CENTRALISERS OF GALOIS GROUP ACTIONS

MARK KISIN

If f is a polynomial over a field E, and σ a permutation of the roots of f, we show that σ is given by a polynomial p with coefficients in E (that is, $p(a) = \sigma(a)$ for each root a of f) if and only if σ commutes with all the Galois automorphisms.

If E is a field, and \overline{E} a separable closure of E, then $\operatorname{Gal}(\overline{E}/E)$ acts on the roots of unity in \overline{E} via the cyclotomic character. In particular the action of each Galois automorphism on roots of unity is a polynomial function. The purpose of this note is to point out that this is quite a general phenomenum. Namely we give two proofs of the following

THEOREM. Let E be a field, $f \in E[X]$, a polynomial with distinct roots, and σ a permutation of the roots of f. There is a polynomial $p \in E[X]$ such that $p(a) = \sigma(a)$ for each root a of f if and only if σ commutes with the Galois action on the roots of f.

In particular, if the roots of f generate an Abelian extension of E then the Galois action on the roots is given by polynomials in the sense above.

The theorem is pretty but not deep, and both proofs are completely elementary.

FIRST PROOF: We denote by G the absolute Galois group of E. The "only if" part is clear, since then for each $s \in G$ and root a of f we must have

$$s(\sigma(a)) = s(p(a)) = p(s(a)) = \sigma(s(a)).$$

Now suppose that σ commutes with the Galois action on the roots. If $f = f_1 f_2$ factors over E, then f_1 and f_2 are coprime. If $p_1, p_2 \in E[X]$ are such that $p_1(a) = \sigma(a), p_2(b) = \sigma(b)$ for each root a of f_1 and b of f_2 then we may choose p congruent to p_1 modulo f_1 and p_2 modulo f_2 .

Thus we may assume f is irreducible. Let a be a root of f, and $s \in G$. If s(a) = athen $s(\sigma(a)) = \sigma(s(a)) = \sigma(a)$. So s fixes $\sigma(a)$ and $\sigma(a) \in E[a]$. Thus $\sigma(a) = p(a)$ for some $p \in E[X]$. If b is another root of f, then b = t(a) for some $t \in G$, since f is

Received 20th August, 1997

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.

M. Kisin

irreducible. Hence $\sigma(b) = \sigma(t(a)) = t(\sigma(a)) = t(p(a)) = p(t(a)) = p(b)$, and p is the required polynomial.

SECOND PROOF: We retain the notation above, and give a second proof of the "if" part.

Let a_1, \ldots, a_n be the roots of f, and denote by f_i $(1 \le i \le n)$ the polynomial $f(X)/(X-a_i)$. We set

$$p(X) = \sum_{i=1}^{n} [f_i(X)/f_i(a_i)]\sigma(a_i)$$

This is the Lagrange interpolation formula, and we have $p(a_i) = \sigma(a_i)$ for each *i*.

To see that $p \in E[X]$ we extend the action of G to $E[a_1, \ldots, a_n][X]$ by letting G act on the coefficients of polynomials. If $s \in G$, choose $w \in S_n$ such that $s(a_i) = a_{w(i)}$. We get

$$s(p(X)) = \sum_{i=1}^{n} \left[f_{w(i)}(X) / f_{w(i)}(a_{w(i)}) \right] s(\sigma(a_i)) = \sum_{i=1}^{n} \left[f_{w(i)}(X) / f_{w(i)}(a_{w(i)}) \right] \sigma(s(a_i))$$
$$= \sum_{i=1}^{n} \left[f_{w(i)}(X) / f_{w(i)}(a_{w(i)}) \right] \sigma(a_{w(i)}) = p(X).$$

An amusing application of the above theorem is a proof of the following theorem on permutation groups [1, Theorem 4.2A].

COROLLARY. Let $H \subset S_n$ be a transitive permutation group. Then the only element of the centraliser of H in S_n which has a fixed point is the identity.

In particular if H is Abelian it is its own centraliser.

PROOF: Let E and f be as in the theorem. Denote by J the group of permutations of the roots of f induced by G. Choose E and f so that J is isomorphic to H as a permutation group. This is possible, since one can choose E and f so that $J \xrightarrow{\sim} S_n$ and then replace E by a finite extension.

If $\sigma \in S_n$ commutes with all the elements of J then by the theorem we have $\sigma(a) = p(a)$ for some $p \in E[X]$ and each root a of f. If $\sigma(a) = a$ then we have p(a) = a. Since p can be chosen so that deg $p < \deg f = n$, and f is irreducible, we see that p(X) = X and $\sigma = id$.

Finally we pose the following question:

Suppose that E is a local field, and that we are given a sequence f_1, f_2, \ldots of polynomials in E[X] with distinct roots and such that $f_i | f_{i+1}$ for each i. We let \mathcal{R} denote the union of the roots of the f_i . If σ is an automorphism of \mathcal{R} , when is there a power series p with coefficients in E such that $p(a) = \sigma(a)$ for each $a \in \mathcal{R}$? In

particular the equality means that the left hand side is well defined. Clearly σ must commute with the Galois action on \mathcal{R} , but this is perhaps not sufficient because of convergence problems.

We remark that if \mathcal{R} is the set of torsion points of a Lubin - Tate formal group over the ring of integers of E, (so the Galois action on \mathcal{R} is Abelian) and σ is induced by a Galois automorphism, then the required p exists [2, Proposition 4.9]. The situation where \mathcal{R} consists of elements of the form $\zeta - 1$ with ζ a p power root of unity is a special case, the power series associated to $\sigma \in G^{ab}$ being $p(X) = (1 + X)^{\omega(\sigma)} - 1$, where $\omega : G^{ab} \longrightarrow \mathbb{Z}_p^*$ is the cyclotomic character.

References

- J. Dixon and B. Mortimer, *Permutation groups*, Graduate Texts in Mathematics 163 (Springer-Verlag, Berlin, Heidelberg, New York, 1996).
- K. Iwasawa, Local class field theory, Oxford Mathematical Monographs (Oxford University Press, New York, 1986).

Department of Mathematics University of Sydney Sydney NSW 2006 Australia