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1. Introduction

The implicit function theorem is a ubiquitous result, from elementary multivariable cal-
culus courses to current pure and applied research problems. Given that the literature
on the several formulations of the theorem is so considerable, we do not attempt to give
an account of the extensive variety of statements available. In this paper we formulate a
version of the theorem for functions on Banach manifolds invariant under the action of
a finite-dimensional Lie group, which is not necessarily compact. Previous formulations
of the G-equivariant implicit function theorem, most notably by Dancer [6–8], consid-
ered only linear actions of groups on Banach spaces. This paper concerns two crucial
improvements, namely, that

(1) the actions may be nonlinear,

(2) the action is only assumed to be by homeomorphisms, and possibly not everywhere
differentiable.

Proving an implicit function theorem in such a broad context is not just a matter of
abstract generality. Namely, as first noted by Palais [16] and others in the 1960s, the
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natural variational framework of several interesting geometric problems involves function-
als on Banach manifolds that are invariant under the continuous (but not differentiable)
action of a finite-dimensional Lie group of symmetries. Our result is motivated precisely
by this type of problem, which includes constant mean curvature (CMC) embeddings,
closed geodesics and harmonic maps, among other potential applications. A rough state-
ment of our main abstract result is as follows.

Theorem 1.1. Let f : M × Λ → R be a map of class Ck+1, k � 1, where M and
Λ are (possibly infinite-dimensional) Banach manifolds, and assume that, for all λ, the
functional f(·, λ) is invariant under the action of a finite-dimensional Lie group G on M.
Let (x0, λ0) ∈ M×Λ be such that (∂f/∂x)(x0, λ0) = 0. Assume that the second variation
(∂2f/∂x2)(x0, λ0) is represented by a self-adjoint Fredholm operator, and that the critical
point x0 is equivariantly non-degenerate, i.e.

ker
(

∂2f

∂x2 (x0, λ0)
)

= Tx0(G · x0).

There then exists a Ck-map x : U ⊂ Λ → M, defined in a neighbourhood U of λ0 in Λ,
with x(λ0) = x0, such that if λ ∈ U and y is sufficiently close to the orbit G · x0, then
(∂f/∂x)(y, λ) = 0 if and only if y belongs to the G-orbit of x(λ).

The precise technical statement of the above result (see Theorem 3.2) with all detailed
functional analytical conditions is cast in abstract Banach vector bundle language, and
only given later, in § 3, for the sake of exposition. Its formulation involves a set of axioms
that describe a rather general setup to which the result applies. Axioms (A1), (A2)
and (A3) describe the basic variational setup. Axiom (B) deals with the differentiability
of the action, and Axiom (C) with the G-invariance of the set of critical points. Axioms
(D1), (D2), (D3) and (D4) give the existence of a gradient-like map, and axioms (E1)
and (E2) guarantee its equivariance. Finally, Axiom (F) provides a notion of continuity
for the tangent space to the group orbits.

Explicit applications to the above-mentioned geometric variational problems are dis-
cussed in § 4. More precisely, we quote some of the deformation rigidity results that can
be obtained as a direct consequence of Theorem 1.1.

Theorem 1.2. Let (M̄, ḡ) be a smooth Riemannian manifold, let g be a Ck Rieman-
nian metric tensor on the manifold M , with k � 3, and let φ : M → M̄ be a (g, ḡ)-
harmonic map, i.e. Δg,ḡ(φ) = tr(∇̂ dφ) = 0. Consider Λ an open subset of a Banach
space of symmetric (0, 2)-tensors of class Ck on M , with g ∈ Λ, such that every tensor
in Λ is a Riemannian metric tensor on M . Suppose that φ is non-degenerate, i.e. all
Jacobi fields along φ are of the form K̄ ◦φ, where K̄ is a Killing vector field of M̄ . There
then exists a neighbourhood U of g in Λ, a neighbourhood V of φ in C2,α(M, M̄), and a
Ck−1-function U � h �→ φh ∈ C2,α(M, M̄) such that

(a) φh is an (h, ḡ)-harmonic map for all h ∈ U ,

(b) if h ∈ U and ϕ ∈ V is an (h, ḡ)-harmonic map, then ϕ is geometrically equivalent
to φh, i.e. there exists an isometry ψ ∈ Iso(M̄, ḡ) such that ϕ = ψ ◦ φh.
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Theorem 1.3. Let g be a Ck (pseudo-) Riemannian metric tensor on the manifold M ,
with k � 3, and let γ be a closed g-geodesic on M . Consider Λ an open subset of a Banach
space of symmetric (0, 2)-tensors of class Ck on M , with g ∈ Λ, such that every tensor
in Λ is a (pseudo-) Riemannian metric tensor on M . Suppose that γ is non-degenerate,
i.e. all periodic Jacobi fields along γ are (constant) multiples of the tangent field γ′. There
then exists a neighbourhood U of g in Λ, a neighbourhood V of γ in C2(S1, M), and a
Ck−1-function U � h �→ γh ∈ C2(S1, M) such that

(a) γh is a closed h-geodesic in M for all h ∈ U ,

(b) if h ∈ U and α ∈ V is a closed h-geodesic in M , then α is geometrically equivalent
to γh, i.e. α and γh have the same image (and the same number of turns).

Theorem 1.4. Let x : M ↪→ M̄ be a non-degenerate and transversely oriented
CMC embedding, with mean curvature H0. Assume that there exists an invariant vol-
ume functional V defined in a neighbourhood of x in the set of C1-embeddings of M

into M̄ . There then exists an open interval ]H0 − ε, H0 + ε[ and a smooth function
]H0 − ε, H0 + ε[ � H �→ ϕH ∈ C2,α(M), with ϕH0 = 0, such that the following hold.

(a) For all H ∈ ]H0 − ε, H0 + ε[, the map xH : M ↪→ M̄ defined by

xH(p) = expx(p)(ϕH(p) · nx(p)), p ∈ M,

is a CMC embedding having mean curvature equal to H.

(b) Any given CMC embedding y : M ↪→ M̄ sufficiently close to x (in the C2,α-topology)
is isometrically congruent to some xH .

One of the main motivations for the development of our abstract result is Theorem 1.4,
which is a generalization of some previous rigidity results for CMC embeddings. These
previous results mostly originate from an idea of Kapouleas [11,12], which was then also
employed by Mazzeo et al . [15], Mazzeo and Pacard [14], White [19, § 3] and, finally,
Pérez and Ros [17, Theorem 6.7]. Using a similar idea, we prove a specific formulation of
the G-equivariant implicit function theorem for CMC embeddings (see Proposition 2.10),
without using Theorem 1.1. The proof is purely geometric, based on a flux argument.
This curious proof cannot be extended, for example, to the case where x(M) is not the
boundary of an open subset of M̄ . In particular, this excludes the case of CMC embed-
dings of manifolds with boundary.

Our abstract G-equivariant implicit function theorem applied to this setup covers a
much broader situation, culminating in Theorem 1.4, which generalizes Proposition 2.10.
This is a practical illustration of the advantages of the generalized equivariant implicit
function theorem given by Theorem 1.1. Namely, the hypothesis that x(M) is a bound-
ary is replaced with the more general hypothesis that there exists a generalized volume
functional in a C1-neighbourhood of x that is invariant under (small) isometries of the
ambient space. Topological and geometrical conditions that guarantee that this hypoth-
esis is satisfied are discussed in Appendix B. For instance, invariant volume functionals
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exist when the ambient space is diffeomorphic to a sphere or to R
n, when the ambient

space is not compact but it has compact isometry group (in the case of embeddings
of manifolds with boundary, compactness of the isometry group is not necessary), or
when the image of x is contained in an open subset of M̄ that has vanishing de Rham
cohomology in dimension m = dim(M).

Returning to the abstract result, a final technical remark on its proof is in order.
The central point is the construction of a sort of slice∗ for the group action at a given
smooth critical orbit of the variational problem. More precisely, this is a smooth sub-
manifold S, transversal to the given smooth critical orbit, such that every nearby orbit
(not necessarily smooth) intercepts S, and with the property that it is a natural con-
straint, i.e. restriction to S of the variational problem has the same critical points as the
non-restricted functional. Given the lack of regularity, transversality at an orbit does not
imply non-empty intersection with nearby orbits. The transversality argument is replaced
by a topological degree argument that uses the finite dimensionality of the group orbits
(see Proposition 3.4).

2. An implicit function theorem for CMC hypersurfaces

In this section, we discuss an ad hoc version of the implicit function theorem in the
context of CMC embeddings in Riemannian manifolds, which serves as motivation for
the abstract formulation given in § 3. The basic setup is given by a CMC hypersurface M

of a Riemannian manifold M̄ . We first recall two elementary applications of Stokes’s
theorem to the computation of integrals involving Killing fields and mean curvature of
submanifolds (see [9, Lemma 5.5] for the two-dimensional orientable case).

Lemma 2.1. Let (M̄, ḡ) be a Riemannian manifold, let M ⊂ M̄ be a compact sub-
manifold (without boundary), with mean curvature vector field H, and let K ∈ X(M)
be a Killing field in M . Then, ∫

M

ḡ(K,H) = 0. (2.1)

In addition, if M is the boundary of a (bounded) open subset of M̄ , then
∫

M

ḡ(K,n) = 0, (2.2)

where n is a continuous unit normal field along M .

