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Abstract

A model for bushfire spread is proposed, in which radiative heat transfer, species consump-
tion and flammable gas production are taken into account. It is shown that fire propagation
in this model does not occur as a one-dimensional travelling wave, except for smouldering
combustion of wet bushland. Numerical solutions for the evolution of a line fire are ob-
tained using a diagonally implicit finite difference scheme, and the effects of firebreaks and
uncleared combustible debris are studied. An energy thecrem is presented for the case of a
spreading two-dimensional fire, and numerical results are illustrated.

1. Introduction

In some countries of the world, violent forest fires occur reasonably regularly, and
the time interval between them is governed by the speed of regeneration of the trees.
Perhaps the most famous are the fires that occur in the hills surrounding the city of
Los Angeles.

In Australia, the population centres in the south-east corner of the country are not
infrequently at risk from large-scale bushfires. The size and ferocity of these fires
often distinguish them from forest fires in other parts of the world, and there are
several factors which contribute to the savagery of these occurrences.

Severe Australian bushfires usually occur towards the end of the summer months
(December to February), and often follow an intense heat wave, during which day-
time temperatures can exceed 40°C. Another factor which adds to the likelihood of a
bushfire is the presence of strong winds. In the southern half of Australia, the summer-
time weather systems come from the west, and move towards the east; consequently,
the bushland in the south-east corner can be subject to days of hot, dry, westerly winds
that have travelled across thousands of kilometres of desert. Under such conditions,

!Department of Mathematics, University of Queensland, St. Lucia, Queensland 4072, AUSTRALIA
© Australian Mathematical Society, 1997, Serial-fee code 0334-2700/97

171
https://doi.org/10.1017/50334270000008791 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000008791

172 Lawrence K. Forbes [2]

the natural vegetation rapidly becomes tinder dry. A third factor contributing to the
somewhat unique character of southern Australian bushfires is the nature of the trees
themselves. The Australian forest consists of a combination of several species of
eucalyptus tree, for which fire forms an essential ingredient in the breeding cycle.

In 1983, the southern states of Victoria and South Australia experienced an unusu-
ally destructive fire over thousands of hectares of bushland, farm country and rural
population centres. This fire is now known as the “Ash Wednesday” fire after the day
it started, and claimed about 70 lives. In January 1994, another enormous fire system
engulfed the eastern reaches of the state of New South Wales. At the height of the
blaze, a fire front consisting of over 120 separate fires stretched approximately 600
kilometres in a north-south line, and consumed about 600,000 hectares of bushland,
along with 185 houses. This is an area greater than twice the size of the European
country of Luxembourg, and bigger than the American state of Delaware. Television
footage claimed that 30 metre high flame fronts were fanned by 70 kilometre per hour
winds.

Several authors have attempted to model large-scale forest fires mathematically.
The review article by Catchpole and de Mestre [3] surveys a number of the earlier
models. Subsequently, there has been much interest in travelling-wave phenomena,
analogous to the famous Fisher-Kolmogorov diffusion wave in biology (see, for
example, Murray [8]). It will be argued in this paper that moving wave fronts of this
type are really more appropriate to smouldering combustion in porous media, perhaps,
than to the progress of fully developed bushfires.

Nevertheless, the travelling non-linear diffusion wave has a strong appeal, and is
advocated by Weber [15], [16] and Tang and Weber [13] as a model deserving of
further attention. Matkowsky and Sivashinsky [7] modelled solid fuel combustion
using the travelling wave approach. A single non-linear parabolic equation (the Frank-
Kamenetskii equation) expressing a balance between heat diffusion and exothermic
production has been studied by Gray and Kordylewski [5] and Buonincontri and
Hagstrom [2], and in both papers, the presence of travelling wave solutions was estab-
lished. A system of two coupled non-linear reaction-diffusion equations expressing
diffusion and production of heat and the consumption of a solid has been investigated
by Tam [12], and the existence of travelling waves has again been proved.

Travelling wave solutions seem particularly appropriate in the case of slowly mov-
ing combustion fronts, such as occur in the smouldering of wet bushland, and this will
be discussed more fully in Section 2. Norbury and Stuart [9] have investigated such
waves in a porous medium, and show that there are two types of behaviour, depending
upon whether the temperature at each end of the combustion wave falls below some
ignition temperature, or else if there is complete exhaustion of the fuel upstream.
A similar model, but one which is more complex, has been presented recently by
Shkadinsky ez al [10], and permits two-fronted travelling waves. A model in which
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the speed of the combustion wave is approximately constant is discussed for a similar
system by Booty and Matkowsky [1]; in this case there is a gradual change to the
shape of the wave front as it propagates.

Any serious attempt to model a fully developed bushfire is clearly fraught with
great difficulty. In addition to the usual modelling uncertainties, such as the fact that
the distribution of combustible fuel within a given forest is probably not uniform
and may not even be known accurately, there are also more fundamental problems
related to the understanding of the physical process itself. This point is emphasized
in the review article of Weber [14]. In particular, a successful model should account
for the fact that not every small fire develops into a large scale blaze. A relatively
simple model of firespreading has been proposed by Fujii et al [4]; it treats the moving
fire front as a Stefan problem in applied mathematics, but does not allow either for
wind-driven effects or for fuel consumption. A later model of Grishin, Gruzin and
Zverev [6] is more complete in this respect, but involves a difficult system of eight
non-linear equations with ten subsidiary conditions.

