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We develop a new methodology to assess the streamwise inclination angles (SIAs) of
the wall-attached eddies populating the logarithmic region with a given wall-normal
height. To remove the influences originating from other scales on the SIA estimated
via two-point correlation, the footprints of the targeted eddies in the vicinity of
the wall and the corresponding streamwise velocity fluctuations carried by them
are isolated simultaneously, by coupling the spectral stochastic estimation with
the attached-eddy hypothesis. Datasets produced with direct numerical simulations
spanning Reτ ∼ O(102)–O(103) are dissected to study the Reynolds number effect.
The present results show, for the first time, that the SIAs of attached eddies are
Reynolds-number-dependent in low and medium Reynolds numbers, and tend to saturate
at 45◦ as the Reynolds number increases. The mean SIA reported by vast previous
experimental studies are demonstrated to be the outcomes of the additive effect contributed
by multi-scale attached eddies. These findings clarify the long-term debate and perfect the
picture of the attached-eddy model.

Key words: boundary layer structure, turbulence theory, turbulent boundary layers

1. Introduction

It is generally recognized that high-Reynolds-number wall-bounded turbulence is filled
with coherent motions of disparate scales, which are responsible for energy transfer and
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Figure 1. A schematic of the attached-eddy model: (a) x–y plane view, and (b) y–z plane view. Each
parallelogram in (a) and circle in (b) represents an individual attached eddy. Here, x, y and z denote the
streamwise, wall-normal and spanwise directions, respectively. Also, y+

s (= 100) and y+
e (= 0.2h+) denote

the lower and upper bounds of the logarithmic region, respectively (Jiménez 2018; Baars & Marusic 2020a;
Wang, Hu & Zheng 2021); y+

o is the outer reference height; �y+ is the local grid spacing along the wall-normal
direction; and αm and αs are the mean and individual SIA of attached eddies, respectively. These two diagrams
are merely conceptual sketches, and the eddy population density is not in accordance with that of Perry &
Chong (1982).

the fluctuation generation of turbulence. Until now, the most elegant conceptual model
describing these energy-containing motions has been the attached-eddy model (Townsend
1976; Perry & Chong 1982). It hypothesizes that the logarithmic region is occupied by an
array of randomly distributed and self-similar energy-containing motions (or eddies) with
their roots attached to the near-wall region (see figure 1). During recent decades, a growing
body of evidence that supports the attached-eddy hypothesis has emerged rapidly, e.g.
Hwang (2015), Hwang & Sung (2018), Cheng et al. (2020b), Hwang, Lee & Sung (2020),
to name a few. The reader is referred to a recent review work by Marusic & Monty (2019)
for more details. Throughout the paper, the terms ‘eddy’ and ‘motion’ are exchangeable.
It should be noted that the terms ‘wall-attached motions’ and ‘wall-attached eddies’ used
in the present study refer to not only the self-similar eddies in the logarithmic region,
but also the very-large-scale motions (VLSMs) or superstructures, as some recent studies
have shown that VLSMs are also wall-attached, despite their physical characteristics not
matching the attached-eddy model (Hwang & Sung 2018; Yoon et al. 2020).

Previous studies have established that the energy-containing eddies populating the
logarithmic and outer regions bear characteristic streamwise inclination angles (SIAs)
due to the mean shear (see figure 1a). As early as the 1970s, Kovasznay, Kibens &
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Inclination angle of wall-attached eddies

Blackwelder (1970) found that the large-scale structures in the outer intermittent region
of a turbulent boundary layer have a moderate tilt in the streamwise direction. On the
other hand, for the eddies in the logarithmic region of wall turbulence, the wall-attached
Λ-vortex was used by Perry & Chong (1982) to illustrate them. According to Adrian,
Meinhart & Tomkins (2000), these Λ-vortices are apt to cluster along the flow direction
and form an integral whole (generally called vortex packets). Further observations in
channel flows (Christensen & Adrian 2001) demonstrated that the heads of Λ-vortices
among the vortex packets tend to slope away from the wall in a statistical sense, with
SIAs between 12◦ and 13◦. Most additional studies have shown a similar result, and it is
accepted widely that the approximate SIAs of eddies are in the range 10◦–16◦ (Boppe,
Neu & Shuai 1999; Christensen & Adrian 2001; Carper & Porté-Agel 2004; Marusic
& Heuer 2007; Baars, Hutchins & Marusic 2016). Besides, the SIA is also found to be
Reynolds-number-independent (Marusic & Heuer 2007).

