pairs. It is worth re-iterating that this model specification is not only able to estimate a flex-
ible value function but it is doing so for each individual respondent. This is an important advantage
of employing the HBMs compared to Classical estimation.

Given that ℙ = (𝒫1,𝒫2, ...,𝒫T) prospect pairs are given to each individual, and with associated
outcomes (choices) yj = (y1,j, y2,j, ..., yT,j), the data can be defined as Y = {yj}

J

j=1
and Ω = {Ωj}

J

j=1
and the log likelihood of the data is as follows:

ln f (Y |Ω) =
J

∑
j=1

T

∑
t=1

(ln Pr ob (yjt = 1|Ωj) yjt + ln Pr ob (yjt = 0|Ωj) (1 − yjt)) (18)

3.2. Model priors
For aHBMLogit the priors are set at two levels. First forwhat onemight think of as the “representative
agent” level, and second at the level of the individual. The hierarchical nature of the HBM means
that the representative agent level parameters form the means around which the individual estimates
are distributed. Full details of the priors are given in Appendix A. Here we give a more partial and
simplified outline.

Priors can be used to set regions over the values that the parameter can take and place higher
prior likelihood for some values over others. We do both, though in a way that will allow the data
to largely determine the parameter values within the bounds we set. These priors are derived from
theory and past empirical work. First, we set a baseline which gives high prior density to the point
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𝛼 = 𝛽 = 𝛾1 = 𝛾2 = 𝛿1 = 𝛿2 = 𝜆 = 1 (at both the representative agent and individual level) which is
tantamount to a model in which expected values determine choices both within and across domains.
Where additional parameters are added, these are done so in a way that their modes give high prior
density to the “standard” parameterisation of Tversky and Kahneman (1992). Second, we allow the
priors to be wide enough and diffuse enough to reflect what we would characterize as the “consensus
region” for these parameters.

Across the different models the priors were the same for those parameters occurring in different
models. For example, for the power parameter in the gain domain 𝛼, the prior for the mean of ̄𝛼 is
considered normal with the bounds [ ̄l𝛼, ū𝛼]. The parameters for each individual are then hierarchi-
cally structured such that for each individual j, such that αj is normally distributed around ̄𝛼 within
some bounds [l𝛼, u𝛼] which is wider than those for ̄𝛼. How far the individual values αj diverge is
governed by a standard deviation σα which is estimated within the model which also requires a prior
which in this case is 𝜎−2

𝛼 and is given a prior Gamma distribution.
The parameters that fully determine the nature of the priors are referred to as hyper parame-

ters. The hyper parameters for α are 𝜇𝛼 = 1, where for 𝜎−2
𝛼 ∼ Gamma(h𝛼,1, h𝛼,2), h2

𝛼,0 = 1,
[ ̄l𝛼, ū𝛼] = [0.05, 2.5], [l𝛼, u𝛼] = [0.01, 4], h𝛼,1 = 1, and h𝛼,2 = 0.25 (i.e., the power parameter
had a prior mean of 1 but was allowed to vary between [0.05, 2.5] whereas the parameters pertaining
to individuals had a slightly wider boundary between [0.01, 3]). The same structure but with some
differentmeans, variances and boundaries was then used for𝛽, 𝛾1, 𝛾2, 𝛿1, 𝛿2, 𝜋1, 𝜋2 and 𝜂.Theparam-
eters 𝜔1,G and 𝜔1,L<text></text>were half normal, and 𝜔2,G and 𝜔2,L<text></text> were uniform, but
were not hierachical (that is they do not have values for individuals). Given the potential long-tail
in the loss aversion parameter, we specified this to be log normal with 50% of the mass below unity
and 50% above, again some boundary conditions that contain the vast majority of values (1/10, 10)
for the mean and (1/12, 12) for individuals. The unitary priors for the warping parameter reflect a
prior weighting towards no probability warping and together give high prior mass to the case where
individuals act according to expected value maximization within and across domains. Again, readers
are referred to Appendix A for full details.