In discussions with Australian fire-fighters, the view is often expressed that bush-
fires in eucalyptus forests can be aggravated by the presence of a volatile eucalyptus
vapour, given off by the trees themselves in very hot weather. This would help
to explain the sometimes extraordinary way in which fully developed bushfires can
jump wide firebreaks; in the recent New South Wales fires, several television sta-
tions screened an amateur video recording that featured a fire front traversing a large
river (the Hawkesbury river). In addition, the presence of intense “fire-balls” moving
well ahead of the main fire front was described by many eye-witnesses, and possibly
corresponds to pockets of burning gas that had been swept downstream.

Although much of this evidence is anecdotal, it surely cannot be dismissed lightly,
and any useful model of a bushfire ought then to account for flammable gas production.
In this simple model, a solid fuel S is therefore envisaged to decompose under heat in a
dual reaction pathway, to form two different gaseous intermediates G, and G,. These
then burn to produce inert combustion products P, and P,. The chemical scheme is

thus
k/, G—2 . p,
S (D
k G, ks P,
in which the quantities k;, . .. , k, are rate parameters. The first reaction pathway is

intended to represent the rapid burning of the trees, while the second scheme is intended
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to allow for the production of the flammable gaseous substance G, corresponding to
eucalyptus vapour. In each pathway, the first reactions (producing substances G, and
G,) are endothermic, and the second reactions (with rate parameters k3 and k,) are
exothermic.

The direction and strength of prevailing winds are crucial factors in fire-fighting,
and so it is necessary to incorporate the effects of a wind velocity vector W,. The
local rate equations for the substances S, G| and G, are then obtained from equations
(1) according to first-order kinetics, and become

as
— =—kS - kS,
a1 1 2

DG
— =S -G,
Dt

DG,
Dt
where the derivative following the motion is defined in the usual way to be
DDGI’ =%+Wg-VG,~ j=12 3
and the symbol V denotes the gradient operator. In (2) and (3), the names of the
chemical species S, G, and G, have also been used to denote the concentrations of
these substances.

It is, of course, the case that a more complete model of bushfire spread should also
involve equations of motion for the gaseous products. However, the experience of
fire-fighters is that prevailing winds are a primary factor in fire spread, so that when
the winds die down, it is usually possible to bring the fire under control. For this
reason, complicated second-order fluid mechanical effects are ignored in this simple
model, which is concerned only with the prevailing wind velocity vector W,.

As the present model is concemed with fire spread over a very large expanse of
bushland, it follows that the horizontal length scales involved are several orders of
magnitude greater than the vertical scale of the height of the flame front. Consequently,
the variations of temperature in the vertical coordinate are represented only crudely
here, by assuming separate temperatures 7, and 7, for the solid and gaseous phases,
respectively.

The heat generated by a large bush fire can be extreme, and in the January 1994
bushfires near Sydney, for example, television footage showed that large steel support-
ing beams for buildings had been severely buckled, and thick glass windows melted.
In such a temperature range, the rate parameters ki, . . ., k4 will not be constants, but
instead are strongly influenced by temperature. For the high temperature burning of
the gaseous intermediates G, and G, it is reasonable to assume

ki = Z;exp(—E;/(RTp))  j=3,4, )

= sz hand k4Gz, (2)
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according to the usual Arrhenius law. Here, E; and E, are activation energies for
the gases, and R is the universal gas constant. The reference rates Z; and Z, are
constants, and T, denotes the temperature in the gas.
Rate functions of the form (4) are perhaps not entirely appropriate for the parameters
k, and k,, however, since such a choice would lead to a type of “cold boundary”
problem, with the solid fuel (bushland) being consumed for all temperatures above
absolute zero. This unphysical effect would admittedly be exponentially small far from
the fire, but since it would involve a very large area of bushland, it could nevertheless
lead to unacceptably large energy losses, of spurious origin, in the model. To overcome
this difficulty, the rate functions k; and k, are assumed to have the “shifted” Arrhenius
forms
3 I
kf={0 SO ) 5)
Zjexp(—1/(T,/T} = 1)) if T, > T/

Here, the constants 7,/ and T, are effectively ignition temperatures for the burning
of the solid fuel S according to the reaction pathways (1), following the approach of
Norbury and Stuart [9]. The use of rate functions (5) that become exactly zero below
some given temperature is not strictly necessary in this model, but the temperatures
Tj’ , J = 1, 2 might possibly retain significance in terms of accounting for the complex
internal chemistry of living organic matter, such as a tree, as it begins to ignite. A more
complete model might replace this approximation (5) with a small-scale representation
of these effects.

