
2 

A simple example 

In this chapter we are going to discuss a simple case in which a 
quantum field theory simulates the effect of Pomeron exchange in 
the Regge limit of 

s ~ Itl. 
We do not mean that we can identify a Regge trajectory, with 
associated bound states for various values of positive t, but rather 
that in this limit the scattering amplitude has the form 

A(s, t) ex s",p(t). (2.1) 

The model we shall consider here is not QCD, but a much 
simpler quantum field theory, namely a scalar field theory with 
cubic interactions. We shall show that by summing perturbative 
contributions to all orders in the coupling constant, but keeping 
only leading logarithms, the behaviour expressed by Eq.(2.1) does 
indeed emerge. By 'leading logarithms' , we refer to those terms 
in the perturbative expansion which contain important (in the 
high energy limit) In s factors. Precisely which terms we keep will 
become clear as we develop the calculation. 

An example of Pomeron behaviour from a scalar theory with 
cubic interactions has been considered before, for example by Polk­
inghorne (1963a-c) which is described in The Analytic S-Matrix 
by Eden, Landshoff, Olive & Polkinghorne (1966). Their treat­
ment is something more straightforward than the method we shall 
be introducing here. Feynman diagrams are calculated using the 
usual method of Feynman parametrization and ladder diagrams 
are readily summed to all orders. The alternative method that we 
shall be using here is closer to the treatment by Chang & Yan 
(1970, 1971). It is something of a sledgehammer to crack a nut. 
However, the techniques that we shall introduce will serve well in 
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future chapters when they are applied to the more realistic case 
of QeD. 

2.1 The model 

We shall represent quarks (and antiquarks) by a complex scalar 
field <P and gluons by another scalar field x. In order to avoid 
the difficulty of infra-red divergences (which will be discussed at 
length in future chapters) we shall assign a mass m to the glu­
ons (whilst leaving the quarks massless). The gluons can interact 
with themselves as well as with the quarks. A cubic interaction 
between scalar fields has dimension of mass. In order to introduce 
a dimensionless coupling constant g, we shall factor out a mass m 
from the cubic couplings. 

A minor complication occurs when considering the analogue 
of the colour SU(N) group, which is the gauge group of QeD 
(N = 3, but in what follows we keep the number of colours general 
so as to expose the colour factors explicitly). The self-interaction 
term in the Lagrangian of the scalar gluons must be symmetric 
under interchange of two (bosonic) gluons, but we would like the 
interaction vertex to be proportional to the structure constants of 
the colour group (which are antisymmetric under interchange of 
colour indices). This leads us to introduce a colour group which is 
a product of two SU(N) groups. Thus the gluon fields carry two 
colour indices and are denoted by Xa,r with a, l' = 1 ... (N 2 - 1). 
The quark field transforms in the fundamental representation of 
both of these SU(N) groups and so also carries two indices, i.e. 
<Pi,! with i, 1 = 1 ... N. This is rather cumbersome, but in fact the 
colour factors are in general quite easy to keep track of (and at 
least there will be some feature which is simpler in QeD!). 

Thus the Lagrangian density for this model may be written 

-'Z 1 m 2 
{Y'A-.t , {} A-.,z + -{}I-1X {} Xa,r - -x Xa,r 

'I-' l-1'1-'t, 2 a,r 1-1 2 a,r 

J,i,Z(Ta)j(Tr)mA-. gm.f f a,r b,s e,t -gm'l-' i Z 'l-'j,mXa,r - 3f Jabe rstX X X , 

where the matrices Ta and Tr are the generators ofthe two SU(N) 
groups whose structure constants are fa be and frst respectively. 

https://doi.org/10.1017/9781009290111.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290111.004
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Pi P~ PI , 7 -----...----,.---- P~ , / , / 
,/ 
/, 

/ , 
P; 

/ , 
1)2 P2 / " ---"'-------"---- P; 

(a) (b) 

Fig. 2.1. Leading order contribution to Pomeron exchange. 

Thus 

[Ta,Tb] = iJabcTc, [Tr,Ts] = iJrstTt. (2.2) 

We do not have an analogue ofthe quartic coupling between glu­
ons. It turns out that in QeD these interactions always give con­
tributions which are sub-leading in Ins and we therefore neglect 
them. We can also assume that the quark fields carry a flavour 
index which we have suppressed. 