As already noted, these priors were set to cover what we would see as the “consensus region”.
Consensus regions are difficult to establish because even within papers using Power-Utility, estimates
have often been obtained using different estimation methods, weighting functions (or no probabil-
ity weighting at all) and/or with parametric restrictions that are “symmetrical” in either the value
space or probability weighting space or both. However, while some papers use the weighting func-
tion of Tversky and Kahneman (1992) both directionality and in terms of magnitude the probability
weightings broadly correspond to what will happen with the same parameter used within the Prelec I
function, and they are thus they comparable. Therefore, a reading of literature in terms of Abdellaoui
(2000), Alam et al. 2022, Andersen et al. 2010, (Balcombe et al., 2019), Baillon et al. (2020), Brown
et al. (2024), Bouchouicha and Vieider (2017), (Chapman et al., 2024), Gao et al. (2023), Gonzalez
andWu (1999), Murphy and ten Brincke (2018), Nilsson et al. (2011), Tversky and Kahneman (1992)
and Walasek et al. (2024) broadly support the bounds and priors that we have set, where there ten-
dency to find 𝛼, 𝛽, 𝛾1, 𝜌1 < 1 and λ> 1. As remarked by Wakker & Zank (2002) among those studies
for which 𝛼 = β has not been imposed there is evidence for 𝛽 > 𝛼, though this is not universal (e.g.,
Bouchouicha & Vieider, 2017).

3.3. Model versions
Given the flexible model specification presented, we have four models that are nested as follows:

• Model 0: (Mdl0) 𝜔1,G = 𝜔1,L = 𝜔2,G = 𝜔2,L = 0, 𝜂j = 𝜂 = 0 and 𝜋L = 𝜋G = 𝜋L,j = 𝜋G,j = 1
for all j

• Model 1: (Mdl1) 𝜂j = 𝜂 = 0 and 𝜋L = 𝜋G = 𝜋L,j = 𝜋G,j = 1 for all j
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• Model 2: (Mdl2) 𝜂j = 𝜂 = 0 for all j
• Model 3: (Mdl3) Unrestricted

Our base model (Mdl0) is a standard power form without transforming the value function or
allowing for flexibility. The next model (Mdl1) uses a generalized value function to allow greater
flexibility around small payoffs in a way that allows respondents to be risk seeking in low-stakes
mixed prospects. Mdl2 further generalizes the specification to allow for the certainty effect only and
Mdl3 is the most general model specification allowing for the certainty effect as well as the selection
of prospects based on whether they have more or less-zero payoffs.

4. Data
As explained by Balcombe and Fraser (2024), the set of lotteries have been generated by employing a
statistical procedure based on two design principles. First, it is assumed that each lottery task should
be “informative”. A task is “non-informative” if the same option would be chosen regardless of pref-
erences. That is, if two individuals with very different preferences are likely to make the same choice,
then that task is not informative about the preferences of those individuals. By contrast, an infor-
mative task is likely to reveal different choices by individuals with different preferences. Second, any
task should not be rendered redundant by any other task (pairwise redundancy). The most obvious
example is that tasks should not be repeated. While repeated tasks do provide some level of addi-
tional information, there are usually differentiated tasks that are more informative. However, more
generally, the answer to one task should not be able to predict the answer to any other task across the
range of possible preferences.

These principles have been formalized by Balcombe and Fraser (2024) using Bayesian inference
that seeks to estimate a “posterior” distribution for the parameters in question. The posterior is the
distribution given the choices of respondents and is constructed from the data along with a prior dis-
tribution.Themore informative this posterior distribution is, the better we canmake inferences about
the parameters of interest. The set of tasks chosen yield a posterior distribution with low entropy, or
equivalently, high Kullback-Leibler divergence from a uniform distribution. As such, this approach
to experimental design focuses on the informational content of the lotteries generated to enable effec-
tive recovery of key PT parameter estimates. With this approach it can be shown, for example, that
the lottery set used by Harrison and Swarthout (2016) can be reduced given that several of lottery
pairs (up to 40%) are “redundant” in terms of estimating preference parameters.