However, the SIA estimated by experimentalists using the traditional statistical approach
is indeed the mean structure angle (Marusic & Heuer 2007; Deshpande, Monty &
Marusic 2019). The common procedure to obtain the SIA is based on the calculation
of the cross-correlation between the streamwise wall-shear stress fluctuation (τ ′

x) and the
streamwise velocity fluctuation (u′) at a wall-normal position in the log region (yo). The
cross-correlation can be expressed as

Rτ ′
xu′(�x) = 〈τ ′

x(x) u′(x + �x, yo)〉√〈
τ ′2

x
〉 〈

u′2〉 , (1.1)

where 〈 · 〉 represents the ensemble temporal and spatial average, and �x is the streamwise
delay. The SIA can be estimated by

αm = arctan
(

yo

�xp

)
, (1.2)

where �xp denotes the streamwise delay corresponding to the peak in Rτ ′
xu′ . Considering

that an array of wall-attached eddies with distinct wall-normal heights can convect
simultaneously past the reference position yo, αm in (1.2) should be regarded as the mean
angle of these eddies. Hence the subscript m in (1.2) refers to ‘mean’.

To estimate the SIAs of the largest wall-attached eddies, Deshpande et al. (2019)
introduced a spanwise offset between the near-wall and logarithmic probes to isolate these
wall-attached motions in the log region. They found that their SIAs are approximately 45◦.
This observation is consistent with several theoretical analyses. For example, Moin & Kim
(1985) and Perry, Uddin & Marusic (1992) proposed that for flows with two-dimensional
mean flows, the characteristic angles of the energy-containing eddies should follow the
direction of the principal rate of mean strain. More specifically, their SIAs should be 45◦
for a zero-pressure-gradient turbulent boundary layer (Perry et al. 1992). Marusic (2001)
found that the mean SIA of the induced turbulence field by attached eddies is akin to
the experimental measurements if the hierarchical attached eddies tilt away from the wall
with individual SIA 45◦ and organize like the vortex packets observed in numerical and
laboratory experiments.

Reviewing the work of predecessors, it can be found that the SIAs of attached eddies
at a given length scale are ambiguous. Traditional measurements are applicable only for
the assessment of the mean SIA (Brown & Thomas 1977; Boppe et al. 1999; Marusic &
Heuer 2007). Moreover, the technique adopted by Deshpande et al. (2019) can isolate only

946 A49-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.657


C. Cheng, W. Shyy and L. Fu

Case Reτ Lx(h) Ly(h) Lz(h) �x+ �z+ �y+
min �y+

max NF Tuτ /h

Re550 547 8π 2 4π 13.4 6.8 0.04 6.7 142 22
Re950 934 8π 2 3π 11.5 5.7 0.03 7.6 73 12
Re2000 2003 8π 2 3π 12.3 6.2 0.32 8.9 48 11
Re4200 4179 2π 2 π 12.3 6.2 0.32 10.6 40 15

Table 1. Parameter settings of the DNS database. Here, Lx, Ly and Lz are the sizes of the computational
domain in the streamwise, wall-normal and spanwise directions, respectively. Also, �x+ and �z+ denote
the streamwise and spanwise grid resolutions in viscous units, respectively; �y+

min and �y+
max denote the

finest and coarsest resolutions in the wall-normal direction, respectively; NF and Tuτ /h indicate the number
of instantaneous flow fields and the total eddy turnover time used to accumulate statistics, respectively.

the largest wall-attached motions in the logarithmic region. Considering the characteristic
scale of an individual attached eddy as its wall-normal height, as per the attached-eddy
model (Townsend 1976; Perry & Chong 1982), it is self-evident that it is of great
importance to assess the SIAs of attached eddies with any heights in the logarithmic
region, for not only the completeness of attached-eddy hypothesis, but also the accuracy
of turbulence simulations (Marusic 2001; Carper & Porté-Agel 2004). In the present
study, we aim to achieve this goal by leaning upon the modified spectral stochastic
estimation (SSE) proposed by Baars et al. (2016), and dissecting the direct numerical
simulations (DNS) database spanning broad-band Reynolds numbers. We will also discuss
the relationship between the mean SIA and the scale-based SIA.

2. DNS database and methodology to calculate the SIA

2.1. DNS database
The DNS database adopted in the present study has been validated extensively by Jiménez
and co-workers (Del Álamo & Jiménez 2003; Del Álamo et al. 2004; Hoyas & Jiménez
2006; Lozano-Durán & Jiménez 2014). Four cases, at Reτ = 545, 934, 2003 and 4179,
are used and named Re550, Re950, Re2000 and Re4200, respectively (Reτ = huτ /ν,
where h denotes the channel half-height, uτ the wall friction velocity and ν the kinematic
viscosity). All these data are provided by the Polytechnic University of Madrid. Details of
the parameter settings are listed in table 1. Note that the relatively smaller computational
domain size of Re4200 may influence the estimation of SIAs of the attached eddies
populating the upper part of the logarithmic region. This limitation will be discussed in
§ 3 and the Appendix.