Within the context of this model we shall now calculate to all 
orders in perturbation theory, but keeping the leading powers of 
In s in each order, the process of quark-quark scattering via the 
exchange of a colour singlet. We assume that the two quarks have 
different flavours and they emerge from the scattering with the 
same colour with which they entered. 

2.2 The leading order contribution 

The leading order Feynman diagrams contributing to this pro­
cess are shown in Fig. 2.1. The quark lines are denoted by solid 
lines and the gluons by dashed lines. Because the quarks have dif­
ferent flavours we do not have to consider diagrams with quarks 
exchanged in the t-channel. 

The ingoing quarks have momenta PI and P2, respectively, and 
the outgoing quarks have momenta P~ and P~ respectively. Since 
we are interested in purely elastic scattering we need to consider 
graphs which do not alter the colour of the incoming quarks, i.e. 
colour singlet exchange. Therefore there is no contribution to the 
process in which only one gluon is exchanged and the minimum 
number of exchanged gluons must be two. The second diagram 
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(Fig. 2.1(b)) is related to the first by interchange of the incoming 
and outgoing lower quark lines. The colour generators on the lower 
line are reversed, but since we are concerned with colour singlet 
exchange, the two diagrams have the same colour factor. Thus 
the only difference comes from the kinematics. In other words 
by crossing symmetry it is sufficient to calculate the contribution 
from Fig. 2.1(a) and obtain the other contribution from the inter­
change of the Mandelstam variables sand u (which is equivalent 
to the interchange of P2 and p~). 

We deal first with the colour factor. This is straightforward. For 
a colour singlet exchange we obtain a factor for each of the SU(N) 
groups of 

~2 Tr(TaTb)Tr(TaTb) 

giving an overall colour factor of 

(N 2 _ 1)2 

16N4 
(2.3) 

Fig. 2.1(a) is a one loop diagram, which can be calculated by the 
conventional means of Feynman parametrization, and the leading 
logarithm term In(s/t) can be extracted from the integral over 
Feynman parameters. However, it turns out in general to be much 
more convenient to use dispersive techniques, i.e. we apply the 
Cutkosky rules (Cutkosky (1960)), which tell us that the imagi­
nary part ofthis amplitude can be related to a phase-space integral 
of a product of two amplitudes at the tree level (see Eq.(1.1) and 
Fig. 1.1), i.e. 

'SmA(2.1a) = l J d (P.S. 2) A~g)(k)A~g)t(k - q), (2.4) 

where A~g) is the tree amplitude for single gluon exchange shown 
either side of the cut in Fig. 2.2, i.e. 

A(g)(k) = _g2m2 1 
o (k2 _ m 2) 

up to a colour factor. A~g)t is the hermitian conjugate of the am­
plitude, i.e. the complex conjugate of the amplitude with the signs 
of the momenta reversed. The vector qJ.1. is the momentum trans­
ferred and so t = q2. The symbol d (P. S. 2) means the integral over 
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PI P~ 
I 

+ I I 
kl I k +q 
tl 

[' P~ P2 I 

Fig. 2.2. Imaginary part of Fig. 2.1(a). We adopt the convention 
that t-channel momenta on the left of the cut are directed down­
wards, whereas t-channel momenta on the right of the cut are di­
rected upwards. 

29 

the phase space of the two cut lines (whose momenta are 1 and I'), 
I.e. 

! ( 2) ! d4 1 d41' 2 '2)( )4 4( , d P.S. = (271")3(271")38(1 )8(1 271" 8 Pl+P2-1-1). 

One of these integrals (say d41') can be used to absorb the energy­
momentum conserving delta function 84 (PI + P2 - 1 - I') and, for 
the other, it is convenient to integrate not over the momentum 
of the other outgoing particle, but over the momentum k of the 
exchanged gluon. Thus we have 

! d (P.S. 2) = (2~)2! d4k 8((PI - k)2) 8((p2 + k)2). 

Now we parametrize the momentum k in terms of Sudakov 
parameters p and A: 

kl-' = ppi + AP~ + ki, 

where ki is the momentum transverse to PI and P2 and we rep­
resent this two-dimensional vector by the boldface k. In other 
words in the centre-of-mass frame in which the incoming particles 
are considered to be along the z-axis we have 

--0 (VSVS ) 
2 ' 2' , 

p~ (~,-~,o), 

((P + A) ~, (p - A) V;, k) . 
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Using s = 2Pl . P2 and performing the change of variables the 
phase-space integral becomes 

J d (F.S. 2) = 8:2 J dp d>' d2k 8( -s(1-p)>.-k2) 8(s(1+>.)p-k2). 