The data was collected in 2019 across a series of experimental sessions. Each session began with
the distribution of detailed instructions along with examples of questions and an explanation of the
payment process. Next, we distributed the survey instrument containing the choice tasks plus a small
set of socio-economic questions. We required all survey participants to answer the 100 lottery tasks
constructed, each composed of two options, with one option always being a sure-thing. The exper-
imental design was composed of 21 tasks in the gain domain, 26 in the loss domain, and 53 in the
mixed domain. All we required participants to do was to indicate which option they preferred. Our
sample contained 143 respondents (both undergraduate and postgraduate students) meaning our
data set is composed of 14,300 responses.

The payoffs for the tasks were generated to lie within the bounds -100 to 100 in the first instance.
We then scaled down the lotteries by a factor of five to give a low payoff treatment and we multiplied
this by two and half times to derive a high payoff treatment. In total 74 respondents completed the
low payment treatment, and 69 the high payment treatment. To make the tasks easier to understand,
we presented the tasks in the form of pie charts. The lottery rewards were presented as segments
(pieces of pie) where the size of each segment was proportional to the chance of winning the reward.
Additionally, we included labels that specified the exact reward and the corresponding chance of
winning. An example of a lottery task is shown in Figure 1.
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Figure 1. Example lottery task

In the example shown in Figure 1, the left option consists of the rewards £ 0, £ 16, and £ 20 with
25%, 10%, and 65% chances of winning. The right option consists of a single, certain, reward of £
12. In the instructions handed out to participants, the information presented in Figure 1 was also
summarized in words. Once all participants had completed the 100 tasks, all answer sheets were col-
lected. Full anonymity was ensured throughout the experiment, and at no point was any participant
required to divulge their identity.

On agreeing to participate in the experimental sessions, all participants knew that they would
receive a £ 15 participation fee. In this experiment, we also employed real monetary incentives
whereby we randomly selected 20 % of participants in each experimental session to play for one of
their 100 choice tasks for real money. This meant that participants had the chance to win additional
money, up to a maximum of £ 50 once all data collection was completed. This approach to imple-
menting real incentives frequently selects 10 % of participants e.g. Amador-Hidalgo et al. (2021) and
it has been shown not to negatively affect a participant’s motivation or the validity of the random
lottery incentive scheme. For lotteries involving negative outcomes, if selected, a fixed endowment
was employed that equalled the largest possible loss that could be realized during the experiment.
Employing an endowment that covers losses is the standard procedure for dealing with negative out-
comes in experiments (see Fehr-Duda et al., 2010, Etchart-Vincent & L’Haridon, 2011, Vieider et al.,
2015, Bouchouicha & Vieider, 2017, Amador-Hidalgo et al., 2021).

5. Results
Table 1 presents the estimates for the mean parameters and standard deviations (Sd) (in brackets)
of the four models described. Model selection is undertaken by employing the Watanabe Akaike
Information Criteria (WAIC) (for which a lower score indicates a preferred model, see Watanabe
(2013)). The WAIC is a fully Bayesian information criterion, which awards “fit” but penalizes addi-
tional model parameters. The WAIC scores and standard errors (SEs) (in brackets) are presented at
the bottom of Table 1.