2.2. Spectral stochastic estimation
According to the inner–outer interaction model (Marusic, Mathis & Hutchins 2010),
large-scale motions would exert footprints on the near-wall region, i.e. the superposition
effects. Baars et al. (2016) demonstrated that this component (denoted as u′+

L (x+, y+, z+))
can be obtained by the SSE of the streamwise velocity fluctuation at the logarithmic region
y+

o , namely by

u′+
L

(
x+, y+, z+) = F−1

x
{
HL

(
λ+x , y+)

Fx
[
u′+

o
(
x+, y+

o , z+)]}
, (2.1)

where u′+
o is the streamwise velocity fluctuation at y+

o in the logarithmic region, and Fx

and F−1
x denote the fast Fourier transform (FFT) and the inverse FFT in the streamwise
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Inclination angle of wall-attached eddies

direction, respectively. Here, HL is the transfer kernel, which evaluates the correlation
between û′( y+) and û′

o( y+
o ) at a given length scale λ+x ; it can be calculated as

HL
(
λ+x , y+

o
) =

〈
û′ (λ+x , y+, z+)

û′
o
(
λ+x , y+

o , z+)〉〈
û′

o
(
λ+x , y+

o , z+)
û′

o
(
λ+x , y+

o , z+)〉 , (2.2)

where û′ is the Fourier coefficient of u′, and û′ is the complex conjugate of û′. Here, y+ is
set as y+ = 0.3, and the outer reference height y+

o varies from 100 to the outer region 0.7h+
according to the wall-normal grid distribution. Once u′+

L is obtained, the superposition
component of τ ′+

x can be calculated by definition (i.e. ∂u′+
L /∂y+ at the wall) and denoted

as τ ′+
x,L( y+

o ).
Analogously, to eliminate the effects from the wall-detached eddies with random

orientations, which contribute significantly to the streamwise velocity fluctuations at y+
o ,

we can also use the near-wall streamwise velocity fluctuation in the viscous layer y+ to
reconstruct the wall-coherent streamwise velocity fluctuation in the logarithmic region y+

o
by SSE (Adrian 1979), i.e.

u′+
W

(
x+, y+

o , z+) = F−1
x

{
HW

(
λ+x , y+)

Fx
[
u′+ (

x+, y+, z+)]}
, (2.3)

where u′+
W is the wall-coherent component of u′+

o . The wall-based transfer kernel HW can
be calculated as

HW
(
λ+x , y+

o
) =

〈
û′

o
(
λ+x , y+

o , z+)
û′ (λ+x , y+, z+)〉〈

û′ (λ+x , y+, z+)
û′ (λ+x , y+, z+)〉 . (2.4)

Figure 2(a) shows the variation of 〈u′2+
W 〉 as a function of yo/h in the case Re2000. The

full-channel data are included for comparison. It can be seen that 〈u′2+
W 〉 follows roughly

the logarithmic decay for 0.09 ≤ yo/h ≤ 0.2, i.e. the logarithmic region. To quantify the
logarithmic decay systematically, we define the indicator function Ξ = y(∂〈u′2+〉/∂y), and
display its variations in figure 2(b). Comparing with the full-channel data, a comparatively
well-defined plateau is observed for 〈u′2+

W 〉. The logarithmic variance of 〈u′2+
W 〉 shown in

figure 2 is the consequence of the additive attached eddies (Townsend 1976), and can be
expressed as

〈u′2+
W 〉 = C2 − C1 ln( yo/h), (2.5)

where C2 and C1 are two constants, and C1 is approximately equal to 0.54. Actually, the
magnitude of the slope of the logarithmic decaying is affected by the Reynolds number,
the configuration of the wall turbulence, the methodology for isolating the signals carried
by the attached eddies, and the effects of the VLSMs. The indicator function Ξ of
the full-channel data shown in figure 2(b) suggests that the logarithmic region of case
Re2000 is not fully developed, as the slope value of the logarithmic decaying is smaller
than the Townsend–Perry constant 1.26 reported in high-Reynolds-number experiments
(Marusic et al. 2013), and close to the magnitude of C1 observed here. Furthermore, Baars
& Marusic (2020b) reported that C1 = 0.98 in turbulent boundary layers by analysing
the streamwise velocity fluctuations carried by the attached eddies in the logarithmic
region, while Hu, Yang & Zheng (2020) and Hwang et al. (2020) showed that C1 = 0.8
and 0.37 in channel flows, respectively. Hu et al. (2020) adopted a scale-based filter to
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Figure 2. (a) Variations of the statistic 〈u′2+
W 〉 as a function of yo/h, with the full-channel data 〈u′2+〉 included

for comparison. (b) Variations of the indicator function Ξ as functions of yo/h. The red line in (a) denotes the
logarithmic decaying (2.5) with C1 = 0.54. The data is taken from the case Re2000.
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100 600
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Figure 3. Variations of �y+ as functions of y+
o in the logarithmic region for all cases.

extract the streamwise velocity fluctuations associated with the attached eddies in the
logarithmic region, and did not take into account their imperfect coherence with the
near-wall flow at each scale. The wall-based transfer kernel HW in (2.4) employed here
can achieve this. Hwang et al. (2020) utilized the three-dimensional clustering method
to identify the wall-attached structures in a channel flow. The differences among these
decomposition methodologies may be the reason why the magnitude of C1 for turbulent
channel flows reported by Hu et al. (2020) and Hwang et al. (2020) is not identical to
that of the present study. Besides, it is noted that the effects of VLSMs are also retained
in 〈u′2+

W 〉, and their impacts on the logarithmic decaying are non-negligible. By the way,
the methodology introduced in § 2.3 to estimate the SIAs of attached eddies at a single
scale can effectively diminish the effects originating from the VLSMs (see figure 4). In
summary, these observations demonstrate that u′

W can be considered as approximately the
streamwise velocity fluctuations carried by the multi-scale wall-attached eddies. We will
focus on the statistics in the logarithmic region in the following sections.