Proof. Denote by KM ∈ X(M) the vector field on M obtained by orthogonal projec-
tion of K. We claim that divM (KM ) = ḡ(K,H). Equality (2.1) then follows immediately
from Stokes’s theorem. In order to compute divM (KM ), let ∇̄ denote the Levi–Civita
connection of ḡ, and let ∇ be the Levi–Civita connection of the induced metric on M .
If S is the second fundamental form of M , then, for all pairs X,Y ∈ X(M), one has

∗ The terminology here is not standard. Recall that a ‘slice’ for an action through a point is typically
assumed invariant under the action of the isotropy of that point (see [4]). This property is not required
here.
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that ∇̄XY = ∇XY + S(X,Y ). Moreover, differentiating in the direction X the equality
ḡ(KM ,Y ) = ḡ(K,Y ), we get that

ḡ(∇XKM ,Y ) + ḡ(KM ,∇XY ) = ḡ(∇̄XK,Y ) + ḡ(K, ∇̄XY ). (2.3)

Substituting ḡ(K, ∇̄XY ) = ḡ(K,∇XY ) + ḡ(K,S(X,Y )) into (2.3),

ḡ(∇XKM ,Y ) = ḡ(∇̄XK,Y ) + ḡ(K,S(X,Y )). (2.4)

Given x ∈ M , an orthonormal frame e1, . . . , em of TxM , and recalling that, since K is
Killing, ḡ(∇̄eiK, ei) = 0 for all i, we get that

divM (KM ) =
∑

i

ḡ(∇ei
KM , ei) =

∑
i

ḡ(K,S(ei, ei)) = ḡ(K,H),

which proves (2.1). Formula (2.2) is an immediate application of Stokes’s theorem, observ-
ing that divM̄ K = 0, as K is Killing. �

Remark 2.2. It is easy to find counterexamples to (2.2) when M is a hypersurface
that is not the boundary of an open subset of M̄ . If M is the boundary of an open
subset of M̄ , i.e. if the set M̄ \M has two connected components, then M is transversely
oriented. This means that the normal bundle TM⊥ is orientable. Conversely, if M is
transversely oriented, then the condition that M is the boundary of an open subset of M̄

is equivalent to the condition that the homomorphism H1(M̄) → H1(M̄, M̄ \M) induced
in singular homology by the inclusion (M̄, ∅) ↪→ (M̄, M̄ \ M) is trivial.

Definition 2.3. Given a transversely oriented codimension 1 CMC embedding
x : M ↪→ M̄ , the Jacobi operator Jx of x is the second-order linear elliptic differential
operator

Jx(f) = Δxf − (m RicM̄ (nx) + ‖Sx‖2)f, (2.5)

defined on the space of C2-functions f : M → R. In the above formula, m = dim(M),
Δx is the (positive) Laplacian of functions on M relative to the pullback metric x∗(ḡ),
RicM̄ (nx) is the Ricci curvature of M̄ evaluated on the unit normal field nx of x, and
Sx is the second fundamental form of x.

Definition 2.4. A function f satisfying Jx(f) = 0 is called a Jacobi field of x.

Remark 2.5. It follows easily from (2.5) that the space ker(Jx) of Jacobi fields of x

is a finite-dimensional space.

Remark 2.6. Given any α ∈ ]0, 1[, seen as a linear operator from C2,α(M) to C0,α(M),
Jx is a Fredholm map∗ of index 0, which is symmetric with respect to the L2-pairing
〈·, ·〉L2 : C2,α(M) × C0,α(M) → R, given by 〈f1, f2〉L2 =

∫
M

f1 · f2 dM . In particular,
ker(Jx) = Im(Jx)⊥, relative to the L2-inner product.

∗ Second-order self-adjoint elliptic operators acting on sections of Euclidean vector bundles over
compact manifolds are Fredholm maps of index 0 from the space of Cj,α-sections to the space of
Cj−2,α-sections, j � 2 (see, for instance, [19, § 1.4] and [20, Theorem 1.1]). This fact is used throughout
the paper.
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Note that if K̄ is a Killing field of (M̄, ḡ), then f = ḡ(K̄,nx) is a Jacobi field of x.
The embedding x is equivariantly non-degenerate if every Jacobi field arises in this way.

Definition 2.7. The CMC embedding x is non-degenerate if, given any Jacobi field f

of x, there exists a Killing field K̄ of (M̄, ḡ) such that f = ḡ(K̄,nx).

Remark 2.8. Non-degeneracy of every CMC embedding of M into M̄ is a generic
property in the set of Riemannian metrics ḡ (see [19,20]).

Definition 2.9. Two embeddings xi : M ↪→ M̄ , i = 1, 2, are said to be congruent
if there exists a diffeomorphism φ : M → M such that x2 = x1 ◦ φ, and isometrically
congruent if there exists a diffeomorphism φ : M → M and an isometry ψ : M̄ → M̄ such
that x2 = ψ ◦ x1 ◦ φ. Roughly speaking, congruence classes of embeddings of M into M̄

are submanifolds of M̄ that are diffeomorphic to M .

We now prove the above-mentioned formulation of the implicit function theorem for
CMC embeddings (compare with Theorem 1.4).

Proposition 2.10. Let x : M ↪→ M̄ be a non-degenerate codimension 1 CMC embed-
ding of a compact manifold M into a Riemannian manifold (M̄, ḡ), with mean curva-
ture H0. Assume also that x(M) is the boundary of an open subset of M̄ . There then
exists an open interval ]H0 − ε, H0 + ε[ and a smooth function ]H0 − ε, H0 + ε[ � H �→
ϕH ∈ C2,α(M), with ϕH0 = 0, such that the following hold.

(a) For all H ∈ ]H0 − ε, H0 + ε[, the map xH : M ↪→ M̄ defined by

xH(p) = expx(p)(ϕH(p) · nx(p)), p ∈ M,

is a CMC embedding having mean curvature equal to H.

(b) Any given CMC embedding y : M ↪→ M̄ sufficiently close to x (in the C2,α-topology)
is isometrically congruent to some xH .

Proof. By a standard argument in submanifold theory, congruence classes of embed-
dings y : M ↪→ M̄ near x are parametrized by functions on M . More precisely, to
each function ϕ ∈ C2,α(M) one associates the map xϕ : M → M̄ defined by xϕ(p) =
expx(p)(ϕ(p) · nx(p)), p ∈ M . For ϕ in a neighbourhood of 0, xϕ is an embedding of
M into M̄ . Conversely, given any embedding y : M ↪→ M̄ that is sufficiently close to x,
there exists ϕ ∈ C2,α(M) near 0 such that y is congruent to xϕ. Given a sufficiently small
neighbourhood U of 0 in C2,α(M), consider the map H : U → C0,α(M) that associates to
each ϕ the mean curvature function of the embedding xϕ. This function is smooth, as it
is given by a second-order quasi-linear differential operator having smooth coefficients.
The derivative dH(0) : C2,α(M) → C0,α(M) coincides with the Jacobi operator Jx.

By the non-degeneracy assumption on x, there exist d = dim ker(Jx) � 0 Killing vector
fields K̄1, . . . , K̄d of (M̄, ḡ) such that the functions fi = ḡ(K̄i,nx), i = 1, . . . , d, form a
basis of ker(Jx). Consider now the auxiliary map H̃ : U × R

d → C0,α(M) defined by

H̃(f, a1, . . . , ad) = H(f) +
d∑

i=1

aifi.
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Clearly, H̃ is smooth, and

dH̃(0)(f, b1, . . . , bd) = Jx(f) +
d∑

i=1

bifi.

Now, dH̃(0) is surjective; namely, the fi span the orthogonal complement of Im(Jx).
Moreover, the kernel of dH̃(0) coincides with ker(Jx) ⊕ {0}, which is finite dimensional
and, therefore, complemented in C2,α(M)⊕R

d. In other words, H̃ is a smooth submersion
at 0.

Using the local form of submersions, we get that, for H near H0, there exists an
open neighbourhood V of 0 in C2,α(M) × R

d such that the set H̃−1(H) ∩ V is a smooth
embedded submanifold of dimension d. Moreover, using the fact that submersions admit
smooth local sections, one has that there exists a smooth function ]H0 − ε, H0 + ε[ �
H �→ ϕ̃H ∈ V such that H̃(ϕ̃H) = H for all H, and with ϕ̃H0 = 0. We now claim, for all
H ∈ R, given ϕ̃ = (ϕ, a1, . . . , ad) ∈ H̃−1(H), that a1 = · · · = ad = 0 and H(ϕ) = H; in
other words, H̃−1(H) = H−1(H) × {0}. In order to prove the claim, assume that

H(ϕ) +
d∑

i=1

aifi = H.

Multiplying both sides of this equality by
∑

i aifi and integrating on M , keeping in mind
that ∫

M

H(ϕ)
d∑

i=1

aifi
(2.1)
= 0 and H ·

∫
M

d∑
i=1

aifi
(2.2)
= 0,

we get that ∫
M

[ d∑
i=1

aifi

]2

= 0.

This implies that a1 = · · · = ad = 0, and proves the claim. Hence, we have ϕ̃H =
(ϕH , 0, . . . , 0), with H �→ ϕH satisfying Proposition 2.10 (a).