In Table 1, we see that there is amonotonic decrease in theWAIC fromMdl0 toMdl3.Thedecrease
occurs because of the addition of the extra model flexibility of the value function relative to the “stan-
dard model” Mdl0. Comparing Mdl0 vs Mdl1, we see that this yields a decrease in the WAIC that
is approximately twice the SE suggesting robust evidence that increase in model flexibility improves
performance. The inclusion of the sure-thing via Mdl2, is, however, far more definitive, with a larger
reduction in theWAIC,which is approximately fourfold the SE. Finally, there is amuch smaller reduc-
tion for in the WAIC in moving from Mdl2 vs Mdl3 and the reduction is less than the associated SE.
While this result does supportmodelMdl3 that includes the payoff dimension, the statistical evidence
in support of this additional model flexibility is much weaker than for the change for Mdl1 to Mdl2.
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Table 1. Parameter estimates - mean and standard deviation

Mdl0 Mean (Sd) Mdl1 Mean (Sd) Mdl2 Mean (Sd) Mdl3 Mean (Sd)

α 0.835(0.027) 0.722(0.040) 0.722 (0.041) 0.742(0.049)

β 1.130(0.033) 1.084(0.040) 0.985(0.048) 0.982(0.049)

λ 0.484(0.062) 0.393(0.065) 0.547(0.103) 0.575(0.124)

ρG 0.656(0.097) 0.934(0.154) 0.832(0.141) 0.785(0.146)

ρL 0.337(0.036) 0.492(0.069) 0.541(0.066) 0.484(0.083)

ρM 0.436(0.040) 0.594(0.076) 0.618(0.082) 0.599(0.095)

δ1 1.674(0.065) 1.705(0.067) 1.601(0.076) 1.583(0.076)

δ2 1.133(0.051) 1.113(0.053) 1.221(0.066) 1.233(0.064)

γ1 0.927(0.039) 0.978(0.044) 0.913(0.052) 0.890(0.051)

γ2 1.103(0.038) 1.045(0.040) 1.101(0.054) 1.133(0.055)

𝜔1G 1.412(0.620) 1.596(0.593) 1.635(0.668)

𝜔2G 0.362(0.108) 0.341(0.090) 0.340(0.105)

𝜔1L 4.650(1.737) 4.921(1.659) 4.988(1.640)

𝜔2L 0.640(0.110) 0.520(0.090) 0.516(0.086)

πG 0.957(0.022) 0.936(0.023)

πL 0.878(0.026) 0.854(0.024)

η -0.041(0.014)

WAIC 15222.1(115.8) 15190.9(115.5) 15114.15(115.2) 15103.06(114.8)

Model Comparison*

Mdl0vsMdl1 -31.67 (13.6)

Mdl1vsMdl2 -76.83 (18.2)

Mdl2vsMdl3 -11.089 (15.5)

Notes:*Difference WAIC (SE Difference WAIC) A negative WAIC⇒ meaning that the model on the right is preferred; Sd - Standard deviation;
SE - Standard Error

Comparisons for the mean parameter estimates, between the four models are made using
the results in Table 1 and Figure 2, with only the parameters common to all models presented.
Comparative kernel density plots are also presented in the Appendix (Figure A1).

First, we note that in some respects the key PT parameters are similar across all of the mod-
els, with a couple of notable exceptions. While the power parameter in the gain domain (𝛼)
is sub-unity (reflecting concavity), the power parameter in the loss domain (𝛽) is above unity
(also reflecting concavity) for models Mdl0 and Mdl1 (1.13, and 1.084 respectively) which is
not in keeping with the expected finding of convexity in the loss domain. However, a similar
finding has been reported by Kpegli et al. (2023) who employ a novel semi-parametric method.
Furthermore, even though Kahneman and Tversky (1979) and Tversky and Kahneman (1992) dis-
cuss convex functions for losses, such functions have proved the exception rather than the rule in
empirical estimations (Abdellaoui, 2000, Bruhin et al., 2010). There is also the possibility that the
highly non-linear nature of the PT model, such as the value function estimates combining with a
highly optimistic parameter of the Prelec-II function can imply that there might be noise in the
model that makes parameter identification more problematic (see e.g. Zeisberger et al., 2012, for a
discussion).

Another possible reason for the concavity could be that the functional form was not sufficiently
flexible in the sense that for small payoffs respondents were risk seeking. It is for this reason, that we
examined themodel generalization allowing for non-uniform curvatures in the loss and gain domains
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Figure 2. Comparison of PT parameters for all models

respectively. The introduction of the logistic transformation with Mdl1 that allowed for this, while
reducing the mean value for β to a small extent, did not induce a sub-unity mean. How the value
function is transformed is illustrated in Figure 3.

