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Abstract
This paper investigates the time N until a random walk first exceeds some specified barrier. Letting Xi, i ≥ 1, be a
sequence of independent, identically distributed random variables with a log-concave density or probability mass
function, we derive both lower and upper bounds on the probability P(N > n), as well as bounds on the expected
value E [N] . On barriers of the form a + b

√
k, where a is nonnegative, b is positive, and k is the number of steps,

we provide additional bounds on E [N] .

1. Introduction

Let Xi, i ≥ 1, be a sequence of independent and identically distributed random variables with a density
or probability mass function f (x) for which log(f (x)) is a concave function. Let Sn =

∑n
i=1 Xi, n ≥ 1.

For given constants sn, n ≥ 1, let

N = min{k ≥ 1 : Sk ≥ sk}

In Section 2 we present bounds on P(N > n). In Section 3, we specialize to the case sk = a+b
√

k, k ≥ 1,
where a is non-negative and b is positive, and present bounds on E [N] .

The exploration of random walk behavior with threshold boundaries has a rich history in probability
theory. Blackwell and Freedman[1] presented foundational insights into exit times for sums of indepen-
dent random variables. They considered a simple coin-tossing model where Xi, i ≥ 1, take values ±1
with probability 1

2 each. Let g(N , c) be the least n ≥ N with |Sn | > cn 1
2 , where c is a constant. Their

work demonstrated that E [g(1, 1)] is infinite but when 0 < c < 1, E [g(N , c)] is finite for all N.
Building on these concepts, Breiman[2] investigated the asymptotic distribution of first exit times for

random walks with a square root boundary, particularly examining both discrete sums of i.i.d. random
variables and continuous processes like Brownian motion. Breiman’s work established an approxima-
tion for the probability P(N > n) as n → ∞, and highlighted that while invariance principles apply for
certain distributions, they may not extend to more general cases. This extension provides a framework
for understanding the impact of varying boundary functions on exit time distributions.

In more recent work, Hansen[4] examined random walks reflected at general boundaries, focus-
ing on conditions under which the global maximum remains finite almost surely. Specifically, Hansen
considered random walks with light-tailed, negatively biased increments, showing that the tail of the
distribution for the maximum decays exponentially.

To the best of our knowledge, this is the first paper that examines the bounds of P(N > n) and
particularly E [N] for log-concave random walks.
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2. Bounds on P(N > n)

Proposition 2.1.

P(N > n) ≥ P(S1 < s1)
n∏

k=2
P(Sk < sk |Sk−1 < sk−1).

To establish Proposition 2.1, we present some lemmas. The first one is Efron’s theorem[3].

Lemma 2.2. Efron’s Theorem If X1, . . . , Xr are independent log-concave random variables, then
(X1, . . . , Xr) |

∑r
t=1 Xt = x is stochastically increasing in x. That is, for any component-wise increasing

function g(x1, . . . , xr)

E
[
g(X1, . . . , Xr) |

r∑
t=1

Xt = x
]

is increasing in x

Our next lemma states that Sk conditional on S1 < s1, . . . , Sk < sk is likelihood ratio smaller than Sk
conditional on Sk < sk .

Lemma 2.3.

Sk | (S1 < s1, . . . , Sk < sk) ≤lr Sk |Sk < sk .

Proof. We need to show that the ratio of the conditional density of Sk given S1 < s1, . . . , Sk < sk to the
conditional density of Sk given Sk < sk is decreasing. Now, for t ≤ sk

fSk |S1<s1,...,Sk<sk (t) =
fSk (t)P(S1 < s1, . . . , Sk < sk |Sk = t)

P(S1 < s1, . . . , Sk < sk)

fSk |Sk<sk (t) =
fSk (t)P(Sk < sk |Sk = t)

P(Sk < sk)
=

fSk (t)
P(Sk < sk)

Hence we need to show that P(S1 < s1, . . . , Sk < sk |Sk = t) is a decreasing function of t. However, this
follows from Efron’s theorem because g(x1, . . . , xk) = 1− I{x1 < s1, x1+x2 < s2, . . . , x1+ . . .+xk < sk}
is an increasing function of (x1, . . . , xk). �

Lemma 2.4.