Item (b) also follows easily. Namely, the action by isometries of (M̄, ḡ) on each
CMC embedding xϕH

produces an orbit that is a d-dimensional submanifold of the
Banach space C2,α(M).∗ Such an orbit is contained in H−1(H), which is also a
d-dimensional submanifold around xH . Hence, a neighbourhood of xH in the orbit of xH

coincides with a neighbourhood of xH in H−1(H). This implies that CMC embeddings
C2,α-close to x must be isometrically congruent to some xH . �

Remark 2.11. Observe that the assumption that x(M) is the boundary of a bounded
open subset of M̄ cannot be omitted in Proposition 2.10, as (2.2) is used in the proof (see
Remark 2.2). In particular, Proposition 2.10 does not cover the case of CMC embeddings
of manifolds with boundary (compare with Theorem 1.4).

∗ This is not a trivial fact, taking into account that the left action of the isometry group of (M̄, g)
on the space C2,α(M) obtained via the exponential map of the normal bundle of x is only continuous,
and not differentiable. However, it is proved in [1] that the orbit of any smooth embedding is a smooth
submanifold.
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3. Statement of the G-equivariant implicit function theorem

The usual formulations of the implicit function theorem give a local result, so its state-
ment can be given using open subsets of Banach spaces as domains and codomains of the
functions involved. For the equivariant version of the theorem discussed in this section
the situation is somewhat different. Namely, we consider group actions on Banach mani-
folds whose orbits are not necessarily contained in the domain of some local chart, or in
the domain of a local trivialization of a vector bundle. In fact, we do not even assume
boundedness of the orbits. This suggests that, in spite of the local character of the result
and its proof, the equivariant formulation of our theorem is better cast in an abstract
Banach manifolds/Banach vector bundles setup.

The basic setup is given by a manifold M acted upon by a Lie group G, another
manifold Λ and a differentiable function f : M × Λ → R that is G-invariant in the first
variable. More precisely, our framework is described by the following set of axioms.

Axiom (A1). M and Λ are differentiable manifolds, modelled on a (possibly infinite-
dimensional) Banach space.

Axiom (A2). G is a finite-dimensional Lie group, acting continuously on M (on the
left) by homeomorphisms, and g denotes its Lie algebra.

Axiom (A3). f : M × Λ → R is a function of class Ck+1, k � 1, satisfying f(g · x, λ) =
f(x, λ) for all g ∈ G, x ∈ M and λ ∈ Λ.

For all x ∈ M, denote by

βx : G → M and γg : M → M (3.1)

the map βx(g) = g · x and the homeomorphism γg(x) = g · x, respectively.
As for the regularity of the group action, we make the following assumptions.

Axiom (B). There exists a dense subset M′ ⊂ M such that for all x ∈ M′ the map
βx : G → M is differentiable at 1 ∈ G.

We denote by ∂1f : M×Λ → TM∗ the derivative of f with respect to the first variable;
our aim is to study the equation ∂1f(x, λ) = 0. Observe that, with the weak regularity
assumptions on the group action (we do not assume in principle the differentiability of
the map γg), it does not follow that if ∂1f(x, λ) = 0, then ∂1f(g · x, λ) = 0 as well for all
g ∈ G. We, therefore, explicitly assume that the following holds.

Axiom (C). For all λ ∈ Λ, the set {x ∈ M : ∂1f(x, λ) = 0} is G-invariant.

We now look at the question of the lack of a gradient for the function f; we define a
gradient-like map by introducing a suitable vector bundle on the manifold M, defined by
the following axioms.
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Axiom (D1). E → M is a Ck-Banach vector bundle.

Axiom (D2). There exist Ck-vector bundle morphisms

i : TM → E and j : E → TM
∗,

with j injective.

Axiom (D3). For all x ∈ M, the bilinear form 〈·, ·〉x : TxM × TxM → R defined by
〈u, v〉x = jx(ix(u))v is a (not necessarily complete) positive definite inner product (this
implies that i is also injective).

Axiom (D4). There exists a Ck-map δf : M × Λ → E such that

j ◦ δf = ∂1f.

Since j is injective, we get that ∂1f(x, λ) = 0 if and only if δf(x, λ) = 0.
We now return to the question of G-invariance of the set of critical points of the

functions f(·, λ). Assuming that the G-action is by diffeomorphisms (i.e. that the maps γg

are diffeomorphisms), given x0 such that ∂1f(x0, λ) = 0, obviously ∂1f(g ·x0, λ) = 0 for all
g ∈ G. For this conclusion it is necessary to differentiate γg; when the action of G is only
by homeomorphisms, the G-invariance of the critical set is obtained under a suitable
assumption of G-equivariance for the map δf. Given x ∈ M, the fibre of E over x is
denoted by Ex.

Axiom (E1). There exists a continuous left G-action by linear isomorphisms on the
fibres of E compatible with the action on M, i.e. such that the projection E → M is
equivariant (this means that, for each g, it is given a family of linear isomorphisms
ϕg,x : Ex → Eg·x depending continuously on x ∈ M and on g ∈ G, such that ϕgh,x =
ϕg,h·x ◦ ϕh,x for all g, h ∈ G and all x ∈ M).

Axiom (E2). The map δf(·, λ) : M → E is equivariant for all λ ∈ Λ.

Lemma 3.1. Axioms (E1) and (E2) imply (C).

Proof. Assume that ∂1f(x0, λ) = 0; then, δf(x0, λ) = 0. The equivariance property
gives that δf(g · x0, λ) = 0 for all g ∈ G, i.e. ∂1f(g · x0, λ) = 0 for all g ∈ G. �

Finally, another set of assumptions is needed in order to deal with the lack of the map
x �→ dβx(1) ∈ Lin(g, TM) for all x ∈ M. Our next set of hypotheses gives the existence
of a continuous extension to M of this map, provided that its codomain is enlarged and
endowed with a weaker topology. As above, this set of assumptions is better cast in terms
of vector bundles and injective morphisms.

Axiom (F). There exist a Ck-vector bundle Y → M and Ck-vector bundle morphisms

j̃ : E → Y∗ and κ : TM → Y,

with κ injective, such that

(F1) κ∗ ◦ j̃ = j (from which it follows that j̃ is also injective),

(F2) the map M′ � x �→ κx ◦dβx(1) ∈ Lin(g,Yx) has a continuous extension to a section
of the vector bundle Lin(g,Y) → M.
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From the density of M′, the extension in (F2) is, therefore, unique. We are now ready
for the detailed technical statement of Theorem 1.1 in § 1 and its proof.

Theorem 3.2. In the above setup of Axioms (A1)–(F), let (x0, λ0) ∈ M′ × Λ be a
point such that ∂1f(x0, λ0) = 0. Denote by L : Tx0M → Ex0 the linear map

L := πver ◦ ∂1(δf)(x0, λ0),

where πver : T0x0
E → Ex0 is the canonical vertical projection. If

(G1) L is Fredholm of index 0,

(G2) kerL = Im dβx0(1),

then there exists a G-invariant neighbourhood V ⊂ M×Λ of (G·x0, λ0) and a Ck-function
σ : Λ0 → M defined in a neighbourhood Λ0 of λ0 in Λ such that (x, λ) ∈ V and
∂1f(x, λ) = 0 hold if and only if x ∈ G · σ(λ).

Remark 3.3. Condition (G2) is an equivariant non-degeneracy condition on the crit-
ical orbit G · x0.

Proof. We study a local problem first, and we then use the group action for the
proof of the global statement. After suitable local charts and local trivialization of vector
bundles around the point (x0, λ0) have been chosen, one can assume that the following
hold.

• M is an open subset of a Banach space X, M′ is a dense subset of M that is
endowed with a topology finer than the induced topology from M, and Λ is an
open subset of another Banach space.

• The group action on M is described by a map U � (g, x) �→ g · x ∈ M, with U
an open neighbourhood of {1} × M in G × M. Such a map satisfies the obvious
equalities given by group operations whenever∗ such equalities make sense in the
open set U .

• The Ck+1-function f : M×Λ → R satisfies f(g ·x, λ) = f(x, λ) wherever such equality
makes sense (as above).

• The vector bundle E is replaced with the product M × E0, where E0 is a fixed
Banach space (isometric to the typical fibre of E).

• j : M → Lin(E0, X
∗) is a Ck-map such that jx is injective for all x ∈ M.

• i : M → Lin(X, E0) is a Ck-map such that jx ◦ ix : X → X∗ is a (not necessarily
complete) positive definite inner product on X (which implies, in particular, that
ix is injective for all x).

∗ For instance, the equality g · (h · x) = (gh) · x holds for all g, h ∈ G and x ∈ M such that (h, x) ∈ U
and (g, h · x) ∈ U . In particular, given x ∈ M, the equality must hold when g and h belong to some
neighbourhood of 1 in G. This could be formalized in terms of partial actions of groups (or groupoids)
on topological spaces, but this is not relevant in the context of the present paper.
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• The vector bundle Y is replaced with the product M × Y0, where Y0 is a fixed
Banach space (isometric to the typical fibre of Y).

• j̃ : M → Lin(E0,Y∗
0 ) and κ : M → Lin(X, Y0) are Ck-maps taking values in the set

of injective linear maps, and such that κ∗
x ◦ j̃x = jx for all x ∈ M.

• For all x ∈ M, the map βx is only defined on an open neighbourhood of 1 in G. For
x ∈ M′, its derivative at 1 is a linear map dβx(1) : g → X that depends continuously
on x, relative to the finer topology of M′.