The assumption of temperature dependent rate parameters k, ..., ks in (4) and
(5) requires appropriate energy balances in both the solid and the gas. If p; and ¢,
denote the density and heat capacity of the solid fuel, then it follows from the assumed
chemistry (1) that

pscs% = 4Kp,V - (T)VT) + Kc, VT, — i(T, — Ty) — Hik\S — Hyk, S, (6)
The first term on the right-hand side of this equation is an approximate representation
of the effects of radiation. In (6), the constants K, and K, are respectively the
coefficients of radiative and conductive heat transfer in the solid, A is the heat transfer
rate from the solid to the gaseous phase, and H, and H, are the heating coefficients
for the production of gases G, and G in the scheme (1); their negative sign indicates
that these reactions are endothermic. There is a similar energy equation for the gas
phase, namely,

DT,
pgch)t—g = 4K V- (T)VT,) — h(T, = T,) + H3ksG, + HiksGo, )
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where the positive signs of the terms involving the heat release coefficients H; and H,
indicate that these gaseous phase reactions are exothermic. The material derivative
on the left of this equation is as previously defined in (3).

In order to keep this prototype bushfire model as simple as possible, the number
of governing partial differential equations is now reduced by one, using a simple
approximation. It is supposed that the burning of the gaseous intermediate G, to form
product P, , in the scheme (1), occurs over a much smaller time scale than any of
the other processes. On the time scale of interest, the gas G, is therefore in a state
of quasi-equilibrium with solid S. From the second equation in the scheme (2), there
results the approximation

G, =(ki/k3)S ®

and terms involving G, are now eliminated from the remaining partial differential
equations using this relation.

Non-dimensional variables are now introduced, in which the reference unit for
time is the quantity 1/Z, (where the rate Z, is as defined in (5)), and some appro-
priate quantity Lz is chosen as the length scale. The solid concentration S is made
dimensionless using the reference quantity Sz = p,c,7,/H,, and a non-dimensional
variable G = G,/Sy is used to describe the concentration of the second gaseous
intermediate G,. In these new scaled variables, the temperature of the solid is denoted
u = T,/ T and the temperature in the gas phase isv = T, /7.

In non-dimensional form, the governing equations (2)—(7), under the approximation
(8), become

i)
28 (3—;) + W, - Vv) =41,V (v3Vv) — v — u) + 35k () + yax,Gka(v),

9
a_‘t‘ = 4A, V- (u’Vu) 4 6, V2u — £(u — v) — Sky () — ok Ska (1),
38
i —Ski(u) — ks Ska(u),

3G

57 T We: VG = k:Ska(u) =k, Gka(v), ©)

in which the dimensionless rate functions are defined to be

_Jexp(=1/(u - 1)) ifu>1 10
k‘(")—{o ifu<t1’ (10
ko) = {exp(—e,/(u —€)) ffu > € (10b)

0 ifu < ¢
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and

ks(v) = exp(—€z/v). (10c)

Solutions to the model (9)-(10) are dependent upon the values of twelve dimen-
sionless parameters. These are the ratio of thermal capacities i = (p,c,)/(psc;) and
the radiation coefficients in the gaseous and solid phases

_ Kge(T})?
£ PsCleL%e

Krs(T))?

and A, =
: psC:ZIL%e

respectively. There is also the heat conduction coefficient o, = Kc,/(p;¢,Z,L%)
within the solid, and the transfer rate £ = h/(psc;Z,) between the solid and gas
phases. The constants ¢, = T,//T] and ¢, = E,/RT, are essentially activation
temperatures for the burning of the solid and the gas, respectively, while «, = Z,/Z,
and «, = Z,/Z, measure the rates at which these reactions occur. The second stage
of the reaction (1) has endothermic heat coefficient y» = H,/H, and the exothermic
reactions in each stage occur with relative heat release coefficients y; = H;/H, and
vsa = Hy/H,.

This model (9)-(10) is still relatively simple, yet manages to account approxim-
ately for the effects of wind, radiative and conductive heat transfer, flammable gas
production above a certain temperature, and an elementary treatment of the chemistry
of combustion. Furthermore, it is considerably simpler than the model of Grishin,
Gruzin and Zverev [6], and is amenable to analysis. Nevertheless, a large number of
dimensionless parameters is required, and as Weber [16] points out, these can be very
difficult to estimate on the basis of field or laboratory measurements. It is the purpose
of this paper, however, to show that the description of a large bushfire requires a model
of at least comparable complexity to the present one, which is capable of exhibiting
many of the qualitative features of a spreading fire.

2. One-dimensional travelling wave solutions

It is the purpose of this section to examine the possibility that a line fire (in one
dimension) might move as a travelling wave, similar to those studied by Norbury and
Stuart [9]. It will be argued here that a large bushfire does not generally progress in
this fashion.

The central result of this section is the following theorem.