P(Sk < sk |S1 < s1, . . . , Sk−1 < sk−1) ≥ P(Sk < sk |Sk−1 < sk−1)

Proof. Because being likelihood ratio smaller implies being stochastically smaller, it follows from
Lemma 2.3 that Sk−1 | (S1 < s1, . . . , Sk−1 < sk−1) is stochastically smaller than Sk−1 |Sk−1 < sk−1.
Now, if X ≤st Y and Z is independent of both X and Y, then X + Z ≤st Y + Z . The result thus follows
because Sk = Sk−1 + Xk . �

Proof. Proposition 2.1. Proposition 2.1 follows from Lemma 2.4 upon using that

P(N > n) = P(S1 < s1, . . . , Sn < sn)

= P(S1 < s1)
n∏

k=2
P(Sk < sk |S1 < s1, . . . , Sk−1 < sk−1)

Proposition 2.1 yields the following lower bound on E [N]. �
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Corollary 2.5.

E [N] =

∞∑
n=0

P(N > n)

≥ 1 + P(S1 < s1)
(
1 +

∞∑
n=2

n∏
k=2

P(Sk < sk |Sk−1 < sk−1)
)

Remark. The log concave condition is essential for establishing Proposition 2.1. For a counterexample,
suppose that p0 = n , p2 = .2, p5 = .8 − n , where pj = P(Xi = j) and n is a small positive number. Then

P(S3 < 6.5|S1 < 1, S2 < 5.5) = P(X2 + X3 < 6.5) ≈ .04

whereas

P(S3 < 6.5|S2 < 5.5) ≈ .2

The conditional expectation inequality (see [6]) can be used to obtain an upper bound on P(N > n).

Lemma 2.7. The Conditional Expectation Inequality. For events B1, . . . , Bn

P(∪n
i=1Bi) ≥

n∑
i=1

P(Bi)
1 + ∑

j≠i P(Bj |Bi)
.

With Bi = Ac
i = {Si ≥ si}, the inequality yields that

P(N ≤ n) ≥
n∑

i=1

P2(Bi)
P(Bi) +

∑
j≠i P(BiBj)

Whereas for many logconcave distributions it is difficult to compute P(Sk < sk |Sk−1 < sk−1), this is
easily accomplished in important special cases such as normal, exponential, binomial, and Poisson.
Example 2.8 considers the normal case and Example 2.9 the exponential case.

Example 2.8. Suppose the Xi are normal random variables with mean µ and variance 1. Let Z be a
standard normal whose distribution function isΦ; let U be uniform on (0, 1); and let cn−1 =

sn−1−(n−1)`√
n−1

.

Because Sn−1 is normal with mean (n − 1)` and variance n − 1, it follows that

Sn−1 |Sn−1 < sn−1 =st (n − 1)` +
√

n − 1 Z | Z < cn−1

=st (n − 1)` +
√

n − 1Φ−1(U) | Φ−1(U) < cn−1

=st (n − 1)` +
√

n − 1Φ−1(U) | U < Φ(cn−1)
=st (n − 1)` +

√
n − 1Φ−1(UΦ(cn−1))

Hence

P(Sn < sn |Sn−1 < sn−1) = E [E [I{Sn < sn}|Sn−1] |Sn−1 < sn−1]
= E [Φ(sn − ` − Sn−1) |Sn−1 < sn−1]
= E [Φ(sn − n` −

√
n − 1Φ−1(UΦ(cn−1))]

=

∫ 1

0
g(x)dx,

https://doi.org/10.1017/S0269964825100090 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825100090


4 S. M. Ross and T. Zhao

where g(x) = Φ

(
sn − n` −

√
n − 1Φ−1(xΦ(cn−1)

)
. BecauseΦ andΦ−1 are both increasing functions,

it follows that g(x) is a decreasing function of x. Since
∫ 1
0 g(x)dx =

∑r
i=1

∫ i/r
(i−1)/r g(x)dx, this shows

that, for any r,

1
r

r∑
i=1

g( i − 1
r

) ≥
∫ 1

0
g(x)dx ≥ 1

r

r∑
i=1

g( i
r
)

To utilize the conditional expectation inequality we need to compute P(Si > si, Sj > sj), i ≠ j. To do
so, suppose that i < j, and let ci =

si−i`√
i

. Then, with Φ̄ = 1 −Φ, arguing as before yields

Si |Si > si =st i` +
√

i Φ−1(U) | U > Φ(ci)
=st i` +

√
i Φ−1 (

Φ(ci) + Φ̄(ci)U
)

Using that Sj |Si is normal with mean Si + (j − i)` and variance (j − i)2 yields that

