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A VARIATIONAL-LIKE INEQUALITY PROBLEM

J. PARIDA, M. SAHOO AND A. KUMAR

Given a closed and convex set K in R" and two continuous maps F: K —• Rn and
if: K x K —* Rn, the problem considered here is to find £ £ K such that

(V* 6 K) (F(i), r,(x, s)) ̂  0.

We call it a variational-like inequality problem, and develop a theory for the existence of
a solution. We also show the relationship between the variational-like inequality problem
and some mathematical programming problems.

1. INTRODUCTION

Given a closed and convex set K in Rn and a continuous map F: K —* R", the

problem of finding x G K such that

(1.1) (Vzetf) (F(x), x - x) > 0,

is called a variations! inequality problem [8]. In recent years, various extensions of (1.1)

have been proposed and analysed [3]. We introduce an extension of (1.1) as follows:

Let K be a closed and convex set in Rn. Given two continuous maps F: K ^ Rn and

77: K x K -+ Rn, find x G K such that

(1.2) (VxeK) (F(x),V(x,x))>0.

We call it a variational-like inequality problem. If TJ(X, X) = x — x, then (1.2) reduces

to (1.1).

In this paper, we establish some existence theorems for (1.2) under various con-

ditions on the maps F and r\. We also demonstrate the relationship between the

variational-like inequality problem (1.2) and some mathematical programming prob-

lems. In a subsequent paper, the results of the present paper will be utilised to establish

existence theorems for (1.2) where the underlying map JP is J;-monotone.
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2. NOTATION AND DEFINITIONS

The real n-dimensional linear space of column vectors x = (sci, . . . , xn) is de-
noted by Rn. For any x,y £ R™, we denote the usual inner product in Rn by
(x, y) — yTx, while ||x|| is any norm of x. For closed convex cone S of R n , 5*
denotes the dual cone of 5 , and is given by

Given a multivalued map V: Rn -»2 , V is said to be upper semicontinuous [2,

p . I l l ] if {xn} converging to x, and {yn}, with yn € V(xn), converging to y, implies
yeV(x).

We introduce a generalisation of monotone functions. The map F: K —> Rn is
said to be monotone over K if

(Vx,y€K) {F(y)-F(x),y-x}>0.

F is said to be 77-monotone on K if there exists a continuous map 77: i f x / f - t R "
such that

(2.1) (Vx,y 6 K) (F(y), V(x, y)) + (F(x), V(y, x)) < 0.

Note that this definition reduces to the definition of monotone functions if r](y, x) =

y - x.

F is said to be strictly 77-monotone over K if the equality holds in (2.1) only when

y = x.

Hanson [4] and Mond and Hanson [9] have denned a certain class of differentiable

functions, now known as in vex functions [1], which contains as a subclass the class of

differentiable convex functions. We follow the nomenclature and definitions given in [1,

4]-
Let if>: K —* R" be differentiable. Then $ is 77-convex on K if there exists a

continuous map 77: K x K —» R" such that

(2.2) (Vx,yeK) ^(y)-^)^^^),^^)}.

It is known that if ifi is convex on K, then Vtp is monotone on K. In the same vein,
we have here that V-0 is 77-monotone whenever tp is 77-convex.

3. EXISTENCE THEOREMS

THEOREM 3.1. Let K be a compact and convex set in R n , and let F: K —> Rn

and T7: K x K —> R" be two continuous maps. Suppose that

(3.1) {VxeK) {F(x),r,(x,x)} = 0,

(3.2) for each fixed x 6 K, the function

(F(x), T}(y,x)} is quasiconvex in y G K.
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Then
(3x £ K){Vx £ K) {F(x), rj(x,x)) > 0.

PROOF: For each x £ K, let

V(«) = {* £ * : (F(x), „(«,«)) = m i n ^ z ) , i,(i»,*)>}.

Since K is compact and (F(x), TJ(V, X)) is quasiconvex in v, V(x) is a nonempty, closed
and convex subset of K. It is also easy to see that the multivalued map V: K —* 2K

is upper semicontinuous. Now invoking the Kakutani fixed-point theorem [6], we get
x £ V(x). Consequently, for all x £ K,

(F(X),T,{X,X))>{F(X),T,(X,X)) = 0.