(2.5) 
In the limit It I ~ s the momentum transferred ql-' is dominated 

by its transverse component (i.e. t = q2 ~ _q2), as can easily be 
checked from the requirement that the outgoing particles on the 
right hand side of Fig. 2.2 must be on their mass-shell. Similarly 
the magnitude of k will also be of the order of the larger of m and 
..;m (it is unlikely that the momentum transferred in the two parts 
of the diagram on either side of the cut will be much larger than 
..;m in such a way that the sum of the two transverse momentum 
vectors gives q). Thus the delta functions in Eq.(2.5) which give 
>. = - p and p ~ k 2 / s tell us that both p and I >'1 are both of order 
- t / s and very much smaller than 1. This means that k2 may be 
approximated by 

and similarly 

(k_q)2 ~-(k-qf 

Absorbing the delta functions to perform the integration over 
p and >.: 
~. (N2 - 1 )2 g4m 4 J 2 1 1 
'5mA(2.1a)= 16N4 167l'2s dk(k2+m2) ((k_q)2+ m 2)' 

(2.6) 
The integral over the transverse momentum, k, is readily per­

formed. We choose not to do it here, rather we want to write 
Eq.(2.6) as 

(2.7) 

where 
1 1 

fo(k, q) = (k2 + m2) ((k _ q)2 + m 2)' (2.8) 

The reason for this apparently perverse notation will become clear 
when we go on to consider higher order contributions. 
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The imaginary part then immediately gives us the coefficient of 
the term In(sft), simply by using the relation (noting that sft is 
negative): 

In (f) = In C:I) - i7r. 

In Eq.(2.6) we have computed the coefficient of the i7r and the 
mere existence of an imaginary part tells us that there must be 
a logarithm in the real part with equal and opposite coefficient. 
However, we note that when the contribution from Fig. 2.1(b) is 
added, the large logarithm cancels and we are left with only the 
imaginary part. This is seen by observing that the contribution to 
Fig. 2.1(a) is proportional to 

1(lnC:I) -i7r) 

and to obtain the contribution from Fig. 2.1(b) we simply replace 
s by u. Now since uft is positive this diagram does not possess 
an imaginary part in leading order. It simply has the contribution 
proportional to 

~ln (~) . 
Since u ~ -s the logarithms cancel and we are left with the purely 
imaginary part from Fig. 2.1(a). 

2.3 Next-to-Ieading order contribution 

In this section we are interested in those contributions which are of 
order g2ln s relative to the leading order contribution (calculated 
in the last section). This means that the vast majority of the higher 
order graphs can be neglected. The only diagram contributing to 
the leading logarithm in this order is shown in Fig. 2.3: the so­
called one-rung ladder diagram (this will unfortunately not be true 
in the case of QeD). We shall explain why other types of diagram 
are suppressed at the end of this section. We start as before by 
considering the colour factor. This gives us a factor of N for each 
SU(N), relative to the leading order contribution, as can be seen 
from the relation 

(2.9) 
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PI ------.1-------
1 

1 

kl 1 

jJ2 ----------'--------

-------,---- P~ 

1 

1 kl + '1 
1 

--------j 

1 

1 

1 k2 + '1 
1 

-----'----- p; 

Fig. 2.3. One-rung ladder diagram. 

We calculate the imaginary part of this diagram using the same 
dispersive technique used in the preceding section, i.e. 

'SmA(2.3) = ~ J d (P.S. 3) Aig)(k)Aig)t(k - q) (2.10) 

where 

A(g)(k) - 3 3 1 (2 11) 
1 - g m (kr __ m2)(k~ _ m2)' . 

