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Abstract. In this paper, we show that Weyl’s theorem holds for operators having
the single valued extension property and quasisimilarity preserves Weyl’s theorem for
these operators under some assumptions for spectral subsets, respectively.
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1. Introduction. Let X be an infinite dimensional complex Banach space and let
LðXÞ be the space of all bounded linear operators acting on a Banach space X . For
an operator T 2 LðXÞ, we shall denote by �ðTÞ, �pðTÞ, �0ðTÞ and iso�ðTÞ the spec-
trum of T, the set of all eigenvalues of T, the set of all eigenvalues of finite multi-
plicity of T, the set of all isolated points of �ðTÞ, respectively. We write �00ðTÞ ¼
�0 \ iso�ðTÞ for the set of all isolated eigenvalues of finite multiplicity of T. Recall
([5], [7]) that an operator T 2 LðXÞ is called semi-Fredholm if the range of T, denoted
by RðTÞ, is closed and either the kernel of T, denoted by NðTÞ, or X=RðTÞ is finite
dimensional. Also, an operator T 2 LðXÞ is called Fredholm if RðTÞ is closed and
both NðTÞ and X=RðTÞ are finite dimensional. If T is semi-Fredholm, then the index
of T is defined by indðTÞ ¼ dimNðTÞ � dimX=RðTÞ and a Fredholm operator with
index zero is called Weyl. Also, if T is Fredholm and there exists a deleted open
neighborhood N0 of 0 2 C such that T� � is invertible for all � 2 N0, then T is said
to be Browder. We shall denote by �sFðTÞ, �eðTÞ, !ðTÞ, and �bðTÞ the semi-Fredholm
spectrum, the (Fredholm) essential spectrum, the Weyl spectrum, and the Browder
spectrum of T, respectively. We easily see the following inclusions:

�sFðTÞ 	 �eðTÞ 	 !ðTÞ 	 �bðTÞ: ð1Þ

We usually say that Weyl’s theorem holds for T if �ðTÞ n !ðTÞ ¼ �00ðTÞ. In [2]
Coburn showed that Weyl’s theorem holds for hyponormal operators and Toeplitz
operators acting on a Hilbert space. After Coburn’s work, many authors have
extended Weyl’s theorem to some classes of operators on a Hilbert space (see [1],
[13], etc.) or on a Banach space (e.g., [6], [9], [14], etc.). Throughout this paper we
shall mainly study Weyl’s theorem for operators on a Banach space.
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Regarding local spectral theory ([3], [10]) recall that if T 2 LðXÞ and F is a closed
subset of the complex plane C, we define a spectral manifolds XTðFÞ as follows:

XTðFÞ ¼ fx 2 X : there exists an analytic X -valued function

f : C n F�!X such that ðT� �Þ f ð�Þ ¼ xg:
ð2Þ

We say that T has the single valued extension property (SVEP) at �� 2 C if, for a
neighborhood U of ��, f ¼ 0 is the only analytic function f : U ! X satisfying
ðT� �Þ fð�Þ ¼ 0. Also, we say that T has the SVEP if T has this property at every
� 2 C. In this case, for x 2 X there is a maximal analytic function fx : Ux ! X

satisfying ðT� �Þ fxð�Þ ¼ x on Ux. Put �TðxÞ ¼ C nUx. Then �TðxÞ is called the local
spectrum at x. If T has the SVEP, then we have XTðFÞ ¼ fx 2 X : �TðxÞ 	 Fg. We say
that T has Dunford’s property (C) if, for each closed set F � C, XTðFÞ is closed. Also,
we say that T has Bishop’s property (�) if for every sequences fn : U ! X such that
ðT� �Þ fn ! 0 uniformly on compact subsets in U, it follows that fn ! 0 uniformly
on compact subsets in U. Then it is well known that

Bishop’s property ð�Þ ) Dunford’s property ðCÞ ) SVEP: ð3Þ

We consider a condition given in terms of spectral manifolds of T 2 LðXÞ:

XTðf�gÞ is finite dimensional for all � 2 �00ðTÞ: ð4Þ

For brevity, we shall denote the classes of all operators having the single valued
extension property, having the condition (4), and having Dunford’s property (C) by
A, B, and D, respectively.