• The map M′ � x �→ κx ◦ [dβx(1)] ∈ Lin(g,Y0) has a continuous extension to M.

• ∂1f : M×Λ → X∗ and δf : M×Λ → E0 are maps of class Ck such that jx(δf(x, λ)) =
∂1f(x, λ) for all (x, λ).

• The linear operator L : X → E0 is given by the partial derivative ∂1(δf)(x0, λ0). It
is a Fredholm operator of index 0, and kerL is given by the image of the linear
map dβx0(1).

Let S = Im(dβx0(1))⊥ be the closed subspace of X given by the orthogonal complement of
the subspace Im(dβx0(1)) relative to the inner product 〈·, ·〉 = jx0 ◦ ix0 . Since Im(dβx0(1))
is finite dimensional, we have a direct sum decomposition

X = Im(dβx0(1)) ⊕ S. (3.2)

We now introduce a finite-dimensional subspace Y ⊂ E0 as

Y = ix0(ker L);

we claim that Y is complementary to the closed subspace Im L in E0. In order to prove
the claim, we first observe that, using the fact that ix0 is injective and L has index 0,
the dimension of Y equals the codimension of Im L. Thus, our claim is proved if we show
that Y ∩ Im L = {0}. We have a commutative diagram:

X
L ��

∂1(∂1f)(x0,λ0) ��������������� E0

jx0

��
X∗

(3.3)

which is easily obtained by differentiating the equality jx(δf(x, λ0)) = ∂1f(x, λ0) with
respect to x at x = x0, keeping in mind that δf(x0, λ0) = 0. Observe that the second line
in (3.3) is a symmetric operator, and, therefore, we obtain that

jx0(Im L) ⊂ [ker(jx0 ◦ L)]◦ = (kerL)◦, (3.4)

where W ◦ denotes the annihilator of the subspace W ⊂ X in X∗. Now, if v ∈ ker L

is such that ix0(v) ∈ Im L, then, by (3.4), jx0 ◦ ix0(v) ∈ (ker L)◦, and, in particular,
jx0(ix0(v))v = 0. By (D3), it follows that v = 0, i.e. Y ∩ Im L = {0}, and, therefore,

E0 = Y ⊕ Im L.
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Let P : E0 → Im L be the projection relative to this direct sum decomposition of E0. We
define the function

H : (M ∩ S) × Λ → Im L

H(x, λ) = P (δf(x, λ));

observe that H(x0, λ0) = 0. Such a map has the same regularity as δf. The derivative
∂1H(x0, λ0) is P ◦L|S = L|S : S → Im L, and this is an isomorphism by (G2) and by (3.2).
We can, therefore, apply the standard implicit function theorem to H(x, λ) = 0 around
(x0, λ0), obtaining a neighbourhood Λ0 of λ0 in Λ and a Ck-function σ : Λ0 → (M ∩ S)
with σ(λ0) = x0 and such that, given (x, λ) in a neighbourhood of (x0, λ0) in (M∩S)×Λ,
the equality H(x, λ) = 0 holds if and only if x = σ(λ).

In order to complete the proof of our theorem, we show that the following hold.

(1) There exists a neighbourhood W of (x0, λ0) in M × Λ such that, given (x, λ) ∈ W ,
H(x, λ) = 0 if and only if ∂1f(x, λ) = 0.

(2) If x ∈ M is sufficiently close to x0, then the orbit G ·x has a non-empty intersection
with M ∩ S.

By possibly reducing the domain of the function σ, we can assume that its graph is
contained in W . The first claim implies that, given (x, λ) sufficiently close to (x0, λ0) in
(M ∩ S) × Λ, the equality ∂1f(x, λ) = 0 holds if and only if x = σ(λ). The second claim
and assumption (C) imply that, given (x, λ) sufficiently close to G · x0 × {λ0} in M × Λ,
∂1f(x, λ) = 0 if and only if x ∈ G · σ(λ).

In order to prove (1), we first observe that if (x, λ) ∈ (M ∩ S) × Λ and ∂1f(x, λ) = 0,
then δf(x, λ) = 0 and, therefore, H(x, λ) = 0. Conversely, we show that if x ∈ M ∩ S

is near x0, and H(x, λ) = 0, then δf(x, λ) = 0 (and, thus, ∂1f(x, λ) = 0 as well). We
observe that if H(x, λ) = 0, then δf(x, λ) ∈ ix0(ker L), and, thus, j̃x(δf(x, λ)) annihilates
[j̃x(ix0(ker L))]◦. Here, given a subspace Z ⊂ X∗, the symbol Z◦ denotes the subspace
of X annihilated by Z. Denote by B : M → Lin(g,Y0) the continuous extension of the
map x �→ κx ◦ [dβx(1)] defined in M′ (by (F2)); we claim that j̃x(δf(x, λ)) also anni-
hilates the image of B(x). This follows from the fact that, for x ∈ M′, ∂1f(x, λ) anni-
hilates Im(dβx(1)), which is easily seen by differentiating at g = 1 the (constant) map
g �→ f(βx(g), λ) (use (B1)) and a continuity argument. Namely, observe that, for x ∈ M′,

0 = ∂1f(x, λ) ◦ dβx(1)

= jx(δf(x, λ)) ◦ [dβx(1)]

= κ∗
x(j̃x(δf(x, λ))) ◦ [dβx(1)]

= j̃x(δf(x, λ)) ◦ κx ◦ [dβx(1)].

This states that the map

M � x �→ j̃x(δf(x, λ)) ◦ B(x) ∈ g
∗

vanishes for x ∈ M′. Thus, by continuity, it vanishes identically, i.e. j̃x(δf(x, λ)) annihi-
lates the image of B(x).
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To conclude the proof of (1), it suffices to show that, for x ∈ M near x0, one has that

Im(B(x)) + [j̃x(ix0(ker L))]◦ = Y0. (3.5)

Using the continuity of B and the fact that the subspace [j̃x(ix0(ker L))]◦ has fixed codi-
mension in Y0 (i.e. it does not depend on x), it follows that (3.5) is open∗ in M. Thus,
it suffices to show that it holds at x = x0. We check (3.5) at x = x0. The dimension
of Im(B(x0)) equals the dimension of Im(dβx0(1)), and this is equal to the dimension
of kerL, by (G2). Since j̃x0 and ix0 are injective, the codimension of [j̃x(ix0(ker L))]◦ is
equal to the dimension of kerL. Thus, it suffices to show that

κx0(Im(dβx0(1))) ∩ [j̃x0(ix0(ker L))]◦ = {0},

i.e.

Im(dβx0(1)) ∩ κ−1
x0

[j̃x0(ix0(ker L))]◦ = ker L ∩ [κ∗
x0

◦ j̃x0(ix0(ker L))]◦
= ker L ∩ [jx0(ix0(ker L))]0

= ker L ∩ (ker L)⊥

= {0}.

It remains to show (2), i.e., equivalently, that the set G ·S contains an open neighbour-
hood of x0. Since we are not assuming differentiability of the group action, this does not
follow from a transversality argument. The correct argument in the continuous case uses
the notion of topological degree of a map, and it is given separately in Proposition 3.4.
In our case, this result is used setting A = M, M = G, N = M, P = S, m0 = 1, a0 = x0

and χ as the action. �

Proposition 3.4. Let N be a (possibly infinite-dimensional) Banach manifold, let
P ⊂ N be a Banach submanifold, let M be a finite-dimensional manifold and let A be a
topological space. Assume that χ : A × M → N is a continuous function such that there
exists a0 ∈ A and m0 ∈ M with

(a) χ(a0, m0) ∈ P ,

(b) χ(a0, ·) : M → N of class C1,

(c) ∂2χ(a0, m0)(Tm0M) + Tχ(a0,m0)P = Tχ(a0,m0)N .

Then, for a ∈ A near a0, χ(a, M) ∩ P �= ∅.

∗ Details on the proof of openness of condition (3.5) are as follows. Let e1, . . . , er be a basis of ker L; the
covectors ωi = j̃x(ix0 (ei)), i = 1, . . . , r, are linearly independent in Y∗

0 . Consider the surjective linear map
τx : Y0 → Rr defined by τx(v) = (ω1(v), . . . , ωr(v)). The map M � x �→ τx ∈ Lin(Y0, Rr) is continuous.
Condition (3.5) is equivalent to Im(B(x)) + ker τx = Y0, i.e. that the linear map τx ◦ B(x) : g → Rr is
surjective. This is clearly an open condition.
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Proof. Given a function f : U ⊂ R
d → R

d of class C1, where U is an open neigh-
bourhood of 0, such that f(0) = 0 and df(0) is an isomorphism, the induced map
f̃ : S

d−1 → S
d−1 has topological degree equal to ±1. Here, f̃ is defined by f̃(x) =

‖f(xr)‖−1f(xr), where r > 0 is such that 0 is the unique zero of f in the closed ball
B[0; r] of R

d.
Now, if A is any topological space, f : A × U → R

d is continuous, and a0 ∈ A is
such that f(a0, ·) is of class C1, f(a0, 0) = 0 and ∂2f(a0, 0) is an isomorphism, for a

near a0, and r > 0 sufficiently small, 0 ∈ f(a, B[0; r]). This follows from the continuity
of the topological degree. The same holds for a function f : A × U → R

d, where now
U is an open neighbourhood of 0 in R

s, with s � d, under the assumption that f(a0, ·)
is of class C1, f(a0, 0) = 0, and ∂2f(a0, 0) is surjective. Namely, it suffices to apply the
argument above to the function obtained by restricting f to a d-dimensional subspace
where ∂2f(a0, 0) is an isomorphism.