THEOREM 1. A necessary condition for the propagation of a one-dimensional travel-
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ling wave in the model (9) — (10) is that

3 — 1
YV2—Va

> 0. an

PROOF. Suppose that the wind velocity vector is W, = U,i, and the wave front has
position x = #(¢) at time ¢. The travelling wave solution takes the form

v(x, 1) = v(n), n=x-6(), (12)

with similar expressions for the other dependent variables «, S and G. Substituting
the expressions (12) into (9), in one dimension only, then gives rise to the system of
four coupled ordinary differential equations

.. dv d ;dv
/L(Ug — G)E = 4)»85 v d_'? — (v — u) + y38k  (u) + yar, Gka(v),

d d [ .d 4
oY — 4As—n(u3—“) 40, 5L _bu—v) = Ski(u) — yaks Ska(u),

dn d dn dn?
—éj—s = —Sky(u) = ks Sk (u),
n
. dG
(U, — 6):1—7; = K Ska(u) — k,Gks(v). (13)

The boundary conditions at each end of the wave are that u(n), v(n) — u, and
u'(n),v'(n) - 0 as n — oo, where u, denotes the ambient temperature. (The
values of the solid concentration § may differ far upstream and far downstream of the
wave.) Equations (13) are integrated, and the first, second and fourth are combined

to give the result
oo ys—1 e
K Sky(u)dn = / Sky(u)dn. (14)
—o0 Y2 —Va —o0

Since the integrands on both sides of the (14) must be positive, it follows that (y5 —
1)/(y»—y4) > Oforawave to propagate. This confirms condition (11), and concludes
the proof of Theorem 1.

The inequality (11) can be satisfied in one of two ways. If y5 > 1, so that the first
reaction scheme (with product P;)in (1) is overall exothermic, then it must follow that
y» > ¥s. In this case, the second reaction pathway in (1) consumes more heat than it
produces. Conversely, if y3 < 1 then also it is necessary that y, < y4; although the
second pathway (with product P;) is now nett exothermic, the first reaction scheme
has now become overall endothermic.
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Thus it follows that, at least in the present model, a travelling wave in one dimension
is only sustainable if one of the two reaction schemes in (1) is endothermic overall.
This is scarcely likely to be the case under the conditions of extreme drying that
characterize large bushfires. Consequently, fully developed bushfires.are unlikely to
propagate as simple travelling waves.

It is, of course, the case that the inequality (11) could be satisfied by wer bushland,
for which one of the reaction pathways in (1) was nett endothermic, representing the
fact that the fire front first had to drive off water vapour from the wet forest before
it could burn. A model of this type is considered by Sisson er a/ [11], and concerns
the smouldering combustion of damp cellulosic materials (such as bagasse or wood
shavings).

3. Numerical solution for a line fire

This section briefly reviews the diagonally implicit finite-difference scheme de-
veloped for the solution of this problem in one dimension. A spatial mesh x;,
Jj = 1,2,..., N is introduced, along with a difference grid #,, ¥ = 1,2,..., P
for the time. The dependent variables u(x;, #), and so on, are approximated by point
values uf on the numerical grid, and it is convenient to introduce the central difference

operators
Lk _ ko k
Su; = Uiy — Uy,
2k _ kA k k
5Xuj =ujy 2ui +uj_,. (15)

In one spatial dimension, with the wind velocity vector expressed in the form
W, = Ui, the system of equations (9) is approximated by the difference formulae

vj’-‘+l - v]’.‘ 1y 8 vf + 6X'v]’-‘+'
H At 278 2 Ax
8 vk 38205 4 820!

2
2
= 122, (v}) (Mx) + 2h(v)) N

—£(3[vf + i — ) + vsSiky () + LA ACHE

K+l _ ok 2k 4 82,k
u; u Sou; +5cu;

; 3 S;u’,‘ 2 3
’_A_I..L=12A5(u;‘) <2A; +%[as+4)»s(u§‘) ]T,

— Z(%[uf + ujf“] - vjf) - Sjkk,(uf.) — yzicsSJ’.‘kz(uf),

k+1 k
Sj+ )

L =) + ek @)] (5 + 5f),
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Git' - G* 8!G* + 8/G*!
—’—T’ + %Ug—’j,_—m—’ = ks Stka(u}) — Jrc ks WHIGK + GIH'].

(16)

It is easy to show, using a von Neumann stability analysis, that a difference scheme
of this type would be unconditionally stable for a linear, constant-coefficient system
of equations similar to (9), and this consideration has guided the development of the
finite-difference scheme (16). Nevertheless, non-linearity has an adverse effect on
the stability of (16), and in practice, it is found that the numerical time step Az must
usually be chosen to be of order Ax?.

To close the system, the difference scheme (16) is solved together with the Neumann
boundary conditions

?3 = u = G = amn
dx  Ox 9x

at each end of the computational window, x = x; and x = xy. The conditions
(17) are approximated using the centred difference operator 8! in (15), and values
of the dependent variables at the “false boundary” grid points x, = x; — Ax and
Xn41 = Xy + Ax are eliminated using the difference formulae (16) applied at the
boundary, in the usual way.

The numerical solution is thus advanced from the k-th time level to the (k + 1)-
st level by solving a tri-diagonal matrix system for each one of the four dependent
variables v, u, S and G. In view of the fact that the closure conditions (17) actually
represent insulated boundaries, the calculation must stop before the moving fire front
reaches the edges of the computational window.