2.3. Methodology to isolate targeted eddies
Apparently, the SIAs of attached eddies at a single scale (αs) cannot be pursued by
(1.1)–(1.2). It is worth noting that in (1.1)–(1.2), the input parameter and signals are yo, τ ′

x
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Figure 4. Streamwise premultiplied spectra of �τ ′
x,L, �u′

W , τ ′
x and u′ for (a) yo = 0.1h, and (b) yo = 0.2h, in

the case Re2000. Each spectrum is normalized with its maximum value. The vertical dashed lines are plotted
to highlight the corresponding λx/h of the maximum values of the premultiplied spectra of �τ ′

x,L and �u′
W .

and u′( yo). Thus to obtain an accurate αs, yo should be set reasonably, and τ ′
x and u′( yo)

should also be processed properly, to characterize the properties of the attached eddies at
the targeted scale. Our new approach is based on this understanding.

According to the hierarchical distribution of the multi-scale attached eddies
in high-Reynolds-number wall turbulence (see figure 1(b), also figure 14 of
Perry & Chong 1982), τ ′+

x,L( y+
o ) represents the superposition contributed from

the wall-attached motions with their height larger than y+
o . Thus, the difference

value �τ ′+
x,L( y+

o ) = τ ′+
x,L( y+

o ) − τ ′+
x,L( y+

o + �y+) can be interpreted as the superposition
contribution generated by the wall-attached eddies with their wall-normal heights between
y+

o and y+
o + �y+. Here, y+

o + �y+ is the location of the wall-normal grid cell adjacent to
that at y+

o , as �y+ is the local grid spacing along the wall-normal direction, in viscous
units, determined by the simulation set-ups. A similar numerical framework has been
verified by our previous study (Cheng & Fu 2022). Correspondingly, the difference value
�u′+

W ( y+
o ) = u′+

W ( y+
o ) − u′+

W ( y+
o + �y+) is the streamwise velocity fluctuation carried by

attached eddies populating the region between y+
o and y+

o + �y+. In this way, the SIAs of
these eddies can be assessed by

αs( ym) = arctan
(

ym

�xp

)
, (2.6)

where ym = (yo + ( yo + �y))/2, and �xp is the streamwise delay associated with the
peak of the cross-correlation

RLW(�x) = 〈�τ ′+
x,L(x, y+

o )�u′+
W (x + �x, y+

o )〉√〈
�τ ′2+

x,L

〉 〈
�u′2+

W

〉 . (2.7)

As the statistical characteristics of an individual attached eddy being self-similar with
its wall-normal height as per the attached-eddy hypothesis (Townsend 1976), ym is just the
characteristic scale of the wall-attached motions within y+

o and y+
o + �y+. Figure 3 shows

the variations of �y+ as functions of y+
o in the logarithmic region for all cases. It can be

seen that the maximum values of �y+ are less than 7 in the case Re4200. In this regard,
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treating ym as the mean height of the attached eddies populating the region between yo
and yo + �y is reasonable, as the zone between yo and yo + �y is narrow compared to
the spanning of the logarithmic region. The new procedure isolates the attached eddies
at a given scale from the rest of the turbulence. The cross-correlation, i.e. (2.7), gets rid
of the influences originated from other scales, and preserves the phase information of the
wall-attached motions with wall-normal height ym.

Finally, the critical assumptions of the present approach and its realization merit a
discussion. Our methodology is based on the hierarchical distribution of the attached
eddies, and the hypothesis that the characteristic velocity scales carried by the attached
eddies with different wall-normal heights are identical with their scale interactions
omitted. That is, the attached eddies in each hierarchy contribute equally to the streamwise
wall-shear fluctuations on the wall surface and the streamwise turbulence intensity in the
lower bound of the logarithmic region. Only in this way, both �τ ′+

x,L and �u′+
W reflect

approximately the characteristics of the attached eddies at ym. In fact, these assumptions
are also the key elements when developing the attached-eddy model (Townsend 1976;
Perry & Chong 1982; Woodcock & Marusic 2015; Yang, Marusic & Meneveau 2016;
Mouri 2017; Yang & Lozano-Durán 2017), and some of them may be valid only in
high-Reynolds-number wall turbulence. For example, the hierarchical distribution of the
multi-scale attached eddies is prominent at high-Reynolds-number turbulence (De Silva,
Marusic & Hutchins 2016; Cheng et al. 2019; Marusic & Monty 2019). However, when the
DNS data listed in table 1 are utilized to study the characteristics of the attached eddies,
the finite Reynolds number effects and the intricate scale interactions would take effect
inevitably. Besides, the VLSMs, which cannot be depicted by the attached-eddy model,
would also impose non-trivial impacts (Perry & Marusic 1995; Baars & Marusic 2020a;
Hwang et al. 2020). Accordingly, the subtraction between u′+