To prove the result, use local coordinates adapted to P in N , and assume that M , P

and N are Banach spaces, with N = P ⊕ R
d, d � s = dim(M) is the codimension of P ,

and m0 = 0. In this situation, the result is obtained by applying the argument above to
the function f : A × M → R

d given by f(a, m) = π(χ(a, m)), where π : N → R
d is the

projection relative to the decomposition N = P ⊕ R
d. Clearly, f(a, m) = 0 if and only if

χ(a, m) ∈ P . Assumption (a) implies that f(a0, 0) = 0, and assumption (c) implies that
∂2f(a0, 0) is surjective. �

Remark 3.5. In Theorem 3.2, some assumptions on the group action can be weakened.
For instance, the result also holds for local group actions (see Appendix A). This version
of the equivariant implicit function theorem is used in the constant mean curvature
problem (see § 4.3). Versions of the result for the so-called partial actions of groups, or
even for actions of groupoids, semigroups, monoids, etc., are also possible.

4. Applications to geometric variational problems

We now describe concrete applications of our abstract result to three classic geomet-
ric variational problems: harmonic maps, closed geodesics and constant mean curvature
hypersurfaces, corresponding to Theorems 1.2, 1.3 and 1.4 in § 1, respectively.

4.1. Harmonic maps

Let (M, g) and (M̄, ḡ) be Riemannian manifolds.

Definition 4.1. A C2-map φ : M → M̄ is said to be (g, ḡ)-harmonic if

Δg,ḡ(φ) := tr(∇̂ dφ) = 0, (4.1)

where ∇̂ is the connection on the vector bundle TM∗ ⊗ φ∗(TM̄) over M induced by the
Levi–Civita connections ∇ of g and ∇̄ of ḡ.
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Remark 4.2. Harmonic maps form a class that contains several geometrically impor-
tant objects (see [10]). For instance, if dimM = 1, harmonic maps φ : M → M̄ are the
geodesics of M̄ . In particular, setting M = S

1, the previous statements in § 4.2 regard-
ing closed geodesics of M̄ can be reobtained (in the Riemannian case). The harmonic
variational problem is also related to the CMC problem described in § 4.3. Namely, an
isometric immersion φ : M → M̄ is minimal if and only if it is harmonic. In addition, set-
ting M̄ = R, harmonic maps are simply harmonic functions on M ; and, setting M̄ = S

1,
harmonic maps are canonically identified with the harmonic 1-forms on M with integral
periods.

Henceforth, we assume compactness of the source manifold M to use the classic vari-
ational characterization of harmonic maps. Let M be the Banach manifold C2,α(M, M̄)
consisting of all maps φ : M → M̄ that satisfy the C2,α-Hölder condition. Let Λ be the
open subset of the Banach space of symmetric (0, 2)-tensors of class Ck on M , with k � 3,
consisting of all positive definite tensors, i.e. elements of Λ are Riemannian metric tensors
of class Ck on M . Set f : M × Λ → R,

f(φ, g) = 1
2

∫
M

‖dφ(x)‖2
HS volg,

where volg is the volume form (or density) of g and ‖dφ(x)‖HS is the Hilbert–Schmidt
norm of the linear map dφ(x). For a given g0 ∈ Λ, critical points of the map φ �→ f(φ, g0)
are precisely the (g0, ḡ)-harmonic maps φ : M → M̄ . For φ ∈ M, the tangent space TφM

is identified with the Banach space C2,α(φ∗TM̄) of all C2,α-Hölder vector fields along φ.
Given such a V ∈ TφM, the derivative ∂1f(φ, g)V is given by

∂1f(φ, g)V =
∫

M

tr(dφ∗∇̄V ) volg

=
∫

M

[div(dφ∗(V )) − ḡ(Δg,ḡ(φ),V )] volg

Stokes= −
∫

M

ḡ(Δg,ḡ(φ),V ) volg, (4.2)

where the trace is meant on the entries dφ∗(·)∇̄(·)V .

Definition 4.3. The corresponding Jacobi operator J along a (g, ḡ)-harmonic map φ

is the linear differential operator

Jφ(V ) = −ΔV + tr(R̄(dφ(·),V ) dφ(·)), (4.3)

defined in C2,α(φ∗TM̄). Here, R̄ is the curvature tensor of ḡ, and ΔV is a vector field
along φ uniquely defined by

ḡ(ΔV ,W ) = div(∇̄V ∗)W − ḡ(∇̄V , ∇̄W ), W ∈ C2,α(φ∗TM̄), (4.4)

i.e. ΔV (x) =
∑

i(∇̄ei∇̄V )ei, where (ei)i is an orthonormal basis of TxM .
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Definition 4.4. A vector field V that satisfies Jφ(V ) = 0 is called a Jacobi field.

Observe that if K is a Killing vector field, then Jφ(K ◦ φ) = 0.

Definition 4.5. A (g, ḡ)-harmonic map φ : M → M̄ is said to be non-degenerate if
all Jacobi fields along φ are of the form K ◦ φ, where K is Killing.

Let G be the isometry group Iso(M̄, ḡ) of the target manifold, acting on M by left
composition. Clearly, the functional f is invariant in the first variable under this action.∗

Using results from [16], it is possible to prove that this action is smooth, since it is given
by left composition with smooth maps (see also [18] for the non-compact case). As a
consequence, part of the technical arguments in Theorem 3.2 to deal with low regularity
assumptions is not necessary in this context.

Definition 4.6. Two harmonic maps φ1 and φ2 are called geometrically equivalent if
they are in the same Iso(M̄, ḡ)-orbit, i.e. if there exists an isometry ψ : M̄ → M̄ such
that φ2 = ψ ◦ φ1.

We are now ready for the following proof.

Proof of Theorem 1.2. All assumptions of Theorem 3.2 are satisfied by the harmonic
maps problem, using the following objects.

• M′ coincides with M = C2,α(M, M̄).

• E is the mixed vector bundle whose fibre Eφ is C0,α(φ∗TM̄), the Banach space of
all C0,α-Hölder vector fields along φ, endowed with the topology C2,α on the base
and C0,α on the fibres.

• i is the inclusion, and j is induced by the L2-pairing that uses the inner product
induced by ḡ, and integrals taken with respect to the volume form (or density) of
some fixed auxiliary† Riemannian metric g∗ on M .

• Given φ : M → M̄ of class C2,α and a Riemannian metric tensor g on M , δf(φ, g)
is given by −ζg · Δg,ḡ(φ), where ζg : M → R

+ is the positive Ck-function satisfying
ζg · volg∗ = volg (see (4.1) and (4.2)).

∗ One should observe that the harmonic map functional is also invariant under the action of the
isometry group Iso(M, g) of the source manifold (M, g), which acts by right composition in the space
of maps from M to M̄ . However, equivariance with respect to such action will not be considered here.
Namely, observe that, as the metric g varies, clearly the group Iso(M, g) also varies; thus, in order to deal
with such equivariance, a formulation of the equivariant implicit function theorem for varying groups is
needed. The assumption of equivariant non-degeneracy in Theorem 1.2 restricts the result to the case
where (M, g) has discrete isometry group or, more generally, when, given any Killing field K of (M, g),
the field dφ(K) along φ is the restriction to φ(M) of some Killing field K̄ of (M̄, ḡ).

† Note that one cannot use the volume form of g in order to define j, because this metric is variable
in the problem that we are considering.
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• Y = TM, κ is the identity map and j̃ is induced by the L2-pairing, as above.

• Identifying the Lie algebra g with the space of (complete) Killing vector fields on
(M̄, ḡ), for φ ∈ M, the map dβφ(1) : g → TφM associates to a Killing vector field K̄

the vector field K̄ ◦ φ along φ.

• Given a (g, ḡ)-harmonic map φ : M → M̄ , the vertical projection of the derivative
∂1(δf)(φ, g) is identified with ζg · Jφ, where Jφ is the Jacobi operator in (4.3). This
is an elliptic second-order partial differential operator, and ζg · Jφ : C2,α(φ∗TM̄) →
C0,α(φ∗TM̄) is a Fredholm operator of index 0 (see [20, Theorem 1.1, (2)]).

�

4.2. Closed geodesics

Let M be an arbitrary manifold, let M be the Banach manifold C2(S1, M) consisting
of all closed curves of class C2 in M , let B be a Banach space of symmetric (0, 2)-tensors
of class Ck on M , with k � 3, and let Λ denote an open subset of B consisting of tensors
that are everywhere non-degenerate on M . Thus, elements of Λ are (pseudo-) Riemannian
metric tensors on M . We also fix an auxiliary Riemannian metric gR on M ; this metric
induces a positive definite inner product and a norm ‖·‖R on each tangent and cotangent
space to M , and on all tensor products of these spaces. This is used implicitly throughout,
whenever our constructions require the use of a norm or of an inner product of tensors.∗

Given a (pseudo-) Riemannian metric tensor g on M , we denote by Tg the gR-symmetric
(1, 1)-tensor on M defined by

g = gR(Tg·, ·). (4.5)

Consider the smooth function f : M × Λ → R given by

f(γ, g) = 1
2

∫
S1

g(γ′, γ′) dθ;

for a given g0 ∈ Λ, the critical points of the map γ �→ f(γ, g0) are precisely the periodic
g0-geodesics on M . For γ ∈ M, the tangent space TγM is identified with the Banach
space of all periodic vector fields V of class C2 along γ. Given such a V ∈ TγM, recall
that the derivative ∂1f(γ, g)V is given by

∂1f(γ, g)V =
∫

S1
g

(
γ′,

Dg

dθ
V

)
dθ, (4.6)

where Dg/dθ is the covariant derivative operator along γ relative to the Levi–Civita
connection ∇g of g.