Once again we write the momenta of the exchanged gluons (k1 
and k2 ) in terms of Sudakov variables P1,..\.1,k1 ,P2,..\.2,k2 , and 
the three-body phase-space integral becomes 

2 

s J 2 2 128~5 dp1d..\.ld kldp2d..\.2d k2 

8( -s(l - P1)..\.1 - ki) 8(s(1 + "\'2)P2 - k~) 

8(S(P1 - P2)(..\.1 - ..\.2) - (kl - k 2 )2). (2.12) 

Since pi = 0 and p~ = 0, we expect a symmetry in kl and k2, 
so, as before, we expect all the transverse momenta to have mag­
nitudes which are of the order of the larger of m and v'1tT. The 
three-body phase-space integral gives a leading logarithm term 
':x: In s with s scaled by the squared transverse momenta. To lead­
ing logarithm order it does not matter exactly what values these 
transverse momenta that scale the logarithms are. Thus when con­
sidering the kinematic limits for the variables P1,2 and ..\.1,2 we can 
set 
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where k is a generic transverse momentum whose magnitude is 
much smaller than .;s. This situation is in marked contrast to 
that of deep inelastic scattering (away from very low Bjorken-x), 
where at one end of the laddert there is a very off-shell photon 
with squared momentum _Q2 and the leading In Q2 contribution 
is dominated by the region of phase space in which the transverse 
momenta are strongly ordered up the ladder. 

The energies of the cut lines in Fig. 2.3 must be positive in any 
Lorentz frame. This means that the components in the direction 
of P1 and P2 must both be positive for all external lines. This leads 
to kinematic limits 

1 > P1 > P2 > 0 

1 > 1),21 > 1),11 > 0 

(2.13) 

(note that ),1,2 are negative). We shall argue below that for the 
leading logarithm these inequalities may be replaced by strong 
orderings, i.e. 

1:::P P1 :::p P2 

1:::P 1),21 :::p 1),11· (2.14) 
In this approximation, the three-body phase-space integral may 
be replaced by 

2 
S J 2 2 128~5 dP1 d),l d k I dp2 d),2d k2 

X 5( -S),l - k 2 ) 5(Sp2 - k 2 ) 

X 5( -S(P1),2) - k 2). (2.15) 

Now performing the integrations over ),1,2 by absorbing two of the 
delta functions we end up with 

J ( 3) 1 11 dP1 2 2 2 d P.S. = --5 -dp2d kId k 2 5(sp2 - k). (2.16) 
128~ P2 P1 

We can easily perform the integration over P2 by absorbing the 
remaining delta function and then the In s term arises from the 
integral over P1, i.e. 

t Scaling violations in deep inelastic scattering are driven by ladder diagrams 
in QCD as embodied in the DGLAP equations (see Chapter 6). 
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It is this integral which, in the leading logarithm approximation, 
is dominated by the region 1 ~ PI ~ k 2 / s. We can see this by in­
troducing two parameters, El and E2, such that 1 ~ El, E2 ~ k 2 / s 
and splitting the integral up into three parts: 

r 1 dPl [ rk2/S€! + r 1/€2 + /,1 1 dPl 

ik2 /s PI ik2 /s ik2/s€1 1/€2 PI 

-lnEl + (In (EdE2) + In(s/k2)) + lnE2. 

Since s /k2 ~ 1/ El, 1/ E2 this is dominated by the middle part of 
the integral for which 1 ~ PI ~ k 2 / s, as required. This argu­
ment may seem a little far fetched, since we are assuming that 
the Ei are sufficiently large compared with k 2 / s that we can ne­
glect their logarithms, and it might be felt that this only works 
when s is extremely large. Nevertheless this is the formal defini­
tion of the leading logarithm approximation and corrections are 
indeed suppressed by powers of In s. Thus we have justified the 
assumption of strong ordering in the P s which, together with the 
on-shell conditions for the cut lines, give a similar strong ordering 
(in the opposite direction) for the .A s, thereby justifying the strong 
inequality Eq.(2.14). 

Since we now have SPl.A2 ~ k 2, it follows that 

SPl.Al ~ ki 

SP2.A2 ~ k~ 
so that Al (Eq.(2.11)) may be rewritten 

A(g)(k) - 3 3 1 (217) 
1 - g m (ki + m2)(k~ + m2)· . 

Now we introduce h in analogy with fo (Eq.(2.7)), i.e. 

