
13
The non-relativistic limit

In some branches of physics, such as condensed matter and quantum optics, one
deals exclusively with non-relativistic models. However, there are occasionally
advantages to using a relativistic formulation in quantum theory; by embedding
a theory in a larger framework, one often obtains new insights. It is therefore
useful to be able to take the non-relativistic limit of generally covariant theories,
both as an indication of how large or small relativistic effects are and as a cultural
bridge between covariant physics and non-relativistic quantum theory.

13.1 Particles and anti-particles

There is no unified theory of particles and anti-particles in the non-relativistic
field theory. Formally there are two separate theories. When we take the
non-relativistic limit of a relativistic theory, it splits into two disjoint theories:
one for particles, with only positive definite energies, and one for anti-particles,
with only negative definite energies. Thus, a non-relativistic theory cannot
describe the interaction between matter and anti-matter.

The Green functions and fields reflect this feature. The positive frequency
Wightman function goes into the positive energy particle theory, while the nega-
tive frequency Wightman function goes into the negative energy anti-particle
theory. The objects which one then refers to as the Wightman functions
of the non-relativistic field theory are asymmetrical. In normal Schrödinger
field theory for matter, one says that the zero temperature negative frequency
Wightman function is zero.1

1 At finite temperature it must have a contribution from the heat bath for consistency.
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13.2 Klein–Gordon field

13.2.1 The free scalar field

We begin by considering the Klein–Gordon action for a real scalar field, since
this is the simplest of the cases and can be treated at the level of the action. It also
reveals several subtleties in the way quantities are defined and the names various
quantities go by. In particular, we must recall that relativistic theories have an
indefinite metric, while non-relativistic theories can be thought of as having a
Euclidean, definite metric. Since one is often interested in the non-relativistic
limit in connection with atomic systems, we illustrate the emergence of atomic
levels by taking a two-component scalar field, in which the components have
different potential energy in the centre of mass frame of the field. This is
incorporated by adopting an effective mass m A = m + E A/c2.

Consider the action:

S =
∫
(dx)

{
1

2
h̄2c2(∂µφA)(∂µφA)+ 1

2
m2

Ac4φAφA

}
. (13.1)

The variation of our action, with respect to the atomic variables, leads to

δS =
∫
(dx)δφA(−h̄2c2 + m2

Ac4)φA + h̄2c
∫

dσµx (φA∂µφA). (13.2)

The vanishing of the first term leads to the field equation

h̄2c2

(
− + m2

Ac2

h̄2

)
φA(x) = 0. (13.3)

The second (surface) term in this expression shows that any conserved proba-
bility must transform like an object of the form φA∂µφA. In fact, the real scalar
field has no conserved current from which to derive a notion of locally conserved
probability, but we may note the following. Any complex scalar field ϕ has a
conserved current, which allows one to define the inner product

(ϕA, ϕB) = ih̄c
∫

dσµx (ϕ
∗
A∂µϕB − (∂µϕ∗A)ϕB), (13.4)

where dσµx is the volume element on a spacelike hyper-surface through space-
time. This result is central even to the real scalar field, since a real scalar field
does have a well defined probability density in the non-relativistic limit. To see
this, we observe that the real scalar field φ(x) may be decomposed into positive
and negative frequency parts:

φ(x) = φ(+)(x)+ φ(−)(x), (13.5)

where φ(+)(x) is the positive frequency part of the field, φ(−)(x) is the negative
frequency part of the field and φ(+)(x) = (φ(−)(x))∗. Since the Schrödinger
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342 13 The non-relativistic limit

equation has no physical negative energy solutions, one must discard the
negative frequency half of the spectrum when reducing the Klein–Gordon field
to a Schrödinger field. This leads to well known expressions for the probability
density. Starting with the probability

p = 2ih̄c
∫

dσx(φ∂0φ) (13.6)

and letting

φ(+)(x) = ψ(x)√
2mc2

, φ(−)(x) = ψ∗(x)√
2mc2

, (13.7)

one obtains

p = ih̄

2mc

∫
dσx(ψ + ψ∗)∂0(ψ + ψ∗). (13.8)

