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LATTICE COVERINGS AND THE DIAGONAL GROUP

G. RAMHARTER

Let M be any bounded set in n-dimensional Euclidean space. Then

almost all w-dimensional lattices L with determinant 1 have the

following property: There exists a diagonal transformation D with

determinant 1 (depending on L) such that L does not cover space

with DM . Moreover, if M has non-empty interior, the exceptional

(null-) set contains at least enumerably many diagonally non-

equivalent lattices.

1. Let L denote the space of lattices in w-dimensional Euclidean

space Jn with determinant 1 , equipped with the usual measure and

topology (see [77] Section 17, Section 19), and let V be the group of

nonsingular diagonal n x tt-matrices. The main purpose of this note is to

prove the following result.

PROPOSITION. Let M be a bounded set however large in Bn. Then

all lattices L e L except those from a null-set in L (in the sense of

the measure introduced) have the following property: L can be made a non-

covering lattice for DM by applying a suitable diagonal transformation

D e V (depending on L ) with \det D\ = 1 .

We will obtain this as a corollary of the Theorem to be stated below.
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4 0 8 G. Ramharter

Also it will become clear from (1) that our assertion is certainly not

trivial at least for sets M with non-empty interior. The present result

can be regarded as a metrical contribution to the following general

inhomogeneous problem of the "first type" (in Bambah's terminology [7]

p.120; see also [7] p.208, and [77] p.407): Given some class M of

(measurable) sets in nP and a subgroup G of the general linear group

on JK , determine the infimum 6(W of all positive numbers 6 with the

property that, for any M e M with vol(M) s 6 and any lattice L e L ,

there exists a transformation G e G such, that the Minkowski sum GM + L

does not cover J?n . Taking in particular (in view of our present

objective) the diagonal group V , we reformulate this by introducing

the function

^jjL) = supivol(DM) | D e V , L not a covering lattice for DM} .

For bounded M this quantity is positive, possibly infinite (Note that

JR is not covered by DM + L if and only if L is strictly admissible

for some translate of DM ) . Then obviously

S(M) = inf{&M(L) | M e M , L e L} .

This should be compared with the corresponding covering problem of the

second type, involving the quantity

QJL) = inf ivol(DM) \ D e 77, L a covering latt ice for DM} .
M

D . B . S a w y e r [ 7 5 ] p r o v e d t h a t f o r a r b i t r a r y l a t t i c e L e t o n e h a s

sup eJD = nn/n\
K K

where the sup is taken over all n-dimensional convex bodies K , not

necessarily ^-symmetric (Indeed, by the affine invariance of this class

of sets, this need only be proved for the integer lattice 7L ) .

We remark that there is an analogous packing problem in connection

with the diagonal group which was suggested by Mordell in 1936 and has

attracted much interest since (see for example [77] Section 24, [7] p.191

f.) . It is concerned with the function
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PK(L) = sup{vol(DK) | D £ V , L a packing lattice for DK} .

If K is restricted to the class K of 0-symmetrical bounded convex

bodies in JR^ , then trivially pv(L) < 1 , by Minkowski's theorem. The

question is to decide whether the values of this function are bounded away

from 0 when K and L are varying over K and L . Rogers [74]

confirmed this by finding explicit positive lower bounds in all dimensions.

These estimates can be improved when further conditions are imposed on the

bodies considered. This was done by Hlawka [10] and Davenport for the

classes of parallelepipeds DB W e V , B the unit cube) and ellipsoids

DS {S the unit sphere), respectively.

A conjecture by Gruber claiming that a-r,(L) takes the value 1
D

(which is the greatest possible value) at almost all L e L is still open

for n > 3 (for metrical and topological results in this direction see

[8,12] )•

2. Here we obtain an affirmative answer to the inhomogeneous version

of this conjecture. The following Theorem clearly implies the above

Proposition.

THEOREM. Let M be any bounded (measurable) set in JR with non-

empty interior and let L' denote the set of lattices L e. L with

&M(L) < °°. Then

(1) V contains an enumerable set of diagonally inequivalent lattices;

moreover, &(M) = inf{6M(L) \ L e L) is a finite positive number.

(2) L' is a null-set in L.

Proof. We find it convenient to consider the Minkowski sets

B -({x^ +. .. + \xn\
P) 'P < 1 , that is the (open) unit balls of the

p-norms (1 < p <<*>). In particular, letting p tend to » , we obtain

the unit cube B = B . By fi. (i=l,...,2 ) we denote the (open)

coordinate orthants, listed in any order. We introduce the auxiliary

function
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a (L) = max sup{vol(DB nQ.)\DeV3 L admissible for DB nfl.} .

We remark tha t the functions a (Lj and S-CL,) , B = B , can be
P B P

described in terms of a semiregular continued fraction expansion for two-

dimensional lattices (see [73]). We collect some basic relations between

the above functions. First, it follows immediately from the definition

that 6./LJ is diagonally invariant with respect to both M and L : for

any set M and any L e L we have

(3a) SDM(L) = V L ; (D e V) ,

(3b) SM(VL) = 6M(L) (D e V, \detD\ = 1).

By use of (3a), it is easily proved that for any bounded set M with

non-empty interior (as specified in the Theorem) the inequalities

(4atb) a &B(L) < 6M(L) £ a' &B(L)

hold with some positive constants a, o' independent of L . Here c

(respectively a') may be taken as the ratio vol(M)/vol(DB) where D e V

is any diagonal matrix such that a translate of M can be inscribed in

DB (respectively DB is contained in some translate of intAfl . Next we

show that

(Sa,b) n\n~n a^L) <; &B(L) < 2
n~2 a.JD .