(N 2 - 1) g4m 4 J 2 
~mA(2.3) 16N4 1611"2s dk1h(s,kI,q), (2.18) 

where 

g2m2 N 2s 11 11 dp J 
2(2 )3 dP2 _1 8(Sp2 - k 2 ) d2k2 

11" 0 P2 PI 
1 1 

x (ki + m2)(k~ + m 2 ) ((kl _ q)2 + m 2)((k2 _ q)2 + m 2 )· (2.19) 

With a view to application in the more complicated case of QeD, 
rather than performing the p-integral, we introduce the technique 
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of Mellin transforms (a survival kit on Mellin transforms appears 
in the appendix to this chapter). This has the effect of unravelling 
the nested integrals in the P s. Thus we define the Mellin transform 
of l1(s,k1,q) to be F1(w,k1,q) given by 

F1(w, k1, q) = 100 d (~2) (~2) -w-l l1(s, k1, q). 

In this definition we have normalized s by the square of the typical 
transverse momentum, k, in order to be able to keep track of 
dimensions. Recall that for the leading logarithm approximation 
the exact normalization does not matter as long as it is a scale 
which is small compared with s. 

We perform the integration over s, and obtain 

g2m2 N 2 rl rl dp f 
F1(w, k 1, q) = 2(27r)3 Jo dP2 Jp2 PI1 p~-l d2k2 

1 1 
x (ki + m2)(ki + m2) ((k1 _ q)2 + m2)((k2 _ q)2 + m 2)· (2.20) 

The integrations over the P s are unravelled by the change of vari­
ables 

TI = PI 

TIT2 = P2. 

The limits of integration are now simply 

0< TI,2 < 1 

and the Jacobian for this change of integration variables is Pb so 
we obtain 

I.e. 
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/ 
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Fig. 2.4. A vertex correction diagram. 

We shall write this in a suggestive form as 

g2m2N 2 ! 
wF1(w,kt,q) 2(271")3 d2k2 

1 1 
X (k2 2) 2 Fo(w, kl' q), (2.22) 

2+ m ((k2-q) +m2 ) 

where Fo(w, kt, q) = w-1 fo(kt, q) is the Mellin transform of 
fo(kt, q), given in Eq.(2.8). 

An example of a diagram that has been neglected is shown in 
Fig. 2.4, which is a vertex correction to the leading order contri­
bution. This certainly contains an extra g2 relative to the leading 
order graph, but no extra In 8, since the vertex correction (shown 
in the dotted box in Fig. 2.4) cannot depend upon s as the squared 
momentum of the lines coming into the vertex is either zero or k2 , 

which is of order t (i.e. the on-shell condition of the cut upper 
quark line means we cannot strongly order the Sudakov compo­
nents of the t-channel gluons). This is the case for all diagrams 
which have vertex or self-energy insertions. 

There are also other diagrams which one can draw to this order 
which do not contribute in the leading logarithm approximation. 
The first is shown in Fig. 2.5, which is a vertex correction diagram, 
but with three cut lines. The momenta kl and k2 are still ordered 
as discussed above, so 

k 2 
1.\21 ~-

8 

and the squared momentum of the upper quark line on the right 
hand side of the cut, (Pl-k2)2, is of order 1.\218 ~ k2. This highly 
virtual quark will give a large denominator (compared with the 
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PI -------,------
I 

I 

k, I 
I 

P2 ----------'--------

____ -,.._l'_'_-_k,'2 ___ pi 

-----------'---- P; 

Fig. 2.5, A (cut) vertex correction diagram. 

I 

[ I I 

, I I 
k-/'; I I k' 

-----,----- P~ 

------'----- p~ 

Fig. 2.6, A three gluon exchange diagram, 
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denominators from Fig. 2.3, which are all of order k 2 ) and the 
graph is therefore suppressed and does not contribute in leading 
logarithm approximation. This is a feature of the scalar theory 
and does not hold in the case of QCD, where momenta arising 
from the vertices can compensate for this hard propagator. Fur­
thermore, we neglect diagrams in which there are fermion loops 
(e.g. a diagram in which there are three quarks and an antiquark 
rather than two quarks and two gluons in the intermediate state). 
In the present case we argue that the colour factor is suppressed 
by 1/ N 2 • However, in the case of Q CD we shall argue in the next 
chapter that all such fermion loop diagrams are sub-leading in 
Ins. 