Assuming only that φ(x) may be expanded in a complete set of plane waves
exp(ik · x− ωt), satisfying the free wave equation h̄2ω2 = h̄2k2c2 + m2c4,
then in the non-relativistic limit h̄2k2 ( m2c4, we may make the effective
replacement ih̄∂0 → mc to lowest order. Thus we have

p =
∫

dσxψ
∗(x)ψ(x), (13.9)

which is the familiar result for non-relativistic particles. It is easy to check that
p is a dimensionless quantity using our conventions.

This observation prompts us to define the invariant inner product of two fields
φA and φB by

(φA, φB) = ih̄c
∫

dσx
1

2
(φ∗A∂0φB − (∂0φ

∗
A)φB). (13.10)

The complex conjugate symbol is only a reminder here of how to take the non-
relativistic limit, since φA is real. This product vanishes unless A �= B, thus it
must represent an amplitude to make a transition from φ1 to φ2 or vice versa.
The non-relativistic limit of this expression is

(φA, φB)→ 1

2

∫
dσx

[
ψ∗AψB + ψ∗BψA

]
. (13.11)

Since ψ(x) is the field theoretical destruction operator and ψ∗(x) is the creation
operator, this is now manifestly a transition matrix, annihilating a lower state
and creating an upper state or vice versa. The apparent A, B symmetry of
eqn. (13.11) is a feature only of the lowest order term. Higher order corrections
to this expression are proportional to E1 − E2, the energy difference between
the two field levels, owing to the presence of ∂0.
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Using the interaction term P , we may compute the non-relativistic limit of the
action in eqn. (13.1). This procedure is unambiguous only up to re-definitions
of the origin for the arbitrary energy scale. Equivalently, we are free to define
the mass used to scale the fields in any convenient way. The simplest procedure
is to re-scale the fields by the true atomic mass, as in eqn. (13.7). In addition, we
note that the non-relativistic energy operator ih̄∂t is related to the non-relativistic
energy operator ih̄∂̃t by a shift with respect to the rest energy of particles:

ih̄∂t = mc2 + ih̄∂̃t . (13.12)

This is because the non-relativistic Hamiltonian does not include the rest energy
of particles, its zero point is shifted so as to begin just about the rest energy.
Integrating the kinetic term by parts so that (∂µφ)2 → φ(− )φ and substituting
eqn. (13.7) into eqn. (13.1) gives

S =
∫

dσx dt
1

2
(ψ + ψ∗)A

{
h̄2∂̃2

t

2mc2
− ih̄∂̃t + E2

A

2mc2

+E A − h̄2

2m
∇2

}
(ψ + ψ∗)A. (13.13)

If we use the fact that ψA(x) is composed of only positive plane wave frequen-
cies, it follows that terms involving ψ2 or (ψ∗)2 vanish since they involve delta
functions imposing a non-satisfiable condition on the energy δ(mc2+h̄ω̃), where
both m and ω̃ are greater than zero. This assumption ceases to be true only if
there is an explicit time dependence in the action, indicating a non-equilibrium
scenario, or if the mass of the atoms goes to zero (in which case the NR limit is
unphysical). We are therefore left with

SNR = lim
c→∞

∫
dσx dt

{
i

2

(
ψ∗A(∂̃tψA)− (∂̃tψ

∗
A)ψA

)
− ψ∗A HψA

}
,

(13.14)

where the differential operator HA is defined by

HA = −∇
2

2m
+ E A + 1

2mc2
(E2

A + ∂̃2
t ), (13.15)

and we have re-defined the action by a sign in passing to a Euclideanized non-
relativistic metric. It is now clear that, in the NR limit c → ∞, the final two
terms in HA become negligible, leading to the field equation

HAψA(x) = ih̄∂̃tψA(x), (13.16)

which is the Schrödinger equation of a particle of mass m moving in a constant
potential of energy E A with a dipole interaction. The fact that it is possible to
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identify what is manifestly the Hamiltonian H in such an easy way is a special
property of theories which are linear in the time derivative.