4. Numerical study of a moving line fire

A great many numerical solutions has been computed, using the difference scheme
of Section 3, and a good understanding of the behaviour of the model (9)—(10) has
been developed for a one-dimensional fire. In particular, the fact that the present
model does not automatically predict a fire growing in intensity is regarded as one
of its considerable successes. For most choices of the parameters, it is observed that
a fire established at time ¢+ = 0 burns a little of the fuel and spreads slightly, before
the solid temperature u falls below the ignition temperatures u = 1 and u = ¢, , and
the fire simply goes out. This behaviour reflects the situation that exists in practice,
where intense bushfires are a relatively infrequent event.

Figure 1 shows the typical growth of a bushfire, under the rather rare conditions in
which such growth is possible in this model. As Weber [16] has indicated, it is difficult
to determine experimentally the parameter values that should be used, although in this
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FIGURE 1. Growth of a one-dimensional line fire. The wind speed is U, = 2, the ambient temperature
is u, = 0.75 and the initial solid concentration is S, = 1. Parameter values are as given in the text. The
solution is shown at (a) time r = 0.2 and (b) time t = 0.6.

paper, the heat capacity ratio is assumed to be i = 0.01. The radiation and diffusion
coefficients are set at the values A, = A; = o, = 0.1; this choice is somewhat arbitrary
since the reference length L, used in the definition of these constants has not been
specified. The other parameter values used in Figure 1 are £ = 5, ¢, = ¢, = 1,
kg = k; = 5, y, = 1l and y3 = y4 = 15. The ambient temperature is taken to be
u, = 0.75 and the initial fuel concentration is S, = 1. The initial conditions used in
Figure 1 were

vix, 0) = u, Sx,00=S8, and G(x,0)=0 (18a)
and

U, if |x| > x,

u(x,0) = (18b)

300y = )1+ eosCre/] it Ixl < o,

with u,, = 2.5 and x,, = 0.5.

Both Figures 1(a) and 1(b) have been drawn to the same scales, so that the growth
of the fire is easily visible. After time ¢+ = 0.2, Figure 1(a) indicates that the initial
maximum value for the solid temperature, u) = 2.5, has been substantially reduced
to a new maximum of about u = 1.4. This is clearly due to energy transfer from
the solid to the gas, and the production of a small concentration of flammable gas
through consumption of some of the solid S. For later times, > 0.2, the fire gains
rapidly in intensity, so that by + = 0.6, as shown in Figure 1(b), a substantial portion
of the solid fuel S has been burnt, resulting in severe high temperatures in both solid

https://doi.org/10.1017/50334270000008791 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000008791

182 Lawrence K. Forbes [12]

and gas, and a growing concentration of flammable gas. The numerical results are
not reliable for much later times than this, since the fire front then reaches the edges
of the computational window shown, and the boundary conditions (17) cease to be
appropriate.

A wind of strength U, = 2 has been assumed in these results, and its effect on
the progress of the fire can be seen clearly. There is a shift of the maximum in the
gas-temperature profile v downstream to about x = 1.2, as is to be expected with the
wind speed used here. In addition, the flammable gas concentration G likewise has a
secondary peak at about x = 1.2. From these profiles, then, it is evident that the fire
does not develop simply as a travelling wave, confirming Theorem 1 for the parameter
values assumed here.

A pleasing feature of the present model is that an initial disturbance such as (18)
generally does not grow as shown in Figure 1, consistently with physical reality. (This
is a consequence of the first endothermic steps in the reaction scheme (1), and the ig-
nition temperature assumptions (5).) In fact, considerable numerical experimentation
was needed in order to find a parameter set that would give the fire growth shown in
these diagrams. It is useful now to study the conditions under which a bushfire can
develop in this model, since they appear to accord with actual experience.

Whether or not a fire develops in this model, in the destructive manner indicated
in Figure 1, is mainly governed by the values of the activation temperatures €, and
€, the rate constants k, and k, and the heat release coefficients y; and y,. The model
appears to be reasonably insensitive to changes in the other parameters.

5 —

| 3 5 7 9 nl 13 15
Y} » Ya

FIGURE 2. The dependence of maximum gas and solid temperatures v and u, minimum solid
concentration § and maximum flammable gas concentration G upon the thermal release coefficients
y3 = ya,attimet = 0.6. Here, ¢, = ¢, = 1 and x, = «, = 5. The other parameters and initial condition
(18) are given in the text.

In Figure 2, the extremum values of the two temperatures # and v, the solid fuel
concentration S and the flammable gas concentration G are plotted as functions of
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the heat release coefficients, at time t = 0.6. In this diagram, the two ignition
temperatures are fixed at the value €, = ¢, = 1 and the two rate coefficients are
maintained as «, = «x, = 5. For simplicity, the two heat release rates y5 and y, have
been made equal in this figure; similar, if less spectacular, results are obtained under
conditions of differing heat releases, and so the choice y; = y;4 is primarily for ease
of viewing.