This completes the proof of the theorem. |

The following result is an extension of Theorem 3.1 to noncompact sets. Consider
the set Kr C K defined by Kr = {x: x £ K and ||z|| < r} for real r > 0. There
always exists an ro > 0 such that Kr is nonempty whenever r ^ ro • From now on we
always assume that r satisfies this requirement and Kr is nonempty.

We state this condition:

Condition 3.2. Let if be a closed and convex set in Rn. Let F: K —» Rn and

77: K x K —» Rn be two continuous maps such that

(i) (V*eif)(F(*),i7(*,x)> = 0>aiid
(ii) for each fixed x £ K, the function (F(x), r)(y,x)) is convex in y £ K .

We notice that Kr is compact and convex, and hence, by the previous theorem
there exists at least one xr € KT such that

(3.3) (Vsce/Tr) (F(xr),V(x,Xr))^0

whenever Condition 3.2 is satisfied.

THEOREM 3.3. Let K, F and rj be such that Condition 3.2 is satisfied. A neces-

sary and sufficient condition that there exists a solution to (1.2) is that there exists an
r > 0 suci that a solution xr £ Kr of (3.3) satisfies the estimate

IM < r.

PROOF: It is clear that if there exists a solution x to (1.2), then x is a solution
to (3.3) whenever ||*|| < r. Suppose now that xr £ Kr is a solution of (3.3) and
that | |xr | | < r . Given x £ K, we can choose 0 < A < 1 sufficiently small so that
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w = Xx + (1 — X)xr £ KT. Consequently, by the convexity of (F(xr), v{y>xr)), xr £
KrC.K satisfies

0 < (F{xr), V{W, Xr))

< X(F(xr), V{x, Xr)) + (1 - \){F(xr), V(xr, *r))

= X(F{xr), nix, Xr))

for all x £ K, which implies that xr is a solution to (1.2). I

We now use Theorem 3.3 to give three other important sufficient conditions for the

existence of a solution to (1.2).

THEOREM 3.4. Let K, F and rj be such that Condition 3.2 is satisfied. Then

the variational-like inequality problem (1.2) has a solution under each of the following

conditions:

(i) there is a u £ K and a scalar r > ||u|| such that

(3.4) (F(x), v(u, x)) ^ 0 for all x with \\x\\ = r;

(ii) for some constant r > 0, and for each a; £ if with \\x\\ = r, there is a

u £ K with \\u\\ < r and {F(x), T?(U, X)) < 0;
(iii) there exists a nonempty, compact and convex subset C of K with the

property that, for every x £ K \C, there exists a u £ C such that

(3.5) (F(x), r,(u, x)) < 0.

PROOF: (i) Suppose that xr £ Kr is a solution to (3.3) (which certainly has

solutions). Then

(3.6) (V*£tfr) (F(xr),rtix,xr))>0.

We distinguish two cases. If ||xr|| < r, then Theorem (3.3) yields the desired result.
If | |«r| | = r, then it follows from (3.4) and (3.6) that (F(xr), r)(u, xr)) = 0. Now, let
x £ K, and choose 0 < A < 1 small enough so that w = Xx + (1 — X)u lies in Kr.

Then, by the convexity of (F(a;r), -q{y, xr)),

0 < (F{xr), V(w, xr))

< X(F(xr), r,(x, xr)) + (1 - *){F(xr), V{n, xr))

= X(F(Xr), 7J(X, Xr))

and consequently, xr is a solution to (1.2).
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(ii) This is little bit more general than the result given in (i) and can be easily

proved by arguments similar to that used in the proof of (i).

(iii) Since C is a compact, we can find an r > 0 such that ||z|| < r for all x 6 C

Now, let xr € Kr be a solution of (3.3). Then

(3.7) (F(xr), r,(x, xr)) > 0

for all x G C since C C Kr. If xr £ C, then it follows from (3.5) that there exists
it 6 C such that (F(xr), r)(u, xr)) < 0, which contradicts (3.7). Therefore, xr G C,
and consequently, ||a;r|| < r. From Theorem 3.3, it follows that xr solves (1.2). |

Remark 3.5. From definition of an 77-convex function it does not necessarily follow
that r/(x, x) = 0, but from examples given in [4, p.547] and the form of rj(x, y) given
in [1, p.2], it follows that ^(x, x) = 0.