The first inequality (5a) is easily obtained on comparing the volumes of

a (lattice point free) simplex of the form DT(T: x~+...+x < ly

x-j . .. 3x > 0) and a maximal inscribed translate of a parallelepiped of, the

form D'B (D, D' e V) - For the proof of (5b) take any lattice point

free parallelepiped of the form DB + Zi z e Rn • Eventually enlarge it by

moving appropriate facets outward until at least one facet contains a

lattice point in its relative interior (the volume will not be decreased by

this process) . By passing to a suitable translate p' , if necessary,

we may assume that the boundary of pf contains the origin 0 . Now p'

is the disjoint union of its non-empty intersections P. (2

in number) with, the open orthants, and its intersections with the

coordinate planes (which do not contribute to the volume) . P'
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being lattice point free, the same is true for the subsets P^ . Now (5b)

follows from the fact that these subsets are all of the form D.B n Q. ,

We proceed to the proof of (11. First we exhibit an enumerable

class of lattices L* generated by real number fields for which & (L*)

is finite. By (4b) and (5b) it is enough to show that a (L*) is finite
oo

for these lattices. Let A be an n x rt-matrix whose elements

a~2'•••'ai form a basis of a totally real number field of degree n ,

the fe-th column consisting of the conjugates of a-•, Ck = l,...,n) • Then

, A*=A/\detA\2^n , is in I . For the calculation of aJL*) it

suffices to consider, in each orthant ft. , the (enumerable) system of

lattice point free (open) parellelepipeds P.. of the form D£ c\ Q.
1-0 3 ^

each of whose facets not contained in a coordinate plane has a lattice

point in its relative interior. It is known [3-6] that under the above

assumptions this system is periodic in the following sense: For each

i=l,...,2 , there exists a finite subsystem of parallelepipeds

P.,,...,P. ,., , say, such that any P.. is representable as DP., with
vl vniv) •z-J T-I<-

some k e{l,...,m(i)} , D e P, |det#| = 1 . Therefore o (L*) = max. «

.,)} , but this is clearly finite. Thus we have proved that 6U(L*)

is finite for any lattice of the type described.

Finally, Hlawka's result [70] ensures the existence of an (explicit)

positive lower bound, depending only on the dimension, for the values of

PnCiJ . Together with the inequality (4a) and the trivial estimate

6g(L) £ P g ^ this implies that inf ^g(I>) is positive, which completes
L

the proof of (1)•

We turn to the proof of (2). Consider the following conditions for

lattices L e L '•

(a) L\{0] has no points in common with the coordinate planes;
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(b) there exists a sequence of diagonal transformations D. e V with

|detD-| = 1 (i = 1,2,...), depending on L , such that the lat t ices
If

L- = D.L have bases A- converging felementwise) to a nonsingular matrix

If If If

AQ where Q is an n x n-permutation matrix and A contains an

(n-m) x m rectangular block (1 < m 2 n-1) of zeros below the diagonal;

(c) the homogeneous minimum inf{|a;,a;0 a: IX e L\{0}} is equal to o .

It follows from a result of Birch and Swinnerton-Dyer [2] that (c) implies

(bl . On the other hand, it is well-known that almost all lattices in L

satisfy conditions (a) and (c). Accordingly, for the verification of (2),

it will suffice to prove that '$»/£-' = 00 if L has properties (a) and (b)

We do this by showing that a^fL.) tends to °° , as i -*•<*>. Let

a. ,...,a be the columns of A = (a, . ). After renumbering the
—1 —fl KQ

coordinate axes, if necessary, we may suppose that Q is the identity

matrix. Then, for each pair of indices kjjjk = m+1,. .. ,n; g = l,...,m,
(i)

the elements a-,' tend to o , as i •* °° . Let E. denote the (n-D-

dimensional lattice plane generated by the points O_I&J ,. .. ,o. - .

(i)There is a unique vector e orthogonal to E. and normalized by the

conditions \e(i) I = 1, d. = (e(i)a(i)) > o . Let h(i) be the index of
•— i — -n

the orthant which contains the point e_ . Since e_ belongs to the

orthogonal complement of the subspace generated by a, ,...,a , the

components e . (j = 1,. .. ,m) tend to o , as %•*•<*>. The points

a, ,...,a define a cell of L. , hence the open strip H. bounded .by
(i)the lattice planes E. and E-+a is lattice point free. The same

is true a fortiori for the simplex T. = H. n &,/• \ • Now

volf^J = dni(nl\e
(
1
i)e(2

i)...e(j)\r1 - » (i -* -; ,

since the sequence d. has a positive limit and at least one of the

components of e tends to zero (note that, for g = l,...,n, the
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vectors a • tend to a limit ^ 0_ , and that all components of the unit
3

vectors £ are non-zero by (a ) , and remain bounded). I t follows t h a t

a7fL J -»• » Ci •*•").

Using successively the relations C.5a) , (3b) and C4a) , we obtain

n\n~na1(Li) < ̂ CL^ = ̂ g^L) = 6B(L) < o^S^L) .

Since this holds for all i = 1,2,. .., we end up with $i/L) = °> , as

required. This completes the proof of the Theorem.
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