If the heat release coefficients y; and y, are sufficiently small, then it is clear
from Figure 2 that the fire does not grow. Instead, a small amount of the fuel § is
consumed, and the fire spreads a little before going out. Our numerical results indicate
that the fire apparently does not grow significantly until the heat release rates are about
y3 = v, = 9, assuming the same initial conditions as in (18).

A similar threshold effect for bushfire development is observed in Figure 3, in
which the extremum values of the functions u, v, § and G are shown, as they vary
with the rate constants «, and «, (again assumed equal, for ease of presentation). Here,
the activation temperatures are €, = €, = 1, and the heat release coefficients are now
maintained at the value y; = y, = 15. The initial conditions are as given in (18),
and results are shown for time ¢ = 0.6. If the chemical rate coefficients «, and «; are
suitably small, it is evident that the fire cannot grow in intensity, and the numerical
results suggest that a fully developed fire is only possible for rate constants «, and &,
slightly in excess of about 2.

FIGURE 3. The dependence of maximum gas and solid temperatures v and u, minimum solid
concentration § and maximum flammable gas concentration G upon the rate constants x, = «; , at
time t = 0.6. Here, e, =¢, = land y3 = y, = 15.

In summary, it is therefore the case that conditions which are likely to lead to the
growth of a large fire are a low value of activation energy €, and ignition temperature
€ , high rate constants k, and «; and high heat release constants y; and y,. If
these conditions are not met, the fire loses intensity and goes out. This observation
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is consistent with the anecdotal wisdom of firefighters, since the prolonged hot dry
weather that normally precedes an intense Australian bushfire would be sufficient to
bring about all these effects, essentially by means of the severe drying that takes place
in such conditions.

Once a large scale bushfire has established itself, it is usually not possible to fight it
directly, in view of the intense heat generated and the high winds that often accompany
it. Instead, the usual management strategy is to cut firebreaks; these are regions such
as paddocks or roads where the fuel available to the oncoming fire is scarce. Often,
firefighters will engage in “backburning”, in an attempt to remove even more of the
fuel between the chosen firebreak and the advancing fire front.

This use of firebreaks as a containment strategy for a bushfire has been studied
with the present model, and a typical result is shown in Figure 4. A wind of strength
U, = 2 in the positive x-direction is again present, and all other conditions are as in
Figure 1, except that now the initial function for the distribution of solid fuel has been

taken to be
0 ifl<x<3 (19)

S(x,0) = )
1 otherwise.

Profiles for the gas and solid temperatures, v and «, and the solid concentration §
and flammable gas concentration G are again shown at time ¢ = 0.6, so that a direct

comparison with Figure 1(b) is possible.

FIGURE 4. The effect of a firebreak, created using initial conditions S = 0inl < x < 3,and § = 1

otherwise. The parameters values are as in Figure 1.

It is at once clear from Figure 4 that the presence of the firebreak at 1 < x < 3 has
had a significant effect on the progress of the fire. The most noticeable effect is that
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a substantial reduction in the temperatures v and u of the gas and solid, respectively,
has occurred, even in the portions of the fire before the firebreak. There is much
less of the flammable gas G present in the fire. For times greater than t = 0.6,
some consumption of the fuel beyond the firebreak does, in fact, take place; thus the
firebreak is eventually breached due to radiation effects from the hot air convected
downstream by the wind. This also occurs in the field, and it is standard practice to
patrol the downstream side of a firebreak, putting out small spot fires when they are
detected. _

In the aftermath of the 1994 bushfires in New South Wales, there has been much
concern about the role played by uncleared forest debris in regions near houses and
suburbs. There is no doubt that bushfires are aided by the presence of such debris,
and this has also been studied with the present model.

FIGURE 5. The effect of excess fuel, created using initial conditions § =2inl <x < 3,and § = |
otherwise. The parameters values are as in Figure 1.

In Figure 5, profiles are shown at time ¢ = 0.6 for the same conditions as in Figures
1 and 4, except that the initial profile (19) has been replaced with

2 ifl 3
S0y =4 "ITYS (20)
1 otherwise,

as a simple model of a region 1 < x < 3 of uncleared debris. The effect on the
development of the fire is at once apparent. The fire front extends further downstream
and the temperature v of the air, in particular, is very greatly increased. In this
diagram, as in Figure 4, the small oscillations in the gas concentration profile G are
a consequence of the discontinuous initial conditions (19) and (20). They are an
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artifice of the numerical solution only (through the Gibbs’ phenomenon), and are of
no consequence.

S. Spread of a planar fire, and its numerical computation

From the perspective of a firefighter, it is probably the case that the one-dimensional
(large scale) line fire is of most practical interest. Nevertheless, it is possible also to
consider the initial stages of fire development with this model (although the vertical
structure of the flame, ignored here, may be of greater significance in this case).

THEOREM 2. If the gaseous phase is assumed incompressible, then there is a suffi-
ciently small value of the parameter y, for which the total thermal energy of the fire
will increase, provided that y; > 1.

PROOF. Indimensional variables, the thermal energy per unit volume is p,c; T, +pgc T,
and so it is appropriate to consider the total dimensionless thermal energy

E=///(u+pw)dv. 1

The boundary conditions are that ambient conditions prevail far away, so that u, v —
u, and G — 0as x* + y* — 0.