Recall ([9], [10], [11], [15], [16]) that T;S 2 LðXÞ are said to be quasisimilar if
there exist injections X;Y 2 LðXÞ with dense range such that SX ¼ XT and
YS ¼ TY, respectively, and this relation of T and S is denoted by T � S.

The aim of this paper is to consider Weyl’s theorem from the standpoint of local
spectral theory and quasisimilarity. In particular, we show that Weyl’s theorem
holds for operators in class A \ B and that quasisimilarity preserve Weyl’s theorem
for some operators in class A. This extends some results proved in [9].

2. Main results. We consider Weyl’s theorem through local spectral theory. To
do so, we need the following two results that play the role of a bridge between
Fredholm and local spectral theory. The first proposition is due to K. B. Laursen.

Proposition A. ([11, Lemma 1]) If � 2 iso �ðTÞ, then �=2�sFðTÞ if and only if
�=2�eðTÞ if and only if XTðf�gÞ is finite dimensional.

Recall ([7]) that the ascent p of T 2 LðXÞ at � 2 C is the extended integer given
by p ¼ inffn � 0 : NðT� �Þn ¼ NðT� �Þnþ1

g. The infimum over the empty set is
taken to be 1. The following one is due to J. K. Finch.

Proposition B. ([4, Theorem 15]) Let T 2 LðXÞ be semi-Fredholm. Then T has
the single valued extension property at 0 if and only if T has a finite ascent at 0.

Then we can observe the following fact.
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Lemma 1. For every � 2 �00ðTÞ, XTðf�gÞ is finite dimensional if and only if
RðT� �Þ is closed.

Proof. Assume that XTðf�gÞ is finite dimensional for � 2 �00ðTÞ. Then, by
Proposition A, T� � is semi-Fredholm, and so RðT� �Þ is closed. Conversely,
assume that RðT� �Þ is closed for � 2 �00ðTÞ. Then T� � is (upper) semi-Fredholm
since dimNðT� �Þ < 1. Thus, by Proposition A again, we have that XTðf�gÞ is
finite dimensional. &

Now, we have the following result.

Theorem 2. If T 2 A \ B, then Weyl’s theorem holds for T.

Proof. If � 2 �ðTÞ � !ðTÞ, then T� � is Weyl but not invertible. Since T 2 A

and the SVEP has the translation invariant property for scalars, by Proposition B
we have that the ascent of T is finite. Thus, by [5, Theorem 7.9.3], T� � is Browder,
and so � 2 iso �ðTÞ. Hence we have � 2 �00ðTÞ because �ðTÞ � !ðTÞ � �0ðTÞ.

Conversely, assume that � 2 �00ðTÞ, i.e. � 2 iso �ðTÞ and dimNðT� �Þ < 1.
Then T� � is a semi-Fredholm operator since T 2 B, and so by Lemma 1 and
Proposition A T� � is Fredholm. Furthermore, T� � is Browder because
� 2 iso �ðTÞ. Thus T� � is Weyl, and hence �00ðTÞ � �ðTÞ � !ðTÞ. &

Recall [9] that an operator T 2 LðXÞ is said to be finitely ascensive if for every
� 2 C there is a p 2 N such that NðT� �Þp ¼ NðT� �Þpþ1. It is well known ([12,
Proposition 1.8]) that if T is finitely ascensive, then it has SVEP. Thus Theorem 2
above is an extension of Theorem 2 in [9] in view of Lemma 1.

The class B may seem artificial, and so we consider a more concrete class of
operators contained in B. Recall ([17]) that T 2 LðXÞ is said to have a growth condition
Gm (m � 1) if there exists a constant K such that

jjðT� �Þ�1
jj �

K

distð�; �ðTÞÞm
; for all �=2�ðTÞ:

We shall denote by Gm the set of all operators with the growth condition Gm ðm � 1Þ.
In the context of Hilbert space many properties of operators in Gm have been well
studied in [17], and especially, when m ¼ 1, in [8].

Using an argument similar to that of Theorem 14 of [6], we have the following
result.

Lemma 3. Gm � B.