∗ These norms can be used, for example, to give a simple construction of the Banach space B. Consider
∇R the Levi–Civita connection of gR. Then, B may be taken as the space of (0, 2)-tensors s of class Ck

on M that are gR-bounded, i.e. such that ‖s‖B = max1�i�k{supx∈M ‖(∇R)is(x)‖R} < +∞.
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Definition 4.7. If γ is a g-geodesic, the Jacobi operator J along γ is the linear
differential operator

J(V ) =
(

Dg

dθ2

)2

V + Rg(γ′,V )γ′, (4.7)

defined in the space of C2-vector fields V along γ. Here, Rg is the curvature tensor of the
Levi–Civita connection of g. A Jacobi field along γ is a vector field V satisfying J(V ) = 0.

Definition 4.8. A closed g-geodesic γ is said to be non-degenerate if the only periodic
Jacobi fields along γ are (constant) multiples of the tangent field γ′.

Remark 4.9. Non-degeneracy of all closed geodesics (including iterates) is a generic
property in the set of (pseudo-) Riemannian metric tensors g (see [2,3]).

Definition 4.10. Let G be the circle S
1, acting on M by rotation, i.e. by right com-

position. This action is only continuous (and not differentiable), but each g ∈ G gives a
diffeomorphism of M. The stabilizer of every non-constant closed curve γ in M is a finite
cyclic subgroup of S

1. When such a stabilizer is trivial, we say that γ is prime, i.e. it is
not the iterate of some other closed curve in M . If n > 1 is the order of the stabilizer
of a curve γ, then γ is the n-fold iterate of some prime closed curve on M . Two closed
curves γ1 and γ2 on M belong to the same S

1-orbit if and only if

(a) γ1(S1) = γ2(S1),

(b) γ1 and γ2 have stabilizers of the same order.

When (a) and (b) are satisfied, we say that γ1 and γ2 are geometrically equivalent.

We are now ready for the following proof.

Proof of Theorem 1.3. All assumptions of Theorem 3.2 are satisfied by the harmonic
maps problem, using the following objects.

• M′ is the set C3(S1, M), endowed with the C3-topology.

• E is the mixed vector bundle whose fibre Eγ is the Banach space of all periodic
continuous vector fields along γ, endowed with the topology C2 on the base and C0

on the fibres.

• i is the inclusion, and j is induced by the L2-pairing (this uses the inner product
given by gR).

• Y is the mixed vector bundle whose fibre Yγ is the Banach space of all periodic
C1-vector fields along γ, endowed with the topology C2 on the base and C1 on the
fibres.

• j̃ is induced by the L2-pairing (this uses the inner product given by gR).

• κ is the inclusion.
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• Using the identification g ∼= R, Lin(g, TM) ∼= TM and Lin(g,Y) ∼= Y, for γ ∈ M′,
the map dβγ(1) is the element γ′ ∈ TM.

• The map κ ◦ [dβγ(1)] has the same expression of dβγ(1), where now γ ∈ M and
γ′ ∈ Y.

• The map δf is defined by δf(γ, g) = −Tg(Dgγ′/dθ), where Tg is defined in (4.5).
Note that Dgγ′/dθ is a continuous vector field along γ, and

jγ(δf(γ, g))V =
∫

S1
gR(δf(γ, g),V ) dθ

= −
∫

S1
gR

(
Tg

(
Dg

dθ
γ′

)
,V

)
dθ

= −
∫

S1
g

(
Dg

dθ
γ′,V

)
dθ

=
∫

S1
g

(
γ′,

Dg

dθ
V

)
dθ

= ∂1f(γ, g)V .

• The derivative ∂1(δf) is given by

∂1(δf)(γ, g)V = −(∇g
V Tg)

(
Dg

dθ
γ′

)
− Tg(J(V )),

where V ∈ TγM and J is the Jacobi operator (4.7).

The operator J acting on the space of periodic fields of class C2 along γ and
taking values in the space of periodic continuous vector fields along γ is a Fredholm
operator of index 0, as it is a compact perturbation of an isomorphism. Since
the composition on the left-hand side with Tg is an isomorphism, it follows that
the operator V �→ Tg(J(V )) is a Fredholm operator of index 0 from the space
of periodic fields of class C2 along γ to the space of periodic continuous vector
fields along γ. The operator V �→ −(∇g

V Tg)(Dgγ′/dθ) from the space of C2-vector
fields to the space of C0-vector fields is compact, as it is continuous relative to the
C0-topology, and the inclusion C2 ↪→ C0 is compact. Hence, ∂1(δf)(γ, g) is Fredholm
of index 0.

• If γ ∈ M′, then the orbit S
1 · γ is a C1-submanifold of M that is diffeomorphic

to S
1. The tangent space Tγ(S1 · γ) ⊂ TγM is spanned by the tangent field γ′.

Non-degeneracy of a critical orbit thus corresponds to the non-degeneracy of the
closed geodesic.

�
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4.3. CMC hypersurfaces

Using our main abstract result, we now prove Theorem 1.4, which is an improvement of
Proposition 2.10. More precisely, we employ a version of Theorem 3.2 for local actions (see
Theorem A 5). We need a technical assumption concerning the existence of an invariant
volume functional around a given CMC embedding x : M ↪→ M̄ . This will be a volume
functional invariant under left compositions with isometries of the ambient space (see
Definition B 1). Examples where this assumption is satisfied are discussed in Appendix B.
We stress that this assumption is indeed necessary (see Example 4.11).

Proof of Theorem 1.4. Consider the set E(M, M̄) of all unparametrized embed-
dings of class C2,α of M into M̄ , i.e. the set of congruence classes of C2,α-embeddings
y : M ↪→ M̄ . Such a set does not have a natural global differentiable structure, but it
admits an atlas of charts that make it an infinite-dimensional topological manifold mod-
elled on the Banach space C2,α(M) (see [1]). Given a smooth embedding y : M → M̄ ,
nearby congruence classes of embeddings are parametrized by sections of the normal
bundle of y, using the exponential map of (M̄, ḡ). We identify congruence classes of
embeddings near x with functions belonging to a neighbourhood of 0 in the Banach
space C2,α(M); for this identification the transversal orientation of x(M) is used. Let M

be a sufficiently small neighbourhood of x in E(M, M̄), identified with a neighbourhood
of 0 in the space C2,α(M).

Consider the isometry group G = Iso(M̄, ḡ) of the ambient manifold. There is a local
action (see Appendix A) of G on M, defined as follows. If y : M ↪→ M̄ is an embedding
near x and φ is an isometry of (M̄, ḡ), then the action of φ on (the congruence class of) y

is given by the (congruence class of the) left composition φ◦y. The domain of this action
consists of pairs (φ, y) such that φ◦y belongs to M; the axioms of local actions are readily
verified for this map. The local action of G on the set of unparametrized embeddings is
continuous (see [1]), but the action is differentiable only on the dense subset M′ of M

consisting of congruence classes of embeddings of class C3,α. The orbit of each of these
elements is a C1-submanifold of C2,α(M).

Given an embedding y : M ↪→ M̄ , denote by A(y) the volume of M relative to the
volume form of the pullback metric y∗(ḡ), and consider an invariant volume functional V
defined in a neighbourhood of x in C1(M, M̄). The values A(y) and V(y) do not depend
on the parametrization of y, and A and V define functions on M that are smooth in every
local chart (see [1] for details). Finally, let Λ be an open interval of R containing H0, and
define

f : M × Λ → R

f(y, λ) := A(y) + mλV(y).

It is well known that ∂1f(y, λ) = 0 if and only if y is a CMC embedding with mean
curvature equal to λ. The second variation of f(·, H0) at x is identified with the Jacobi
operator Jx in (2.5). In particular, Jx : C2,α(M) → C0,α(M) is a Fredholm operator of
index 0 (see [20, Theorem 1.1, (2)]). Since A and V are invariant under the local action of
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left composition with elements of the isometry group G = Iso(M̄, ḡ), so is the function f.
Recall that G is a Lie group, and is compact when M̄ is compact.

The desired result now follows as a direct application of the equivariant implicit func-
tion theorem for local actions (see Theorem A 5); the objects described in Axioms (A),
(B), (D) and (F) are defined as follows for the CMC variational problem.

• E is the Banach space C0,α(M).

• i is the inclusion C2,α ↪→ C0,α and j is induced by the L2-pairing (f, g) �→∫
M

f · g volg.

• Y is the Banach space C1,α(M).

• j̃ is induced by the L2-pairing.

• κ is the inclusion.