W ( y+
o ) and u′+

W ( y+
o + �y+)

cannot achieve a sharp cut-off at the targeted scale in the spectral space, and hereby the
spectrum of �u′+

W ( y+
o ) would be comparatively small but not negligible at the smaller

and larger scales of the targeted one. The finiteness of �y+ is another factor, which is
worth attention in some scenarios. Due to the limitations of numerical simulation, �y+
is a finitely small quantity. When assessing the SIA of the attached eddies at a given
wall-normal height, treating y+

m as their characteristic scales (therefore neglecting the
effects of the narrow band between y+ and y+ + �y+) is acceptable, because �y+ is rather
small compared to the spanning of the whole logarithmic region. The linear growth of the
typical length scales of �τ ′+

x,L and �u′+
W shown in figure 6(b) can verify this validity. On

the other hand, when the spectral characteristics of �u′+
W are considered, �u′+

W should be
interpreted as the additive outcomes of the attached eddies with their wall-normal heights
within y+ and y+ + �y+, strictly speaking. Under these circumstances, the spectral energy
distribution that corresponds to the self-similar attached eddies within this range should
be observed to peak around the dominant wavelength, and vary continuously and locally.
The results shown in figure 5 confirm our proposition. Details will be discussed in the next
section.

3. Results

Before investigating the SIAs of attached eddies, it is important to study the characteristic
scales of �τ ′

x,L and �u′
W first. Figures 4(a,b) show their streamwise premultiplied spectra

at yo = 0.1h and yo = 0.2h, respectively, for Re2000. The spectra of τ ′
x and u′ of the

full-channel data are also included for comparison. Each spectrum is normalized with its
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Figure 5. Premultiplied one-dimensional streamwise spectra of �u′
W around (a) yo = 0.05h, (b) yo = 0.1h,

in Re2000. The horizontal dashed lines represent the plateaus or peaks of the spectra. The vertical lines are
plotted to highlight the self-similar regions of each spectrum.
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Figure 6. (a) Variations of R�u′
W,p �u′

W,p
as functions of �x/h for two selected yo. (b) Variations of �s/h as

functions of y+
m for �τ ′+

x,L,p and �u′+
W,p. The line in (b) denotes the linear variation 2�s = 10.8ym. The data is

taken from the case Re2000.

maximum value. It can be seen that the spectra of �τ ′
x,L and �u′

W are roughly coincident,
and peak at λx = 2.1h for y = 0.1h, and λx = 4.2h for y = 0.2h, respectively. By contrast,
the spectra of τ ′

x and u′ do not share similar spectral characteristics. It is noted that �u′2
W

and �τ ′2
x,L account for very little energy of the full-channel signals at the same wall-normal

positions. For example, �u′2
W at yo = 0.1h and 0.2h occupies 0.0034 % and 0.002 %

of u′2 at the corresponding positions, whereas �τ ′2
x,L for yo = 0.1h and 0.2h occupies

0.012 % and 0.0045 % of τ ′2
x , respectively. Moreover, comparing with the spectra of the

full-channel data, the spectra of �u′
W decay rapidly when λx ≥ 4h (see figure 4), which

indicates that the effects of VLSMs on �u′
W are rather limited.

Figure 5 shows the streamwise premultiplied spectra of �u′
W around yo = 0.05h and

yo = 0.1h. Each spectrum is normalized by the energy of �u′
W at a given ym. Clear

plateau regions can be observed around the spectral peaks. For yo = 0.05h, the region
is 18 ≤ λx/ym ≤ 30, and for yo = 0.1h it is 17 ≤ λx/ym ≤ 31 , which corresponds to the
k−1

x region in the spectrum predicated by the attached-eddy model, and can be considered
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as the spectral signatures of the attached eddies (Perry & Chong 1982; Perry, Henbest &
Chong 1986; Hwang et al. 2020; Deshpande, Monty & Marusic 2021). Besides, the spectra
shown here resemble the spectrum of the type A eddies hypothesized by Marusic & Perry
(1995), i.e. the energy fraction captured by the attached-eddy model. These observations
support the proposition that the �u′

W signals are the streamwise velocity fluctuations
carried by the self-similar attached eddies predominantly. Moreover, they also indicate that
the streamwise length scales of the dominant eddies increase with yo, as the self-similar
range is not altered significantly with increasing yo.