In this contest, we mention that the relation (F(x), T)(X, X)) — 0 in Theorem
3.1 and Condition 3.2 can be replaced by i](x, x) = 0 which is, no doubt, a stronger
assumption.

Remark 3.6. If we take T7(x, y) — x — y, then the above theorems yield known exis-
tence results for the variational inequality (1.1). For example, our Theorems 3.1 and 3.3
reduce to Theorems 3.1 and 4.2, respectively, in [8]. Theorems.3.4 (i) and (ii) reduce
to yield the results of Theorems 2.3 and 2.4, respectively, of More' [10].

If F: K —» Rn and 77: K x K —> R" are continuous on the closed and convex set
K, and if, for some u £ K,

,3.8) Km <fW;"(-*)> = - 0 o
I I I H \\z\\

then it is easily seen that there exists r > ||u|| such that (F(x), r)(u, x)) < 0 for all
x £ K with ||SB || = r. This observation leads us to the following existence theorem.

THEOREM 3.8. Let K, F and 77 be such that Condition 3.2 is satisfied. If, for
some u £ K, (3.8) holds, then there exists a solution to (1.2).

PROOF: The result follows from Theorem 3.4. |

Generally, the solution to the variational-like inequaltiy (1.2) may not be unique.
There is however a very natural condition which ensures uniqueness.

THEOREM 3.9. Let F: K -* Rn and 77: K x K -» Rn be continuous over the

closed and convex set K. If F is strictly rj-monotone over K , then there can exist at

most one solution to the variational-like inequality problem (1-2).
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PROOF: In fact, if x and z are two distinct solutions to (1.2), then we have

(V* 6 K) (F{x), V(x, x)) > 0,

(V* G K) (F(z), v(x, 2)> > 0.

Setting x = z in the first inequality, x = x in the second, and adding the two, we
obtain

(F(x), V(z, *)> + (F(z), r,(x, z)) > 0

which implies that x — z by the strict 77-monotonicity of F. |

4. SOME PROBLEMS RELATED TO VARIATIONAL-LIKE INEQUALITIES

We touch lightly on some mathematical programming problems that are related to
variational-like inequalities.

Convex programming. Consider the minimisation problem:

min f{x) subject to x G K,

where K is a closed and convex set in Rn and / : K —» Rn is continuously differentiable.

PROPOSITION 4 .1 . Suppose that f is tj-convex over K for some continuous map

rj: K x K - » R n . If x E K satisfies

(4.1) (WxeK) (F(x),V{x,x))2 0,

where

F(x) = V/(x),

tiien
/(x) = min/(x).

Xfcil

PROOF: By the 77-convexity of / , we have

Now, setting V f(x) = F(x), and using (4.1), we obtain f(x) ̂  f(x) for aU x G K. |

Complementarity problem. Let if be a closed and convex cone in Rn, and let

F: K -> R" be continuous. Then find x G R" such that

(4.2) xeK,F{x)£K\{F{x),x) = 0.

Problem (4.2) is the mathematical form for a variety of problems in optimisation
theory, structural mechanics, lubrication theory, elasticity theory, economical equilib-
rium theory, etcetra, hence its importance. It is known (see, for example [7]) that (4.2)
is equivalent to the problem of finding an x G K such that

(Vs G K) (F(x), x-x)^0.

But, if r](x, y) = x —y, then (1.2) reduces to this problem.
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Implicit complementarity problem. Let if be a closed and convex cone in Rn ,

and let F, g: K —» Rn be continuous. Then find i g R " such that

(4.3) g(x) G K, F(x) G K*t (F(x), g(x)) = 0.

The implicit complementarity problem arose in some special problems in stochastic

control, and in the above form, it is considered by Isac [5]. We associate (4.3) with the

following variational-like inequality problem: Find x G K such that

(4.4) (Vzeff) (F(x), x-g(x))>0.

This problem is a special case of (1.2) when K is a. cone and r](x, y) = x — g(y). Let
y be any vector in K. If x is a solution of (4.4), and g(x) £ K, then replacing x by
y + g(x) in (4.4), we have (F(x), y) > 0. Therefore, F(x) G K*. Now setting x = 0
in (4.4) we obtain (F(x), g(x)) ̂  0, and consequently, x is a solution of (4.3). It can
also be seen that a solution x of (4.3) is a solution of (4.4) if x G K.
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