• Identifying the Lie algebra g with the space of (complete) Killing vector fields on
(M̄, ḡ), for y ∈ M′, the map dβy(1) : g → TyM associates to a Killing vector field K̄

the orthogonal component of K̄ along y.

• Given a C2,α-embedding y, δf(y, λ) is the mean curvature function of y (which is a
C0,α-function on M).

• ∂1(δf)(x, H0) is identified with the Jacobi operator Jx.

The assumptions of Theorem A 5 are easily verified, concluding the proof. �

The following examples show that neither the assumption on the existence of an invari-
ant volume functional nor the assumption on the transversal orientation in the case of
minimal embeddings can be omitted in Theorem 1.4.

Example 4.11. Consider M = S
1 and let M̄ = S

1 × S
1 be the two-torus endowed

with the flat metric. The embedding x : S
1 → S

1 × S
1 given by x(z) = (z, 1), z ∈ S

1, is
obviously minimal (i.e. a geodesic). It is also easy to see that such an embedding is non-
degenerate, i.e. every periodic Jacobi field along x is the restriction of a Killing vector
field. However, near x there exists no embedding of S

1 into S
1×S

1 with constant geodesic
curvature different from 0. Namely, every constant geodesic curvature embedding should
be the projection on S

1 × S
1 of a circle in the plane R

2; such a projection is a curve with
trivial homotopy class, hence it cannot be close to x in the C1-topology. Observe that, in
this example, the image of x is not contained in any open subset of S

1 × S
1 with trivial

first cohomology space, and there exists no volume functional defined in a neighbourhood
of x in C1(S1, S1 × S

1) that is invariant under isometries of S
1 × S

1.

Example 4.12. We observe that the transverse orientability is a necessary condi-
tion in Theorem 1.4. Namely, such a condition is closed (and also open) relative to the
C1-topology; thus, if (xH)H∈ ]−ε,ε[ is a continuous family of CMC embeddings, such that
each xH has mean curvature H, then x0 must be transversely oriented.
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For instance, consider the real projective plane RP 2 with the standard metric, and
the minimal (i.e. geodesic) embedding x0 : S

1 ↪→ RP 2 obtained by projecting in RP 2

a minimal geodesic between two antipodal points in S
2. This is a non-degenerate min-

imal embedding, which is not transversely oriented. The only CMC immersions of S
1

in S
2 are parallel to the equator. The corresponding immersions obtained in the quotient

xH : S
1 ↪→ RP 2 are not C1-close to x0, since, for instance, the length of xh tends to twice

the length of x0 as H goes to 0.

An alternative form of stating Theorem 1.4 uses the notion of rigidity for a path of
CMC embeddings.

Definition 4.13. Given a one-parameter family xs : M ↪→ M̄ , s ∈ [a, b], of
CMC embeddings, we say that the family X = {xs}s∈[a,b] is rigid if there exists an
open neighbourhood U of X in C2,α(M, M̄) such that any CMC embedding x : M ↪→ M̄

in U is isometrically congruent to some xs. We say that the family is locally rigid at
s0 ∈ [a, b] if there exists ε > 0 such that, setting I = [a, b] ∩ [s0 − ε, s0 + ε], the family
{xs}s∈I is rigid.

Corollary 4.14. Let xs : M ↪→ M̄ , s ∈ [a, b], be a C1-family of CMC embeddings,
denote by H(s) the mean curvature of xs, and let s0 ∈ [a, b] be such that

• xs0 is non-degenerate,

• there exists an invariant volume functional in a C1-neighbourhood of xs0 ,

• H′(s0) �= 0.

Then, X = {xs}s∈[a,b] is locally rigid at s0.

Proof. The assumption that H′(s0) �= 0 implies the existence of a C1-function

]H(s0) − ε, H(s0) + ε[ � H �→ s(H) ∈ ]s0 − δ, s0 + δ[,

with ε, δ > 0 small enough, such that H(s(H)) = H for all H. Apply Theorem 1.4
to x = xs0 , obtaining a new path H �→ xH of CMC embeddings. Note that xs0 must
be transversely oriented, even in the case H(s0) = 0; namely, by the assumption that
H′(s0) �= 0, it follows that H is not constant in any neighbourhood of s0, and, thus,
xs0 is the limit of transversely oriented embeddings. By Theorem 1.4 (b), xs(H) must
be isometrically congruent to xH for all H near H(s0), and the local rigidity follows
readily. �

CMC embeddings of manifolds with boundary

A result totally analogous to Theorem 1.4 holds in the case of codimension 1
CMC embeddings x : M ↪→ M̄ of manifolds M with boundary ∂M . In this situation, one
is interested in variations of x that fix the boundary, and the corresponding infinitesimal
variations are Jacobi fields that vanish on ∂M . We have the corresponding definition.
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Definition 4.15. If ∂M �= ∅, a CMC embedding x : M ↪→ M̄ is non-degenerate if
every Jacobi field f along x that vanishes on ∂M is of the form f = ḡ(K̄,nx) for some
Killing field K̄ of (M̄, ḡ) tangent to x(∂M).

If x is non-degenerate in this sense, then the implicit function theorem gives the exis-
tence of a variation (xH)H∈ ]H0−ε,H0+ε[ of x by CMC embeddings xH : M ↪→ M̄ such that
xH |∂M = x|∂M for all H. The proof of this fixed-boundary version is totally analogous to
that of Theorem 1.4, mutatis mutandis. We require the existence of a volume functional
defined in a C1-neighbourhood of x in the set of embeddings y : M ↪→ M̄ with fixed
boundary, i.e. y(∂M) = x(∂M), and invariant under isometries of (M̄, ḡ) that preserve
x(∂M). Note that the group of such isometries is always compact, because the action of
the isometry group is proper and ∂M is compact. In this case, invariant volume func-
tionals can be obtained from invariant primitives of the volume form, using an averaging
procedure (see Appendix B).

Remark 4.16. As for the variational framework, in the non-empty boundary case M is
the manifold of fixed boundary unparametrized embeddings of M into M̄ of class C2,α,
which is modelled on the Banach space C2,α

0 (M, R) = {f ∈ C2,α(M, R) : f |∂M ≡ 0}.
Note that, when M has boundary, the Jacobi operator Jx : C2,α

0 (M, R) → C0(M, R) is
Fredholm of index 0.

Natural extensions of the CMC implicit function theorem

Theorem 1.4 extends naturally to more general situations involving hypersurfaces that
are stationary for a parametric elliptic functional with a volume constraint, like, for
instance, hypersurfaces with constant anisotropic mean curvature (see [13]). Such exten-
sion is quite straightforward, and is not discussed here. It is also interesting to point
out that Theorem 1.4 can be extended to the case of CMC immersions, rather than
embeddings. The procedure here is to endow the set of unparametrized immersions with
a local differential structure based on the exponential map of the normal bundle. This is
possible in the case of the so-called free immersions, i.e. immersions x : M → M̄ with the
property that the unique diffeomorphism φ of M satisfying x◦φ = x is the identity. This
is the case, for instance, when there exists some point in the image of x whose inverse
image consists of a single point of M . Details can be found in [5].

Appendix A. Local actions

It is useful to have a version of the equivariant implicit function theorem for local actions
of Lie groups on a manifold. Once more, the paradigmatic example to keep in mind is
the CMC embedding problem, in which one has a local action of the isometry group of
the target manifold on a neighbourhood of 0 of a Banach space (see § 4.3). One observes
that, given the local character of the result, the proof of Theorem 3.2 carries over to the
case where the action of the Lie group G is only locally defined, in a sense that is clarified
in this appendix.
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Definition A 1. Let G be a Lie group and let M be a topological manifold. A local
action of G on M is a continuous map ρ : Dom(ρ) ⊂ G × M → M, defined on an open
subset Dom(ρ) ⊂ G × M containing {1} × M satisfying that

(a) ρ(1, x) = x for all x ∈ M,

(b) ρ(g1, ρ(g2, x)) = ρ(g1g2, x) whenever both sides of the equality are defined, i.e. for
all those x ∈ M and g1, g2 ∈ G such that (g2, x) ∈ Dom(ρ), (g1, ρ(g2, x)) ∈ Dom(ρ)
and (g1g1, x) ∈ Dom(ρ).

Remark A 2. The particular case of actions is when the domain Dom(ρ) coincides
with the entire G × M.

Remark A 3. Local actions can be restricted, in the sense that, given any open
subset A of Dom(ρ) containing {1} × M, the restriction ρ|A of ρ to A is again a local
action of G on M.

Given a local action ρ of G on M, for g ∈ G, let ρg denote the map ρ(g, ·), defined on
an open (possibly empty) set Dom(ρg) = Dom(ρ) ∩ {g} × M. The following properties
follow easily from the definition.

Lemma A 4. Let ρ : Dom(ρ) ⊂ G × M → M be a local action of G on M . The
following then hold.

(i) For all g ∈ G, the map ρg : ρ−1
g (Dom(ρg−1)) → ρ−1

g−1(Dom(ρg)) is a homeo-
morphism.

(ii) The set {(g, x) ∈ G × M : x ∈ ρ−1
g (Dom(ρg−1))} is an open subset that contains

{1} × M.

In particular,

(iii) for all x ∈ M, there exists an open neighbourhood Ux of 1 in G such that, for all
g ∈ Ux, x ∈ ρ−1

g (Dom(ρg−1)).