To investigate further the scale characteristics of �τ ′
x,L and �u′

W , we consider the
autocorrelation function of �u′+

W,p (the signals that are extracted from the spectral peaks
shown in figure 5, i.e. filtered �u′

W with wavelength larger than 17ym, but smaller than
31ym), which takes the form

R�u′
W,p�u′

W,p
(�x, yo) =

〈�u′
W,p (x, yo, z) �u′

W,p (x + �x, yo, z)〉
〈�u′2

W,p (x, yo, z)〉 , (3.1)

and the counterpart of �τ ′+
x,L can be defined similarly. Figure 6(a) shows the variations

of R�u′
W,p�u′

W,p
as functions of �x/h for two selected yo values. The larger yo, the

broader is R�u′
W,p�u′

W,p
. As a measure of the typical length scale, we employ �s/h, which

is the streamwise delay corresponding to R�u′
W,p�u′

W,p
= 0.05 or R�τ ′

x,L,p�τ ′
x,L,p

= 0.05
(here, 0.05 is an empirical small positive threshold). Figure 6(b) shows the variations of
2�s/h as functions of ym/h for �τ ′+

x,L,p and �u′+
W,p. For both �τ ′+

x,L,p and �u′+
W,p, 2�s/h

increases linearly with ym/h throughout most of the logarithmic region. This observation
is consistent with the attached-eddy hypothesis, which states that the length scales of the
attached eddies grow linearly with their wall-normal heights (Hwang 2015; Marusic &
Monty 2019). Moreover, both the streamwise length scales of �τ ′+

x,L,p and �u′+
W,p follow

2�s = 10.8ym (considering the symmetry of the autocorrelation function with respect
to �x = 0, 2�s truly represents the streamwise length scale of the signals). This scale
characteristic agrees well with some previous studies. For example, Baars, Hutchins &
Marusic (2017) showed that the streamwise/wall-normal aspect ratio of the wall-attached
eddy structure is λx/y = 14 in turbulent boundary layers, which is close to the result
here. Hwang et al. (2020) reported that the spectra of the self-similar wall-attached
structures agree with the attached-eddy hypothesis at λx = 12y, which is consistent with
the estimation of the present study. All these observations indicate that �τ ′+

x,L and �u′+
W

are representative of the attached eddies at a certain wall-normal height, though the minor
influences of VLSMs still exist, and treating y+

m as their characteristic scales is reasonable.
In summary, all the observations mentioned above indicate that �τ ′

x,L and �u′
W are the

outcomes of the energy-containing motions with the wall-normal heights approximately
equal to ym, and the cross-correlation, i.e. (2.7), truly reflects the phase difference between
the streamwise velocity fluctuations carried by these motions and their footprints in the
near-wall region. Other wall-normal positions and DNS cases yield similar results and are
not shown here for brevity.

Figure 7(a) shows the variations of RLW as functions of the streamwise delay for
some selected wall-normal positions in the case Re2000. Since the streamwise length
scales of the energy-containing motions are increased with their normal heights (see
figure 4), RLW becomes wider about the peak with increasing yo. We can identify �xp
obviously from the cross-correlation profiles, and the SIAs of the attached eddies at a given
wall-normal height can be calculated according to (2.6). Figure 7(b) plots the variations
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Figure 7. (a) Variations of RLW , i.e. the cross-correlation between �τ ′+
x,L( y+

o ) and �u′+
W ( y+

o ), as functions of
�x/h for some selected yo values in the case Re2000. (b) Variations of the normalized RLW as functions of
�x/ym for some selected yo values in the case Re2000. The RLW profiles are normalized with their maximum
values in (b). The vertical dashed lines in (a) are plotted to highlight the maximum values of RLW and their
corresponding �x/h.

of the normalized RLW as functions of �x/ym for some selected yo in the case Re2000.
The RLW distributions are normalized with their maximum values RLW,max. It can be seen
that the profiles of RLW/RLW,max for different wall-normal heights coincide well with each
other, which indicates the self-similar characteristics of the energy-containing motions in
the logarithmic region. We have checked that the correlations calculated from the raw data,
i.e. Rτ ′

xu′ in (1.1), cannot coincide if normalized in this manner. Again, it demonstrates that
the new methodology is capable of capturing the main properties of the attached eddies.

Figure 8 plots the variations of αs as functions of y+
m for all cases; approximately, αs

increases from 27◦ for Re550, to 40◦ for Re4200. For a given case, αs changes little
spanning the logarithmic region except for the upper part of the logarithmic region in
Re4200. Deshpande et al. (2019) isolated the large wall-attached structures in a DNS of
turbulent boundary layer at Reτ ≈ 2000, and found the corresponding SIAs to be 32◦
(see figure 4(a) of their paper). Their observation is consistent with the results of the
present study. However, Deshpande et al. (2019) calculated only the SIAs of the largest
wall-attached motions in the logarithmic region, due to the limitation of the methodology
adopted in their study, whereas we make a thorough investigation on the SIAs of attached
eddies with any wall-normal heights in the logarithmic region. Moreover, Deshpande
et al. (2019) reported that the SIAs of the large wall-attached motions identified in a
wind-tunnel boundary layer with Reτ = 14000 are approximately 50◦. They ascribed the
result difference between DNS and experiment to the limited streamwise scale range owing
to the DNS domain size selected for analysis. Our results reveal that the Reynolds number
effects play a non-negligible role in the formation of SIAs of attached eddies. To the
authors’ knowledge, this is the first time that the Reynolds number dependence of SIAs
of the wall-attached motions at a given length scale has been shown clearly. Finally, it
should be noted that αs of Re4200 decreases rapidly for y+