The left panel gives the value function for payoffs less than £ 10 in absolute terms and for payoffs
under £ 50 in absolute terms on the right. These figures illustrate the relatively small departures from
the power form for the lower values, but they leave the value function largely unchanged for absolute
values higher than £|10|.
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Figure 3. Themean value function (forMdl1)

A more substantive change in the mean value of β occurs when the certainty effect correction is
introduced in models Mdl2 and Mdl3. In both models, the values of β are reduced to become sub-
unity, but as can be seen from Figure 2, a confidence interval would include unity. We also observe
that the value of λ correspondingly shifts upwards for models that allow for the certainty effect (Mdl2
and Mdl3).

Readers are reminded that providing 𝛽 ≠ 𝛼 the value of λ being above or below unity is largely
determined by the denomination of the payoffs and does not reflect a lack of “loss aversion”. The
greater pivot downwards of the value function in the loss domain the greater the aversion to risky
prospects in the mixed domain. However, if 𝛽 > 𝛼 there will be this tendency provided the payoffs
are large enough. In Figure 4 we give an illustration of how people would react to a series of 50:50
prospects with a positive and negative payoff of the same size be calculating the certainty equivalent
at each payoff size using the parameters forMdl3, with and without the impact of the “wobble” in the
value function.2 We also look at just the pure value effect as opposed to factoring in the probability
warping components. We can see that for very small sized prospects people would accept the risky
prospect, but that as the size grows they eventually become risk averse. The role of the “wobble”
exacerbates this tendency with the probability weighting also increasing people’s “tenancy”? to take
the riskier option. 3 Using our approach, β has a reduced value because of the bias towards a negative
sure-thing in the loss domain (as reflected in Table 1 for 𝜋L = 0.878 and 0.854 for Mdl2 and Mdl3
respectively). The sub-unity value of this parameter means that the negative utility associated with a
negative sure-thing is less negative than that suggested by the value function alone. Thus, in models
Mdl0 andMdl1, which did not allow for the certainty effect, the fact that respondents were choosing a

2Note that the model with the “wobble” does not have an analytical certainty equivalent but can be approximated.
3We also estimated our model using only data in the gain and loss domains to assess if the utility wobble result was robust

(See Appendix B). We found that when using the partial data set, there is much less of a wobble in the gain domain. However,
the wobble for the loss domain parameters remained remarkably similar and it was in this domain that the larger “wobble”
was observed for the full data set. Given these results, we conclude that evidence for the smaller wobble in the gain domain
was only evident with the inclusion of mixed prospects. However, the larger departure from the standard power form which
was in the loss domain is exhibited with or without the inclusion of mixed prospects.
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Figure 4. Certainty equivalent for a 50:50, EV=0 prospect (forMdl3)

Figure 5. Mean probability weightings (forMdl3)

negative sure-thing resulted in convexity of the value function in the loss domain. There also appears
to be weaker evidence for a smaller certainty effect for positive sure-things (as reflected in 𝜋G = 0.957
and 0.936 for Mdl2 and Mdl3 respectively), which would reflect a slight tendency to avoid the sure-
thing in the gain domain, but not in a way that dramatically alters the curvature in the gain domain.
Finally, the parameter 𝜂 = −0.041 indicates the utility of those with only two payoffs (with one being
non-zero) having down-weighted utility relative to the three-payoff prospects (with two being non-
zero). As noted earlier this model addition (Mdl2 vs Mdl3) only has weak support from the WAIC
but has a posterior that has more of its mass below zero.

Turning to the probability weightings, these vary to some extent over the four models but do not
change the essential shape of the probability weighting functions, which are illustrated in Figure 5
for the “representative agent”. What is evident for these parameters is that while γ1 is just sub-unity
(in conformance with previous literature) the value for ρ1 (1.583 for Mdl3) which much larger than
unity, which is counter to what we would regard as consensus though this is also reported by Kpegli
et al. (2023).