In view of (iii), one can define a map βx : Dom(βx) ⊂ G → M on a neighbourhood
Dom(βx) of 1 in G, by βx(g) = ρ(g, x) (see (3.1)). In particular, if x ∈ M is such that βx is
differentiable (at 1), then one has a well-defined linear map dβx(1) : g → TxM. A subset
C ⊂ M is called G-invariant if x ∈ C implies that ρ(g, x) ∈ C for all g ∈ Dom(βx).

Theorem A 5. Theorem 3.2 holds when one replaces (A2) with the assumption that
a local action ρ of G on M is given, and replaces (A3) with the assumption that f satisfies

f(ρ(g, x), λ) = f(x, λ) for all (g, x) ∈ Dom(ρ).

In this situation, the conclusion is that there exist open subsets Λ0 ⊂ Λ and M0 ⊂ M,
with λ0 ∈ Λ0 and x0 ∈ M0 and a Ck-map σ : Λ0 → M0 such that, for (x, λ) ∈ M0 × Λ0,
the identity ∂1f(x, λ) = 0 holds if and only if there exists g ∈ G, with (φ(λ), g) ∈ Dom(ρ)
such that x = ρ(g, σ(λ)).
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Proof. The proof of Theorem 3.2 carries over to this case, with minor modifi-
cations. One constructs a submanifold S ⊂ M through x0 with the property that
Tx0S ⊕ Im(dβx0(1)) = Tx0M, and considers the restriction of f to the product S × Λ.
The only extra consideration here is to show that the set ρ((G × S) ∩ Dom(ρ)) is a
neighbourhood of x0; this is the analogue of (2) in the proof of Theorem 3.2. Once again,
this follows as an application of Proposition 3.4, used in the following setup: A is an
open neighbourhood of 1 in G, M is an open neighbourhood of x0 in M, these open
subsets being chosen in such a way that the product A × M is contained in the open set
{(g, x) ∈ G×M : x ∈ ρ−1

g (Dom(ρg−1))} (see Lemma A 4 (ii)). Set N = M, P = S, a0 = 1
and m0 = x0; the function χ is the restriction of ρ to A × M . The conclusion of Propo-
sition 3.4 states that, for all x ∈ M , there exists g ∈ A such that x ∈ ρ−1

g (Dom(ρg−1))
and ρ(g, x) ∈ S; since ρ(g, x) ∈ Dom(ρg−1), x = ρ(g−1, ρ(g, x)) ∈ ρ((G × S) ∩ Dom(ρ)),
i.e. ρ((G × S) ∩ Dom(ρ)) contains the open subset M � x0. The rest of the proof of
Theorem 3.2 can now be repeated verbatim. �

Appendix B. Invariant volume functionals

A technical assumption made in Theorem 1.4 concerns the existence of a generalized
volume functional V that is invariant under left composition with isometries of (M̄, ḡ).
We consider a compact differentiable manifold M , possibly with boundary ∂M , and a
Riemannian manifold (M̄, ḡ), with m = dim(M) = dim(M̄) − 1.

Definition B 1. Let U be an open subset of embeddings x : M ↪→ M̄ . An invariant
volume functional on U is a real-valued function V : U → R satisfying the following.

(a) V(x) =
∫

M
x∗(η), where η is an m-form defined on an open subset U ⊂ M̄ such

that dη is equal to the volume form volḡ of ḡ in U .

(b) Given x ∈ U , for all isometry φ of (M̄, ḡ) sufficiently close to the identity, the
function is V(φ ◦ x) = V(x).

If M has boundary, the invariance property (b) is required to hold only for isometries φ

near the identity, and preserving x(∂M), i.e. φ(x(∂M)) = x(∂M).

By (b), the generalized volume V(x) does not depend on the parametrization of x,
i.e. V(x ◦ ψ) = V(x) for all diffeomorphisms ψ of M . Hence, V defines a smooth map
(in local charts) in a neighbourhood of x in the set of unparametrized embeddings of M

into M̄ (see [1]).

Example B 2. Assume that the image x(M) of x is the boundary of a bounded
open subset Ω of M̄ ; note that this is an open condition in the set of unparametrized
embeddings.∗ For y sufficiently close to x in the C1-topology, one has that y(M) = ∂Ωy

for some open bounded subset Ωy of M̄ . Setting V(y) = vol(Ωy), i.e. the volume of this
∗ If x is transversely oriented, then such a condition is equivalent to the fact that x induces the

null map in homology H1(M) → H1(M̄, M \ x(M)). In particular, the condition is stable by C1-small
perturbations of x.
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open bounded subset, we have an invariant volume functional V (use Stokes’s theorem).
In fact, when x(M) = ∂Ω, any function V satisfying Definition B 1 (a) coincides with
such a volume functional, by Stokes’s theorem.

Example B 3. Assume that M̄ is non-compact, so its volume form volḡ is exact, and
assume that G = Iso(M̄, ḡ) is compact. Let η be a primitive of volḡ, and set

ηG =
∫

G

φ∗(η) dφ,

the integral being taken relative to a Haar measure of volume 1 of G. Then, ηG is
a G-invariant primitive of volḡ. In particular, the functional V(x) =

∫
M

x∗(ηG) is an
invariant volume functional.

Using the compactness argument above, we immediately obtain the following corollary.

Corollary B 4. Assume that M is a compact manifold with (non-empty) bound-
ary ∂M , and that M̄ is non-compact. Given an embedding x : M ↪→ M̄ , there exists a
volume functional V defined in the set

{y : M ↪→ M̄ embedding : y(∂M) = x(∂M)},

which is invariant under all isometries φ that preserve x(∂M).

Proof. The action of the isometry group G = Iso(M̄, ḡ) on M̄ is proper; since ∂M is
compact, the closed subgroup G0 of G consisting of isometries φ satisfying φ(x(∂M)) =
x(∂M) is compact. If η is a primitive of volḡ in M̄ , then one can average η on G0,
obtaining a G0-invariant primitive ηG0 of volḡ. Clearly, the volume functional defined by
ηG0 is also G0-invariant. �

Non-compactness of the ambient manifold M̄ and compactness of its isometry group is
a rather restrictive assumption; we now determine more general conditions that guarantee
the existence of invariant volume functionals.

Lemma B 5. Let U ⊂ M̄ be an open subset and let η be any primitive of volḡ on U .
Consider the volume functional V(y) =

∫
M

y∗(η), defined on the set of embeddings M(U)
of M into M̄ with image in U , and let

ρ : Dom(ρ) ⊂ Iso(M̄, ḡ) × M(U) → M(U)

be the natural local action by left composition with isometries of (M̄, ḡ).
For all φ ∈ Iso(M̄, ḡ), the map y �→ V(y)−V(φ◦y) is then locally constant on Dom(ρφ).

If η − φ∗(η) is exact in U and x ∈ M(U), then, for φ sufficiently close to the identity,
V(φ ◦ x) = V(x).

Proof. For all φ ∈ Iso(M̄, ḡ), φ∗(η) is a primitive of the volume form volḡ, so η−φ∗(η)
is closed in its domain. If x, y ∈ M(U) are C0-close, then x and y are homotopic; hence,
using Stokes’s theorem, if x and y are in Dom(ρφ),

∫
M

x∗(η −φ∗(η)) =
∫

M
y∗(η −φ∗(η)),

i.e. V(x) − V(φ ◦ x) = V(y) − V(φ ◦ y).
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If η − φ∗(η) is exact, then so is x∗(η − φ∗(η)); thus,
∫

M
x∗(η − φ∗(η)) = 0, i.e. V(x) =

V(φ ◦ x). Note that this equality also holds when M has boundary, provided that
φ(x(∂M)) = x(∂M). �

Lemma B 5 suggests how to construct invariant volume functionals. The natural setup
consists of a pair of open subsets U1 ⊂ U2 ⊂ M̄ , an m-form η on U2 that is a primitive
of volḡ in U2, with the following properties.

• φ(U1) ⊂ U2 for φ in a neighbourhood of the identity in Iso(M̄, ḡ).

• η − φ∗(η) is exact in U1 for φ ∈ Iso(M̄, ḡ) near the identity.

Corollary B 6. Given objects U1, U2 and η as above, the map V(x) =
∫

M
x∗(η) is an

invariant volume functional in the set of embeddings x : M ↪→ M̄ with image contained
in U1.

Proof. This follows immediately from the last statement of Lemma B 5. �

Note that η − φ∗(η) is closed; hence, if U1 has vanishing de Rham cohomology in
dimension m, then it is exact. This observation provides a large class of examples of
manifolds (M̄, ḡ) where it is possible to define local invariant volume functionals.

Example B 7. If M̄ is a non-compact manifold whose mth de Rham cohomology
space is 0, then the volume functional defined by any primitive of volḡ is invariant under
the (whole) isometry group. More generally, if x : M ↪→ M̄ is an embedding with image
contained in an open subset whose mth de Rham cohomology space is 0, then there
exists a volume functional invariant under isometries near the identity, defined in an
open neighbourhood U of x in the set of embeddings of M into M̄ . In particular, this
applies when M̄ is R

m+1 or M̄ = Sm+1. Manifolds of the form M̄m+1 = R
k × Nm+1−k,

k � 1, have trivial mth de Rham cohomology space. Manifolds of the form M̄m+1 =
Sk × Nm+1−k, k � 1, have open dense subsets with trivial mth de Rham cohomology
space.
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