m > 500 (not shown here). This
diversity is due to the small computational domain size along the streamwise direction
in this database. Thus in the discussion below, the statistics of αs in the range y+

m > 500
in Re4200 will not be taken into account. The sensitivity of the presented results to the
number of instantaneous flow fields employed for accumulating statistics is examined in
the Appendix.
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Figure 8. Variations of αs as functions of y+
m for all cases. The red dashed lines denote the mean αs across the

logarithmic region of each case.
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Figure 9. (a) Variations of the mean αs (αs,m) statistic in the range of logarithmic region as a function of the
friction Reynolds number; the experimental results of turbulent boundary layers (Deshpande et al. 2019) are
also included for comparison. (b) Variations of αm and αSSE,m as functions of y+

o for Re2000. The solid black
line in (a) denotes the theoretical prediction angle 45◦, and the dashed line in (a) indicates the asymptotic
behaviour of αs,m.

Figure 9(a) shows the mean αs (αs,m) distribution in the range of the logarithmic region
as a function of the friction Reynolds number. It can be seen that the SIA may reach
the theoretical prediction angle 45◦ (Perry et al. 1992) when Reτ ∼ O(104). The results
of DNS of a turbulent boundary layer and wind-tunnel experiment of Deshpande et al.
(2019) roughly agree with the tendency. The minor differences may result from the distinct
configurations of the wall-bounded turbulence.

4. Discussion

4.1. Effects of near-wall and detached motions
To clarify the effects of near-wall and detached motions on the SIA assessment, we
calculate the mean SIA based on the predictive signals, i.e.

αSSE,m = arctan
(

yo

�xp

)
, (4.1)
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where �xp is the streamwise delay associated with the peak of the cross-correlation

Rτ ′
x,Lu′

W
(�x) = 〈τ ′

x,L(x) u′
W(x + �x, yo)〉√〈
τ ′2

x,L

〉 〈
u′2

W
〉 . (4.2)

Figure 9(b) shows the variations of αSSE,m as a function of y+
o for Re2000, and the

statistics of αm are also included for comparison. We can see that the αSSE,m distribution
is very closed to that of αm. It highlights the fact that the phase information embedded in
the raw signals u′( y+

o ) and τ ′
x is preserved by SSE. It also suggests that the near-wall and

wall-detached motions, which cannot be captured by SSE, have a negligible impact on the
magnitudes of SIA.

4.2. αs versus αm

Reviewing the approach to obtain the αm (i.e. (1.1)–(1.2)), the proposition that αm is the
mean SIA of attached eddies manifests in three aspects. (1) the generation of τ ′

x is not
only the outcome of the near-wall motions, but also the footprints of all the wall-attached
eddies (Cho, Hwang & Choi 2018; Cheng et al. 2020a). (2) In the logarithmic region, u′
results from a sum of random contributions from the wall-attached eddies with distinct
characteristic length scales (Yang et al. 2016), and a portion of contributions from the
wall-detached eddies (Baars & Marusic 2020b). (3) Here, yo is a wall-normal position
located in the logarithmic region and chosen arbitrarily. As mentioned above, an array of
wall-attached eddies with distinct wall-normal heights can convect simultaneously past
this reference position.

Here, an additive SIA is calculated to highlight the relationship between αs and αm,
namely,

αadd = arctan
(

ys

�xp

)
, (4.3)

where y+
s = 100 is the lower boundary of the logarithmic region, and �xp is the

streamwise delay associated with the peak of the cross-correlation

Radd(�x) = 〈(τ ′+
x,L(x, y+

s ) − τ ′+
x,L(x, y+

o ))(u′+
W (x + �x, y+

s ) − u′+
W (x + �x, y+

o ))〉√〈
(τ ′+

x,L(x, y+
s ) − τ ′+

x,L(x, y+
o ))2

〉 〈
(u′+

W (x, y+
s ) − u′+

W (x, y+
o ))2

〉 , (4.4)

where the reference position y+
o varies from y+

s + �y+ (equal to 104) to 0.7h+.
Figure 10(a) shows the variations of αadd as a function of y+

o for Re2000. It can be seen that
αadd decreases from 37.8◦ to 14◦ as y+

o increases, which corresponds to αs( y+
m = 102) and

αm( y+
o = 100), respectively. In other words, αadd converges from the SIAs of attached

eddies with wall-normal height approximately 100 in viscous units to the mean SIA
at y+

o = 100. This observation can be explained through the prism of the hierarchical
attached eddies in high-Reynolds-number wall turbulence. The increase of y+

o indicates
that τ ′+

x,L( y+
s ) − τ ′+

x,L( y+
o ) and u′+

W ( y+
s ) − u′+

W ( y+
o ) are contributed by more and more

wall-attached eddies with their normal heights larger than y+
s , and gradually become equal

to τ ′+
x,L( y+

s ) and u′+
W ( y+

s ), respectively, when y+
o approaches h+. Thus Radd would also

converge gradually to Rτ ′
x,Lu′

W
in (4.2), and αadd converges to αm and αSSE,m concurrently.
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Figure 10. (a) Variations of the additive SIA αadd as a function of y+
o for Re2000. (b) The mean SIAs αm as

functions of y+
o for all cases.