The other type of diagram that we have to consider is the three 
gluon exchange diagram, which is shown in Fig. 2.6. In the dia­
gram the cut is to the right of two of the gluons (there is also a 
contribution in which the two gluons on the left of the cut are 
crossed, and a further contribution to the imaginary part of the 
diagram where the cut is to the left of two gluons). However, for 
this type of diagram there is very little phase space when all the 
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~----- I ------
I I 

I 
I ki - 1 

I I 
r----- ------1 

~----- -----~ 

~-----

Fig. 2.7. n-rung ladder diagram. 

denominators are small and so the amplitudes are suppressed by 
a power of m 2 / s, compared with diagrams with only two gluons 
exchanged. These diagrams may therefore be neglected. This is 
also a feature which holds in the scalar theory but not in QeD. 

2.4 The n-rung ladder diagraIn 

It is now relatively straightforward to generalize the above discus­
sion to any order in perturbation theory. The order (g2ln s t cor­
rection to the leading order approximation is given by the n-rung 
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uncrossed ladder diagram (Fig. 2.7) whose amplitude has an imag­
inary part: 

(2.23) 

where 
n+l 1 

A}[')(k) = (-gm t+2 g (kJ _ m2) (2.24) 

up to a colour factor. The group theory (see Eq.(2.9)) gives a 
factor of N 2 for each rung relative to the leading order colour 
factor (Eq.(2.3)). 

The momentum of the ith upright section of the ladder is written 

with 

kf.l = (0,0, ki) 

and the (n+2)-body phase-space integral is then 

n 

X II 8( s(pj - Pj+l)( Aj - Aj+l) - (kj - kj+1 )2) 
j=l 

X 8( -s(l - Pl)Al - ki)8(s(1 + An+l)Pn+l - k~+1)' (2.25) 

Again the symmetry between PI and P2 (the top and the bottom 
of the ladder) tells us that the phase-space integral is dominated 
by the region in which the transverse momenta of the vertical lines 
(and the horizontal cut lines) are all of order k 2 , which is of the 
order of the larger of m 2 and Itl. Furthermore the integral over 
the Sudakov variables Pi and Ai comes from the region 

Pi ~ Pi+l 

IAi+ll ~ IAil 
and in this region we have k; ::::; - kf' so that A}[') (k) may be 
written 

(2.26) 
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The phase-space integral (after integrating the .Ai by absorbing 
the delta functions which put the cut lines on mass-shell) is 

(2.27) 

The nested integrals over the Pi give the leading logarithm contri­
bution proportional to (In s)n In!. We define fn' in analogy with 
fo and iI, by 

(2.28) 

where 

( g2m2 N2) n rrn 11 dPi 10 1 nrr+l d2k 
--'-::3- -- dPn+l j 
2(27r) i=1 Pi+l Pi 0 j=2 

n+l 1 
x rr s 5(sp +1 - k 2 ). (2 29) 

m=1 (kin + m2 )((km - q)2 + m2) n . 

We now take the Mellin transform, integrate over s (absorbing 
the remaining delta function) and change variables from Pi to Ti, 
where 

Pi Ti =--
Pi-I 

(with Po = 1). The limits on the T integrals are 0 < Ti < 1 and 
the Jacobian for this change of integration variables is PIP2 ... Pn. 
Hence 

( 
2 2N2)nn+l 1 n+l 

Fn( w, kb q) g2~7r )3 g 10 T;-1 dTi!! d2k j 

n+l 1 

X El (kin + m2)((km _ q)2 + m 2 ) 

(g~~:;2) n w~+1 (I d2k(k2 + m2)((~ _ q)2 + m2)) n 

1 
x (ki + m2)((k1 _ q)2 + m 2 )' (2.30) 

Note that the factor (1 I w )n+l is the Mellin transform of (In s )n I n!. 
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Fig. 2.8. A section of a crossed ladder diagram. 

Crossed ladder diagrams do not contribute in leading logarithm 
approximation. A section of such a ladder is shown in Fig. 2.8. In 
this diagram the momentum on the right of the cut, marked 1, is 
given by 

1 = ki-I + ki+1 - ki - q. 

In the limit Pi-I ~ Pi ~ pi+! and IAi+11 ~ IAil ~ IAi-ll, this 
propagator gives rise to a denominator which is of order 

[2 ~ SAi+IPi-1 

but SAi+1 is of order k 2 / Pi (from the mass-shell condition of the 
ith cut line) and so we have 

[2 ~ Pi-I k2, 
Pi 

which is much larger than k 2 (since Pi-I ~ Pi). Thus there is a 
large denominator, which suppresses the contribution from this 
diagram so that it no longer contributes in leading logarithm ap­
proximation. Once again QCD does not possess this rather con­
venient feature. 