The four partial differential equations (9) are integrated over the entire volume. By
the divergence theorem, it follows that

/f/v.(wvu)dv:fu%ds:o, (22)

since u is constant at infinity. Thus the integrals of the radiation terms involving « and
v both vanish, and a similar argument applies to the conduction term (with coefficient
o, ) in the solid phase, also.

If the gaseous phase is incompressible, then divW, = 0, and the integral of the
convective term in the first equation in (9) may be written

// W, - VudV =///div(vwg)dV =uafwg-ndS. (23)

Here, the divergence theorem and boundary conditions at infinity have been used.
Applying the divergence theorem again to (23) gives

// Wg-VvdV:u,,///dingdV:O (24)
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by virtue of the incompressibility of the gas. A zero result for the integral of the
convective term in the last equation in the system (9) may be derived in the same
fashion as (23) and (24), using the boundary condition G — 0 at infinity.

After a little algebra, the integrated equations (9) may be combined to yield

dE
=D / / f Sky(w)dV
+0n = 7K, / f f GhIdV ~ 7 / f f Gav. 25)

If y; > 1, then the first term on the right-hand side is positive. It follows that if y,
is sufficiently small, the entire right-hand side of (25) can be guaranteed positive, in
which case the derivative d E/dt of the energy defined in equation (21) is positive.
Thus the energy increases with time, and the theorem is proved.

The results of Theorem 2 can be understood without difficulty in terms of the
physics of the situation. If 53 > 1 and y, is appropriately small, then the chemical
reactions (1) are exothermic overall, and the total thermal energy in the fire would be
expected to increase.

A numerical method has been devised for the solution of (9) in a planar region.
It is similar to the diagonally implicit finite-difference scheme used in Section 3, but
in addition makes use of an alternating-direction implicit (ADI) methodology. As
before, a spatial mesh (x;, y;), i = 1,2,...,N, j =1,2,..., M is defined, along
with a temporal grid ., k= 1,2,..., P.

There is insufficient space here to write out the difference formulae for each of the
four equations in (9), as in (16), so the procedure will be illustrated in reference to
the first equation in this system, with obvious generalization to the other three. The
difference operators (15) are now extended to two dimensions, in the form

Sluk = uk k

bk _ _
5;“:',; Wirj — Uiy s i j i1 T Wi s
2k _ ok ok k 2k ok k k
ey j = Wi ; — 25+ Uiy 5 Syuij =y —2up;+up . (26)

The wind velocity vector is assumed to have the cartesian form Wy = U,i + V,j.
In the first phase of the solution method, the dependent variables are found at
the half time-step #;,1,, . For the first equation in the system (9), the difference
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approximation is

k+1/2 k 1..k+1/2 1,,k
AV i 8,v; 3,vf
M [;j—'!_ _l,_ l] x Ly + V y 1]

At/)2 ¢ 2Ax £2A
SR gk sl \* [ 8k
= 4 k Xl_] yYi,j 12A. {(.2 x Vi, j ylj
0L) [ AxE Tay | T (01, 2ax ) “\ 22y
— LT = uf ) + vsSE ki uf ) + vakgGE ke (VF), @27)

and this can be solved as a tri-diagonal matrix system for the gas temperature ka/ 2

i =1,2,..., N for each value of the index j. As in Section 3, Neumann boundary
conditions of the type (17) have been assumed, with “false boundaries” beyond the
computational window as before. Similar diagonally-implicit difference schemes are
obtained for the other dependent variables in the system (9).

The second phase of the method advances the solution from time level ., to the
next full time level #,,, as required, by means of the difference formula

k41 k+1/2 1, k+1/2 1,,k+1
v — 5.0 S.v
u[w T+ Uy +Vy”]

+
At/2 £ 2Ax £2A

S§LyFTl2 g2kt
— 4)\'g(v{c+‘~1/2)3 x 1] + y 1_]

h Ax? Ay

81 k+1/2 81 k+1/2
12 k+l/2 x 1 j y Y; JJ
+ ( ) 2Ax + 2Ay

_ e(v'k-j}—l _ k+l/2)+ 73 k+1/2k1(uk+1/2) + '}/4KgGk+|/2k4(Uk+l/2).

(28)

The solution v;¥', j = 1,2,..., M is again obtained as the solution to a tri-diagonal
system, for each value of index i, with Neumann conditions (17) assumed at the
boundaries of the computational window. This ADI semi-implicit finite-difference
scheme (27)-(28) can readily be shown to have unconditional numerical stability
for linear, constant-coefficient partial differential equations similar to (9), although
in application it is again found that the non-linearity of the system (9) degrades
this stability characteristic, as for the one-dimensional solution method outlined in

Section 3.
6. Preliminary numerical results for a planar fire

A reasonably large number of numerical simulations has been performed using the
scheme outlined in Section 5, for spreading planar fires. Some preliminary attempts
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to investigate the effects of different starting conditions, variable fuel loading and
wind effects have been undertaken, but the full range of possibilities here clearly
go well beyond the scope of this investigation. Accordingly, an indicative sample
only of results that can be obtained with this model will be presented in this section.