Additionally, this study helps us to understand the variation tendency of αm. Figure 10(b)
plots the variations of αm for all cases. It is observed clearly that αm increases continuously
with y+

o . Taking Re2000 as an example, αm increases from 14◦ for y+
s to 15.3◦ for y+

e .
Increasing y+

o implies that fewer and fewer wall-attached eddies contribute to u′. In this
way, αm would converge to αs as y+

o increases, albeit more slowly.

4.3. Scale-dependent inclination angles of wall-attached eddies
An alternative approach for calculating the scale-dependent inclination angle (SDIA)
has been reported by Baars et al. (2016). The following are the primary processes and
outcomes. The scale-specific phase between u′ at y+ and y+

o can be estimated as

Φ(λx) = arctan

{
Im

[
φu′

ou′
(
λx, y+, y+

o
)]

Re
[
φu′

ou′
(
λx, y+, y+

o
)]}

, (4.5)

where Im( · ) and Re( · ) denote the imaginary and real parts of φu′
ou′ , namely, the

numerator of (2.2). The scale-dependent streamwise shift can be calculated as

l(λx) = Φ(λx) λx

2π
. (4.6)

Accordingly, the SDIA can be estimated as

αsd(λx) = arctan
(

yo − y
l(λx)

)
. (4.7)

A positive αsd value corresponds to a spatially forward-leaning structure.
Figure 11 shows the SDIAs as functions of λx/yo for three selected wall-normal

positions in the case Re2000. For λx/yo > 18, the SDIAs of the large-scale motions are
shown to be approximately equal to 14◦. (in fact, this is not the real SIA of the large-scale
wall-attached structures, according to the study of Deshpande et al. 2019.) However, for
the smaller length scales, the SDIAs tend to be negative and vary rapidly with λx/yo.
This is the range of self-similar structures reported by previous studies, especially those
with λx/yo = 14 (Baars et al. 2017; Baidya et al. 2019). Similar results have also been
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Figure 11. Variations of the scale-dependent inclination angles for three selected wall-normal positions in the
case Re2000. The vertical line denotes λx/yo = 14.
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Figure 12. Plots of αs as functions of y+
m for the cases Re2000 and Re4200 with different NF . The dashed

lines denote the mean value of αs in the logarithmic region.

reported by Baars et al. (2016) (see figure 5 of their paper). It indicates that the phase
spectrum shown in figure 11 cannot be interpreted with any physical relevance at these
scales, as the scale-specific phases of them are random indeed. The contamination from
the detached eddies with random orientations could be the source of this problem. This
is the main purpose of the present study, i.e. to eliminate the corruption caused by the
wall-detached motions and measure appropriately the SIAs of the wall-attached eddies at
a certain wall-normal height.

5. Concluding remarks

In the present study, we develop a methodology to assess the streamwise inclination
angles of the wall-attached eddies at a given wall-normal height in turbulent channel
flows, by coupling the spectral stochastic estimation with the attached-eddy hypothesis.
Our results show, for the first time, that the SIAs of the attached eddies are
Reynolds-number-dependent in low and medium Reynolds numbers, and tend to be
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consistent with the theoretical prediction (i.e. αs = 45◦) as Reynolds number increases.
We further reveal that the mean SIA reported by vast previous studies are the outcomes of
the additive effect contributed by multi-scale attached eddies.

The attached-eddy model has been the guidance for the reconstruction of the velocity
field in wall turbulence (Perry & Marusic 1995; Baidya et al. 2017; Chandran et al. 2017).
Hierarchical vortex packets that consist of Λ-vortices with αs = 45◦ are distributed on the
wall surface to mimic the attached eddies. The present results suggest that a lower SIA
of representative structures might be helpful for a more accurate reconstruction when the
Reynolds number is not high enough. Moreover, within the state-of-the-art wall-modelled
large-eddy simulation (WMLES) framework, one may estimate the instantaneous τx based
on the velocities carried by the log region eddies (Fu et al. 2021; Fu, Bose & Moin 2022).
The Reynolds number dependence of SIAs of these eddies should be accounted for by an
advanced model in this sense.
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Appendix. Statistic sensitivity to NF

The influences of the number of instantaneous flow fields for accumulating statistics are
examined. Figure 12 shows the effect of NF on the statistic αs for the cases Re2000 and
Re4200. Alteration of the statistical samples mainly affects the relative standard deviations
(RSDs) of the results. To be specific, when NF increases from 48 to 94, RSD decreases
from 3.9 % to 3.3 % for Re2000; but for Re4200, RSD decreases from 6.5 % to 3.7 % when
NF increases from 20 to 40. Given the fact that the case Re4200 has limited domain size,
raising NF can effectively reduce the wiggles in the outputs. Nevertheless, the mean value
of αs in the logarithmic region seems to be insensitive to NF.
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