P(Sj > sj |Si > si) = E
[
E [I{Sj > sj}|Si] |Si > si

]
= E

[
Φ̄

( sj − Si − (j − i)`
√

j − i
)
|Si > si

]
= E

[
Φ̄

(
sj − j` −

√
i Φ−1 (

Φ(ci) + Φ̄(ci)U
)

√
j − i

) ]
=

∫ 1

0
hi,j (x)dx,

where hi,j (x) = Φ̄

(
sj−j`−

√
i Φ−1 (Φ(ci )+Φ̄(ci )x

)
√

j−i

)
. Because hi,j (x) is an increasing function of x, this gives

1
r

r∑
i=1

hi,j
( i
r
)
≥

∫ 1

0
h(x)dx ≥ 1

r

r∑
i=1

hi,j
( i − 1

r
)
.

Example 2.9. Suppose the Xi are exponential random variables with rate _. Let N(t) be the number of
events by time t of the Poisson process that has Xi as its ith interarrival time, i ≥ 1. Now, if sn−1 ≤ sn
then

P(Sn < sn, Sn−1 < sn−1) = P(N (sn) ≥ n, N (sn−1) ≥ n − 1)

=

∞∑
i=n−1

P(N (sn) ≥ n|N (sn−1) = i)P(N (sn−1) = i)

= (1 − e−_(sn−sn−1 ) )P(N (sn−1) = n − 1) +
∞∑
i=n

P(N (sn−1) = i)

= P(N (sn−1) ≥ n − 1) − e−_(sn−sn−1 )P(N (sn−1) = n − 1)

giving that

P(Sn < sn |Sn−1 < sn−1) = 1 − e−_(sn−sn−1 )P(N (sn−1) = n − 1)
P(N (sn−1) ≥ n − 1) , sn−1 ≤ sn
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Table 1. Probability bounds and Monte Carlo estimates for P(N > n) with Xi ∼ N (1, 1) and sk =

2 + 2
√

k for n= 2 to 20.
n Lower bound P(N > n) Upper bound

2 0.977 0.977 0.977
3 0.918 0.918 0.925
4 0.825 0.826 0.851
5 0.714 0.718 0.767
6 0.596 0.609 0.682
7 0.483 0.502 0.600
8 0.381 0.409 0.524
9 0.294 0.325 0.455
10 0.222 0.254 0.394
11 0.164 0.203 0.340
12 0.120 0.153 0.294
13 0.086 0.117 0.254
14 0.061 0.088 0.219
15 0.042 0.067 0.190
16 0.029 0.050 0.165
17 0.020 0.037 0.144
18 0.014 0.028 0.126
19 0.009 0.020 0.111
20 0.006 0.015 0.098

If sn−1 ≥ sn, then P(Sn < sn, Sn−1 < sn−1) = P(N (sn) ≥ n), giving that

P(Sn < sn |Sn−1 < sn−1) =
P(N (sn) ≥ n)

P(N (sn−1) ≥ n − 1)

To compute P(Si > si, Sj > sj) = P(N (si) < i, N (sj) < j) suppose that i < j. If sj > si, conditioning on
N (si) yields

P(Si > si, Sj > sj) =
i−1∑
r=0

P(N (si) = r)P(N (sj − si) < j − r)

If si > sj, then

P(Si > si, Sj > sj) = P(Si > si) = P(N (si) < i).

In Tables 1–2 and Figure 1, we present two numerical results for the probability bounds of P(N > n).
One assumes that Xi follows a normal distribution with mean 1 and variance 1, denoted Xi ∼ N (1, 1).
The other assumes that Xi follows an exponential distribution with rate parameter 1, denoted Xi ∼
Exp(1). The boundary sk = 2 + 2

√
k, k ≥ 1. For values of n ranging from 2 to 20, we calculate the

lower and upper bounds for P(N > n) using the analytical method described alongside Monte Carlo
simulation estimates.