The series, 2:~=o Fn(w, kl' q), is a simple geometrical series (see 
Eq.(2.30)) and can be summed to give 

. 1 
F(w,k,q) = 2 , (2.31) 

(k2 + m 2)((k - q) + m2 )(w - 1 - ap(t)) 
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(2.32) 

(with t = _q2). The integral over the transverse momentum is 
readily computed. For small t (It I ~ m 2 ) we have 

g2 N 2 ( t) ap(t) ~ -1 + --2 1 + -2 . 
167r 6m 

(2.33) 

The trajectory rapidly becomes non-linear as It I becomes of order 
m 2 • Thus we see that F(w, k, q) has a simple pole in w at w = 
1 + ap(t). 

2.5 The integral equation 

Although we already have a solution for F( w, k, q), in preparation 
for the case of QeD it is useful to establish an integral equation 
which gives the same result. Such an integral equation is shown 
schematically in Fig. 2.9. It is an implicit equation with F(w, k, q) 
appearing on both sides. Basically it tells us that F is equal to the 
leading order term plus F with an extra rung added. The extra 
rung introduces a coupling constant factor of g2m2 , a colour factor 
of N 2 , two propagators for the extra internal lines, 1/(k'2 + m 2 ) 

and 1/((k' - q)2 +m2 ), and an extra phase-space integral, which in 
the Mellin transform representation gives a factor of 1/ (2( 27r )3w ) 
combined with an integral over the transverse momentum d2k'. 
Thus the integral equation is 

(2.34) 

We see that if we insert the first term on the right hand side into 
F in the second term, we obtain the one-rung ladder contribution, 
and inserting this into F in the second term gives the two-rung 
contribution, etc. By iteration we thus see that the integral equa­
tion generates all the ladder diagrams. 

The integral equation of course gives the same solution as 
Eq.(2.31). 
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Fig. 2.9. The integral equation. 

2.6 The Porneron 

After this rather tortuous route we now come to the solution for 
the amplitude A( s, t) for the colour singlet exchange. Inverting 
the Mellin transform we have 

,~ (JV 2 _ 1)2 g4~4 
zsmA(s,t) 16JV4 167r2s 

J 1 (s ) Hap(t) 

X d2k (k2 + ~2)((k _ q)2 + ~2) ItI ' (2.35) 

with ap(t) given by Eq.(2.32) and we have substituted It I for k 2 

in the normalization of s, which we may do without affecting the 
leading logarithms. 
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Let us write this as 
C ( s ) fp(t) 

~mA(s,t)=-; Ttl ' 
where 

Ep(t) = 1 + ap(t) 
(note that Ep(t) is of order g2). Up to corrections which are of 
order g2, this is the imaginary part of 

A( s, t) ( _s ) fp(t) C ( ) [cos 7rEp( t) + i sin 7rEp( t)] 
-t S7rEp t 

~ __ Cc---:-- (~t) fp(t) 

7rEp(t)S 
Remember that we must add the contribution from the crossed 
amplitude in which s is replaced by u. Thus the entire contribution 
IS 

A(s,t) 
C (S)fP(t) 

7rEp(t)S t 

+ 
C (U)fP(t) 

7rEp(t)U t . 
In the Regge limit U ~ -s and so we see that the real parts cancel 
in leading logarithm order and we are left with an amplitude that 
is purely imaginary and given by Eq.(2.35). 

We have thus succeeded in deriving the Pomeron in this partic­
ular field theory. 

2.7 Smumary 

Let us summarize the important features of Pomeron exchange in 
the scalar model discussed in this chapter . 

• In the scalar model with cubic interactions described in Section 
2.1, the leading logarithm contributions to the imaginary part of 
the amplitude corne from uncrossed ladder diagrams, with a cut 
through the rungs. The cut lines are integrated over the relevant 
phase space. 
• We use Sudakov variables to describe the momentum ki of the 
ith vertical line on the left of the ladder by 

kf = PiPi + ).iP~ + kf!L 
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with 

kr.l = (O,O,ki)· 

For the right hand side of the ladder the transverse momentum ki 
is replaced by (ki - q) (in the Regge limit, It I < s). 
• The phase-space integral is dominated by the region in which 
the transverse momenta all have the same order of magnitude, 
which is denoted by k, such that k 2 is of the order of the larger 
of m 2 and Itl. 
• The leading logarithm part of the integral over the longitudinal 
components comes from the region 