On the left-hand side of Figure 5 are the transformations of a linear cumulative function.These can
be understood as the how the probability of the larger payoff (in absolute terms) is transformed for a
two-payoff prospect. On the right-hand side are the transformations of uniform probability mass of a
20-payoff ordered prospect in the gain and loss domains (only to illustrate the shape).These show that
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Table 2. Parameter distributions for sample individuals for Mdl3

Sd Min 5% 25% 50% 75% 95% Max

α 0.091 0.471 0.587 0.683 0.751 0.798 0.888 0.971

β 0.105 0.678 0.804 0.910 0.985 1.064 1.124 1.217

λ 0.434 0.398 0.443 0.522 0.611 0.696 0.864 1.114

ρG 0.256 0.403 0.479 0.628 0.760 0.968 1.282 1.556

ρL 0.215 0.196 0.250 0.364 0.473 0.640 0.856 1.614

ρM 0.237 0.192 0.324 0.466 0.584 0.804 1.038 1.418

δ1 0.415 0.551 0.779 1.344 1.673 1.890 2.184 2.605

δ2 0.385 0.495 0.652 0.942 1.222 1.498 1.911 2.237

γ1 0.280 0.184 0.409 0.696 0.900 1.080 1.366 1.547

γ2 0.260 0.618 0.679 0.967 1.117 1.323 1.546 1.716

πG 0.058 0.765 0.841 0.895 0.938 0.976 1.026 1.080

πL 0.076 0.645 0.730 0.800 0.853 0.904 0.976 1.069

η 0.054 -0.188 -0.135 -0.072 -0.037 -0.009 0.052 0.106

Notes: Sd - Standard Deviation; Min - Minimum value of parameter distribution; Max - Maximum value of parameter distribution.

the probability weightings weakly conform with the inverse-S shape in the gain domain. However,
this is not the case in the loss domain which tends to overweight the mid values and underweight the
end values. For example, whereas previous literature suggests that for a two-payoff example a “small-
probability-large-loss” would be given excessive weight by people, the result here is strongly in the
opposite direction. It is more consistent with people largely ignoring low probability bad outcomes.

5.1. Heterogeneity and model results
Table 2 gives the percentile values for the key model parameters along with the associated minimum,
maximum, and standard deviation for model Mdl3.

Comparing the median values in Table 2 with the mean estimates in Table 1, we can see that
these are broadly in accordance. Each estimate for the individual (i.e., the values that correspond to
𝛼j, 𝛽j etc.) is the mean of the posterior for that individual. Figure 6 presents histograms that show the
distribution across the sample for the individual-specific parameters. Figure 5 gives the cumulative
histograms using the distributions depicted in Figure 6 so that the portions lying above and below
key values can be assessed. InHBMs individual distributions can be bimodal ormultimodal or highly
skewed even though the underlying prior is normal. While there is some skewness in some of the
distributions, the individual estimates are broadly in accordance with the assumptions behind the
model.

In most respects, the individual estimates underline some of the findings already discussed about
the representative agent values. In relation to the value function,many individuals have concave value
functions in the loss domain. From the cumulative distributions in Figure 6, we see that around 60%
of respondents have sub-unity estimates for β. Thus, a substantial minority of individuals are not
behaving in a way that is generally characterized by PTmodels. If the probability weighting functions
were linear, this would suggest that many individuals are risk averse in the loss domain, and over and
above this have a bias toward choosing the sure-thing. In contrast, whenwe consider the gain domain,
100% of respondents had sub-unity values for α that is consistent with PT models.

From Figures 6 and 7, it can also be observed that nearly all individuals had estimates for πL
that were sub-unity, and although it cannot be seen from the results, all respondents with concave
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Figure 6. Histogram for individual specific parameters

value functions in the loss domain also had a certainty effect towards choosing the sure-thing (except
one).