Proof. Assume T 2 Gm and � 2 �00ðTÞ. If we consider the Riesz projection PT
�

corresponding to � for T, then ðT� �ÞjRðPT
� Þ

is quasi-nilpotent. Thus, by [7, Propo-
sition 49.1], we see that

RðPT
� Þ ¼ fx 2 X : jjðT� �Þnxjj

1
n ! 0g ¼ XTðf�gÞ: ð5Þ

Now, since T 2 Gm, letting 0 < 
 � 1
K distð�; �ðTÞÞ

m, we can see that
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jjðT� �ÞjRðPT
� Þ
jj �

1

2�

Z
jzj¼


jzjjjfðT� �Þ � zg�1jjjdzj � 
;

where the circular contour is described once counterclockwise. Thus ðT� �ÞjRðPT
� Þ

is
a zero operator. So RðPT

� Þ 	 NðT� �Þ and the reverse containment is easily verified,
and consequently we have the equality RðPT

� Þ ¼ NðT� �Þ. Since NðT� �Þ is finite
dimensional, by the assumption we get that XTðf�gÞ is finite dimensional by (5).
Hence T 2 B. &

Corollary 4. Weyl’s theorem holds for T 2 A \ Gm.

It is well known that the class of spectral operators of finite type is contained in
A \ Gm by Theorem XVI.4.4 and Theorem XV.6.7 of [3]. Thus by Corollary 3
Weyl’s theorem holds for a spectral operator of finite type. Hence we can recapture
Theorem 4 of Oberai ([14]).

Now, we study Weyl’s theorem under quasisimilarity. M. Putinar ([15]) showed
that if T and S have Bishop’s property (�) and T � S, then quasisimilarity of T and
S preserves spectra, essential spectra, and indices of T and S. From this fine theorem
we immediately observe the following interesting result.

Proposition C. Let T;S 2 LðXÞ have Bishop’s property (�). If T � S, then
Weyl’s theorem holds for T if and only if Weyl’s theorem holds for S.

We give an improvement of Proposition C and Corollary 8 in [9] as follows.

Theorem 5. Let T;S 2 A and let iso �ðTÞ ¼ iso �ðSÞ. If T � S, thenWeyl’s theorem
holds for T if and only if Weyl’s theorem holds for S.

Proof. Assume Weyl’s theorem holds for T and � 2 �00ðSÞ. Since T � S it is
easy to see that �0ðTÞ ¼ �0ðSÞ. Since iso �ðTÞ ¼ iso �ðSÞ by hypothesis, we have
�00ðTÞ ¼ �00ðSÞ. Since Weyl’s theorem holds for T, � 2 �ðTÞ n !ðTÞ ¼ �00ðTÞ, and so
T� � is Weyl. Thus XTðf�gÞ is finite dimensional by Proposition A. Since T � S by
assumption, there exists an injection Y 2 LðXÞ with dense range such that YS ¼ TY,
and so we see that

YXSðf�gÞ 	 XTðf�gÞ: ð6Þ

Indeed, it immediately follows that for x 2 XSðf�gÞ

jjðT� �ÞnYxjj1=n ¼ jjYðS� �Þnxjj1=n � jjYjj1=njjðS� �Þnxjj1=n�!0;

and so from (6), XSðf�gÞ is finite dimensional for � 2 �00ðSÞ. Hence we have S 2 B.
Since S is already in A we conclude that Weyl’s theorem holds for S by Theorem 2.
Conversely, similar arguments can be applied to complete the proof. &

Let T;S 2 LðXÞ have Bishop’s property (�) and let T � S. Then we see that
T;S 2 A from (3) and, since T and S have equal spectra from [15, Theorem 1], we
have iso �ðTÞ ¼ iso�ðSÞ. Consequently, we recapture Proposition C by Theorem 5.
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We conclude this paper with a more concrete improvement of Proposition C in
a Hilbert space H.

Corollary 6. Let T;S 2 LðHÞ have Dunford’s property (C). If T � S, then
Weyl’s theorem holds for T if and only if Weyl’s theorem holds for S.

Proof. In [16], J. G. Stampfli showed that quasi-similar operators which satisfy
Dunford’s property (C) have equal spectra. Thus the proof immediately follows
from Theorem 5. &
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