Pi ~ Pi+l 

l.Ai+ll ~ l.Ail 
and in this region the momenta of the vertical lines are dominated 
by their transverse components so that kr ~ -kf. 
• After integrating over the .Ai and absorbing the delta functions 
which give the on-shell condition for the cut lines, the remain­
ing integration over the Pi are nested integrals which are easily 
unravelled by taking the Mellin transform. 
• An integral equation can be established for the Mellin transform 
of the imaginary part of the amplitude. The sum of all ladder 
diagrams is generated if the integral equation is solved iteratively. 
• The integral equation has a solution for which the Mellin trans­
form has a simple pole at w = 1 + ap(t), where ap(t) is given by 
Eq.(2.32). 
• The real part of the amplitude is readily reconstructed from the 
imaginary part. However when the contribution from the crossed 
process obtained by interchanging sand u is added, the leading 
order contribution of the real part cancels, leaving a purely imag­
inary amplitude. 

Definition: 

2.8 Appendix 

Mellin transforms 

The Mellin transform, F(w) of the function f(s) is given by 

F(w) = i= d (:2) (:2) -w-l f(s) (A.2.1) 
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and its inverse is given by 

f(s) = 2~i fa ~ (~2) w F(w), (A.2.2) 

where the contour C is to the right of all w-plane singularities of 
F(w). 

Useful examples: 
If f( s) is of the form 

f(s) = sag(s), 

then the Mellin transform F( w) is given by 

F(w) = (k2f 9(w - a), 

where 9(w) is the Mellin transform of g(s). 
If g( s) = (In s r then its Mellin transform is given by 

9(w) = 100 d (~2) (~2) -w-l (lnsf. 

Changing variables to y = wln (s /k2) we obtain 

1'.( ) _ 1 roo r -Yd 
~ W - wr +1 Jo y e y. 

(A.2.3) 

The integral on the right hand side is the integral definition of the 
Euler gamma function, r(1' + 1) (= 1'! for integer 1'). Therefore, 

1'.( ) = r(1' + 1) ~ w wr+1. (A.2.4) 

Combining these two results (Eqs.(A.2.3, A.2.4)) we obtain, for 
the Mellin transform of the function 

f(s) = (lnsf sa, 

F(w) = (k2)a r(1' + 1) . 
(w - a)r+l 

(A.2.5) 

Thus we see that if the function f( s) is a pure power of s, then 
the Mellin transform has a singularity which is a simple pole. If 
the function f( s) is a power multiplied by (in general non-integer) 
powers oflns, then the Mellin transform has a cut singularity. The 
factor (k2t simply adjusts the dimension. For the high energy 
behaviour, we are interested in the position and nature of the w­

plane singularities. Note that the Mellin transform of a constant, 
C,isC/w. 
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It is important to be familiar with these relations in both di­
rections, i.e. to be able to perform the inverse Mellin transforms 
and obtain the s-dependence of amplitudes from the singularity 
structure of the Mellin transforms. 

Convolutions: 
Let f( s) be given in terms of a convolution of a set of n functions, 
fi(S/k 2) (i = 1·· ·n), by 

f(s) = k 2 IT r1 d~i fi (Pi~l) 6(Pns - k 2 ) (A.2.6) 
i=1 } Pi+l P. P. 

(with Po = 1 and Pn+l = 0). The Mellin transform is given by 

F(w) = k2 1= d (:2) (:2) -w-l 

X IT r1 d~i fi (Pi~l) 6(Pns _ k 2). 
i=1 } Pi+l P. p. 

Performing the integration over s /k2 (absorbing the delta func­
tion) gives 

F(w) = IT r1 dPi fi (Pi~l) p~. 
i=1 } Pi+l P. P. 

Now change variables from Pi to Ti, where 
Pi 

Ti = --, 
Pi-l 

so that Pn = TIT2" . Tn' The Jacobian for the change of variables 
is PIP2 ... Pn-l, and we finally obtain 

n 101 (1) n F(w) = II dTiTt-1 fi ~ = II Fi(W), 
i=1 0 T. i=1 

(A.2.7) 

where Fi(W) are the Mellin transforms of the functions fi(S/k 2). 
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