The conclusion that a substantial proportion of people are risk-averse in the loss domain must
be tempered by considering the probability weighting functions. At the representative agent values,
both two-payoff and three-payoff prospects in the loss domain, the largest loss is underweighted to
a greater degree than the smallest loss. Thus, the probability weightings are suggesting a tendency
towards choosing options that underweight the largest loss, which is arguably a form of risk-seeking
behaviour.

Next, Figure 8 breaks down the probability weighting functions into quadrants based on whether
the Prelec II parameters are above or below one (recalling that where both are unity the probability
weighting function will be linear).

In Figure 8 the cumulative distributions for each individual are plotted and the numbers of people
occurring within the quadrant are within the title of each panel. As with the previous plots these can
be understood as the how the probability of the larger payoff (in absolute terms) is transformed for a
two payoff prospect. As can be seen from these plots, the distribution of weighting types is more dif-
fuse in the gain domain (left-handfigures for γ), where only aminority of respondents have the inverse
S type weighting (as in the bottom-right panel where n= 36) though the majority overweighting low
probability large gains.

By contrast, the weightings for the loss domain (right-hand panel for δ) are more similar across
respondents but with the dominant type being the S type weighting (as in top-left panel where
n= 94). Naturally, these broadly mirror the tendency reflected for the representative agent results
discussed earlier, and do not generally conform to what we would regard as the consensus. That is,
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Figure 7. Cumulative histograms for individual-specific parameters

here the substantive majority underweight small probability larger losses but conversely overweight
high probability larger losses.

6. Conclusions
We have introduced and presented HBMs to parametrically estimate a flexible PT model that goes
beyond those typically found in the literature. Our method adds to a growing literature employ-
ing HBMs to estimate and recovery individual respondent risk parameters (e.g., Balcombe & Fraser,
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Figure 8. Individual probability weightings

2015, Gao et al., 2023). In particular, the HBMs not only allow for individual respondent estimates
to be generated but also the incorporation of significant additional flexibility in the value function
to capture differences in behaviour between domains (gain, loss and mixed). The model is also able
to capture aspects of lottery design that are frequently employed in an effort to reduce task complex-
ity. However, it is conceivable that employing an even more flexible functional form or the adoption
of non-parametric methods could further improve model performance. Both of options are feasible
given the use of HBMs and the flexibility that they offer for applied econometrics.

In terms of the impact of experimental design and how explicitly this is taken into account, we
recommend that researchers explicitly account for these features in theirmodel specifications.Theuse
of a sure-thing option in risk experiments is typically justified as a means to reduce task complexity.
Given earlier research (e.g., Kahneman & Tversky, 1986), we expected a priori that there would be
a certainty effect. However, our findings did not align completely with this expectation. Instead, our
results indicate that respondents did exhibit a certainty effect towards sure-things, but not necessarily
consistently towards choosing the sure-thing option (or simpler options in general), as we initially
hypothesized. Positive and negative sure-things had their utilities reduced in absolute termsmeaning
that there was a certainty effect towards negative sure-things but not for positive sure-things. Taking
account of the certainty effect for negative sure-things lead to a slightly convex value function in
the loss domain for a majority of respondents, whereas without this adaptation the value functions
were predominately concave in the loss domain. However, allowing for the certainty effect did not
substantially change the values of the probability warping parameters of the weighting function.