FIGURE 6. Development of a planar fire from the initial condition (29). The profile shown is for the
gas temperature v(x, y) at time t = 0.6.

Figure 6 shows the gas-temperature profile v at time ¢ = 0.6, for the same parameter
values as used in Figure 1, and an initial condition

U, if x2 + y* > r?

(29)
U + Sy —u)[1 + cos(ry/x> + y*/r,)] ifx*+y? <rl,

u(x,y,0)=

with uy = 2.5 and r,, = 1.2. The variables v, § and G have initial values given by
(18a), and a wind vector W, = 2i is present. In this example, the initial fire clearly
gains in intensity and spreads as time is increased. In addition, there is noticeable
distortion of the plume towards the positive x-direction, as a consequence of the wind.

Contour maps are presented for this case, for the solid and gas temperatures u
and v and the concentrations of solid S and flammable gas G, in Figures 7(a)—(d)
respectively. These profiles show that the effect of the wind is to distort the initially
circular plume into a more elliptical pattern by time ¢+ = 0.6. In addition, the location
of the maximum in the gas-temperature profile v has moved significantly downstream,
as expected.

A large number of simulations has been performed for the spreading planar fire,
but the possibilities are too extensive to be discussed at length here. To conclude this
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FIGURE 7. Contour maps for the planar fire in Figure 6 at time t = 0.6. Results are shown for (a) the
solid temperature u, (b) gas temperature v, (c) solid concentration S and (d) gas concentration G.
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section, the effects of extra fuel on the fire are studied under the same conditions as
before, except that the initial condition for the solid concentration S is now altered to

Sa ifrl > 1.2

i . (30)
Sa+ 3(Su — S)[1 +cos(mri/1.2)] ifr < 1.2,

S(x,,0) =

in which r? = (x — 2.4)? + y? and the maximum initial concentration is Sy = 285, ,
with S, = 1 as before.

FIGURE 8. Solution profile and contour map for the gas temperature v at time ¢t = 0.6, for a planar
fire with initial conditions (29) and (30).

The gas-temperature profile v and the solid concentration S are shown at time
t = 0.6 for this case, in Figures 8 and 9 respectively. Here, the assumed symmetry of
the profile about the plane y = 0 was utilized in order to reduce the overall computer
run time, and results are therefore only shown for y > 0. A contour map is also
included in each diagram, and Figure 9, in particular, shows the way in which the burn
pattern is beginning to form a transverse crescent shape, in response to the wind and
the extra fuel.

7. Concluding remarks

A simple mathematical model (9) has been proposed for the spread of a bushfire,
and takes account of radiative effects, fuel consumption and wind. Its predictions
appear to be in accordance with expectation and empirical fact. In particular, it has the
feature that many parameter conditions do not result in a growing fire at all, but instead
allow the fire simply to die out. Thus the model offers an explanation of why small
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FIGURE 9. Solution profile and contour map for the solid concentration S at time ¢ = 0.6, for a planar
fire with initial conditions (29) and (30).

changes in ambient temperature (relative to absolute zero) can make the difference
between gentle smouldering and a large scale bushfire. The answer suggested here
is that it is the drying that occurs with high ambient temperatures and dry winds that
ultimately creates conditions conducive to fire development, through an increase in
the overall exothermicity of the chemical reactions involved in combustion, and a
decrease in the activation energy for burning to occur.

These conclusions are very much in accordance with practical experience in the
field, and for fire-fighters such knowledge has long been part of established under-
standing. It is appropriate therefore to conclude this paper with an assessment of what
has been achieved by a model such as this, and what gains might be made in the future.

The present model has evidently provided a qualitatively reasonable account of the
mechanisms responsible for fire spread; in particular, it has shown that fully developed
bushfires are unlikely to propagate as mathematical travelling waves. It is possible
that this model could be useful in enabling practitioners to decide how wide a firebreak
needs to be, in order to cope with a particular distribution of solid fuel, for example.

In this relatively simple model, the vertical structure of the fire has not been
addressed in detail, but has been modelled crudely by the use of two different tem-
peratures # and v. The justification for this is that vertical scales are some orders of
magnitude less than horizontal ones, so that the progress of a genuinely large scale
bushfire is unlikely to be greatly affected by the correct modelling of this third dimen-
sion. Nevertheless, there may be merit in improving the model with a more rigorous
treatment of the vertical fire structure, particularly when examining the initial stages
of two-dimensional fire spread.
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A worthwhile improvement to the present model (9) would also appear to be
possible, by taking explicit account of the moisture content of the fuel. This could
be done by allowing some dependence of the crucial parameters ys, ys and €, ,
for example, upon this moisture content. Some useful predictive capability of the
likelihood of a destructive bushfire might well come from an improvement of this
type. Finally, a model such as that proposed here, when used in conjunction with
supercomputing capabilities and a database of forestry information, might at last
enable the path of a large bushfire to be predicted well in advance, if all the empirical
constants can be determined.
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