Whereas the bounds on P(N > n) also yield bounds on E [N], additional bounds for a square root
barrier are given in the next section.
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Table 2. Probability bounds and Monte Carlo estimates for P(N > n) with Xi ∼ Exp(1) and sk = 2+2
√

k
for n= 2 to 20
n Lower bound P(N > n) Upper bound

2 0.950 0.950 0.954
3 0.900 0.903 0.916
4 0.834 0.838 0.866
5 0.752 0.759 0.806
6 0.659 0.670 0.738
7 0.561 0.577 0.665
8 0.464 0.483 0.591
9 0.372 0.394 0.518
10 0.290 0.312 0.450
11 0.220 0.242 0.387
12 0.162 0.181 0.331
13 0.117 0.134 0.281
14 0.082 0.098 0.239
15 0.056 0.067 0.203
16 0.037 0.046 0.173
17 0.024 0.031 0.147
18 0.015 0.020 0.126
19 0.010 0.014 0.109
20 0.006 0.008 0.095

Figure 1. Probability bounds and Monte Carlo estimates for P(N > n).sk = 2+2
√

k, Left: Xi ∼ N (1, 1).
Right: Xi ∼ Exp(1).

3. Additional bounds on E[N] for a square root barrier

Suppose that sk = a + b
√

k, k ≥ 1, where a ≥ 0, b > 0. Also, suppose the log concave random variables
Xi have a positive mean. Now, conditional on N and SN−1, the random variable SN is distributed as
a + b

√
N plus the amount by which X, a random variable having density f exceeds the positive value

a + b
√

N − SN−1 given that it does exceed that value. But a log concave random variable X condi-
tioned to be positive has an increasing failure rate (see Shaked and Shanthikumar[5]) implying that
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Table 3. Comparison of Simulated E [N] with Lower and Upper Bounds for Different Values of
a and b.
a b ˆE [N] LB UB1 UB2

1 0.5 2.574 2.522 3.556 3.179
1 1 3.566 3.447 5.031 4.381
1 2 6.699 6.316 9.408 7.914
1 5 27.453 25.648 34.539 29.397
1 10 102.596 97.698 116.299 104.525
2 0.5 3.763 3.682 5.016 4.328
2 1 4.952 4.791 6.660 5.668
2 2 8.337 7.967 11.272 9.429
2 5 29.456 27.677 36.495 31.229
2 10 104.430 99.755 118.214 106.474
5 0.5 7.159 7.026 9.002 7.673
5 1 8.721 8.510 11.021 9.344
5 2 12.818 12.383 16.211 13.687
5 5 34.994 33.313 42.023 36.492
5 10 110.295 105.786 123.847 112.223
10 0.5 12.609 12.418 15.168 13.097
10 1 14.624 14.345 17.615 15.184
10 2 19.566 19.068 23.544 20.298
10 5 43.490 41.866 50.500 44.727
10 10 119.846 115.452 132.887 121.527

SN − (a + b
√

N) is stochastically smaller than X |X > 0. As this is true no matter what the values of N
and SN−1, it follows that

E [SN ] ≤ a + bE [
√

N] + E [X |X > 0]

Using Wald’s equation and Jensen’s inequality the preceding implies that

`E [N] ≤ a + b
√

E [N] + E [X |X > 0]

With d = a + E [X |X > 0], the preceding can be written as

`E [N] − d ≤ b
√

E [N]

If d ≤ `E [N], which can be checked using Corollary 2.5, the preceding yields that

`2E2 [N] + d2 − (2d` + b2)E [N] ≤ 0

Because the function g(x) = `2x2 − (2d` + b2)x + d2 is convex with g(0) > 0, limx→∞ g(x) = ∞, it
follows that g(x) < 0 in the region between the two roots of g(x) = 0. Thus, E [N] lies between these
two roots.

Remarks. 1. If f is the normal density with mean µ> 0 and variance 1, then E [X |X > 0] = `+ e−`2/2
√

2cΦ(`)
,

where Φ is the standard normal distribution function.
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2. Whereas the condition d ≤ `E [N] involves the unknown E [N], it can often be verified by showing
that d ≤ ` LB, where LB is the lower bound for E [N] given by Corollary 2.5. (Of course, it is possible
that d ≤ `E [N] but d > ` LB).

In Table 3, we give the numerical results of the lower and upper bounds of E [N] and compare them
with the Monte Carlo estimate of E [N]. In this case, Xi ∼ N (1, 1) and sk = a + b

√
k, k ≥ 1.

Let ˆE [N] be the Monte Carlo estimate of E [N], and let LB denote the lower bound in Corollary 2.5.
Since the smaller root of `2x2 − (2d` + b2)x + d2 = 0 does not yield a good result, it is excluded. UB1
is the upper bound by conditional expectation inequality, and UB2 is the larger root. The results are as
follows.

Remark. From the numerical results across all cases shown in Table 3, UB2 is consistently smaller
than UB1.
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