Turning to the payoff format employed in this lottery instrument, our findings provide limited sup-
port for the notion that individuals tend to prefer three-payoff prospects over two-payoff prospects.
While the evidence is not conclusive, it suggests that this type of task complexitymay have some influ-
ence on decision making, highlighting the importance of understanding individuals’ perceptions of
different types of task format. Indeed, it may be that choosing between a three-payoff prospect and
a sure-thing is not significantly more cognitively challenging than deciding between a two-payoff
prospect and a sure-thing. While it is not surprising that our research identified domain-specific
behavioral differences, this specific finding underscores the need for further investigation. In partic-
ular, it is crucial to carefully consider what individuals perceive as a complicated taskwhen examining
potential types of behaviour in decision making.
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Another interesting feature of the results revealed “as a result of employingHBM” relates to the evi-
dence we find of probability warping. Although probability warping was present (i.e., the weighting
function parameter estimates were different from unity) our parameter estimates did not univer-
sally reflect the values that are typically reported in the literature. Notably, we observed a tendency
among participants to assign disproportionateweight to themiddle values of prospectswithin the loss
domain. This suggests that individuals may exhibit a specific behaviour towards valuing prospects in
this particular context.

Finally, our respondents demonstrated higher predictability when making choices in the gain
domain compared to choices in the loss or mixed domains. It is possible that individuals find it easier
to make decisions in the gain domain, which may explain their tendency to display a certainty effect
when facing losses.

In terms of future research “given theHBMs” developed an obvious extensionwould be to consider
other data sets and to see if any other aspects of experimental design, once taken into account, yield
improvements in model performance. Another related extension would be to consider individuals’
subjective assessments of task complexity (could be derived for various aspects of the experimental
design) which may provide insights into their decision-making processes. Related research would be
to link attentional weighting (i.e., which option attracts most attention during the decision-making
process) and probabilityweighting using eye tracking. Zilker andPachur (2021) provide results exam-
ining the relationship between these constructs.They indicate that the probability weighting function
might also be capturing aspects of how respondents acquire and process information.

Another avenue of future research would be to consider making other functional forms that are
employed in the literature more flexible. This option has not been pursued here simply to avoid
a “horse race” between model specifications. However, the use of Bayesian model averaging (see
Balcombe & Fraser, 2015) provides a means by which model selection could be undertaken and may
prove a useful exercise. Similarly, there are additional means by which functional form flexibility
as well as individual level parameters could be introduced with the HBM context. For example, we
could in principle, estimate a semi-parametric model giving a distinct utile for every outcome, and
a distinct decision weight for each probability. This exercise could further highlight the benefits of
employing HBMs in comparison to existing research such as Gonzalez and Wu (1999). In their work
they needed 100+ certainty equivalents to achieve this type of task. Could we even do away with all
functional form assumptions?

Of course, there may also be good reason not to introduce ever more flexible functional forms.
For example, the introduction of four additional parameters to capture wobbles in utility may not be
necessary if the wobbles are not the same for gain and loss domain prospects compared to the mixed
domain prospects. This may be the case if the data has few mixed prospects which is typical of many
data sets used in the literature. However, as we have noted when excluding the mixed prospects from
our data, we still find that evidence of significant utility wobble especially in the loss domain. This
finding is important and warrants further examination in future research.

Turning to the generation of experimental data Gao et al. (2023) demonstrate that use of HBMs
allows for key parameter recovery to occur using a sub-set of the overall experimental design with-
out the loss of significant parameter accuracy. In the example they provide, the set of lotteries are
randomly assigned into sub-sets. The experimental approach used by Balcombe and Fraser (2024)
could in principle be used to enable a more effective design of sub-sets that in turn would help with
preference parameter estimation.

It is also the case the link between experimental data generation and the impact this has on param-
eter estimates requiresmore research.The generation of the experimental data provided by Balcombe
and Fraser (2024) has several features that attempt to reduce task complexity and reduce the noise
inherent in the data. Given the emerging literature on complexity (Oprea, 2022, Oprea, 2024) there is
a need for more explicit consideration of how complexity in task design impacts respondent engage-
ment. This need also links back to the issue of how noise in experimental data is modelled. The
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traditional approach of imposing a noise structure as opposed to viewing the tasks as inherently noisy,
as examined by Vieider (2024) requires more consideration. At the same time, the way in which the
use of RUM implicitly incorporates noise needs to be reconsidered so that the apparent gap between
deterministic and stochastic choice can be reconciled.
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