The direct use of the action (a non-physical quantity) in this way requires
some care, so it is useful to confirm the above derivation with an approach
based on the field equations, which are physical. As an additional spice, we
also choose to scale the two components of the field by a factor involving the
effective mass m A rather than the true atomic mass m. The two fields are then
scaled differently. This illustrates another viewpoint, namely of the particles
as two species with a truly different mass, as would be natural in particle
physics. We show that the resulting field equations have the same form in the
non-relativistic limit, up to a shift in the arbitrary zero point energy.

Starting from eqn. (13.3), we define new pseudo-canonical variables by

PA =
√
ωA

2

(
φA + i

ωA
φ̇A

)

Q A = 1√
2ωA

(
φA − i

ωA
φ̇A

)
, (13.17)

where h̄ωA → m Ac2 in the non-relativistic limit, and the time dependence of
the fields is of the form of a plane wave exp(−iωAt), for ωA > 0. This is the
same assumption that was made earlier. We note that, owing to this assumption,
the field PA(x) becomes large compared with Q A(x) in this limit. Substituting
this transformation into the field equation (13.3) and neglecting Q, one obtains

ih̄∂t PA = − h̄2

2m A
∇2 PA + 1

2
m Ac2 PA. (13.18)

These terms have a natural physical interpretation: the first term on the right
hand side is the particle kinetic term for the excited and unexcited atoms in our
system. The second term is the energy offset of the two levels in the atomic
system.

Our new point of view now leads to a free particle kinetic term with a mass
m A, rather than the true atomic mass m. There is no contradiction here, since
E A is small compared to mc2, so we can always expand the reciprocal mass to
first order. Expanding these reciprocal masses m A we obtain

m−1
A = m−1 + O

(
E A

m2c2
→ 0

)
(13.19)

showing that a consistent NR limit requires us to drop the A-dependent pieces.
Eqn. (13.18) may then be compared with eqn. (13.16). It differs only by a

shift in the energy. A shift by the average energy level 1
2(E1 + E2) makes these

equations identical.
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13.2.2 Non-relativistic limit of GF(x, x ′)

As we have already indicated, the non-relativistic theory contains only positive
energy solutions. We also noted in section 5.5 that the Schrödinger Green
function GNR(x, x ′) satisfied purely retarded boundary conditions. There was
no Feynman Green function for the non-relativistic field. Formally, this is a
direct result of the lack of negative energy solutions to the Schrödinger equation
(or anti-particles, in the language of quantum field theory). We shall now show
that object, which we refer to as the Feynman Green function, becomes the
non-relativistic retarded Green function in the limit c →∞. The same argument
applies to the relativistic retarded function, and it is clear from eqn. (5.74) that
the reason is the vanishing of the negative frequency Wightman function in the
non-relativistic limit.

We begin with eqn. (5.95) and reinstate c and h̄:

GF(x, x ′) = c
∫

dn+1k

(2π)n+1

c

2h̄ωk

eik�x

h̄2c[
1

(ch̄k0 + h̄ωk − iε)
− 1

(ch̄k0 − h̄ωk + iε)

]
. (13.20)

In order to compare the relativistic and non-relativistic Green functions, we have
to re-scale the relativistic function by the rest energy, as in eqn. (13.7), since the
two objects have different dimensions. Let

2mc2 GF(x, x ′)→ GF,NR, (13.21)

so that the dimensions of GF,NR are the same as those for GNR:(
− h̄2

2m
+ 1

2
mc2

)
GF,NR = δ(x, x′)δ(t, t ′) = cδ(x, x ′);(

− h̄2

2m
∇2 − ih̄∂t

)
GNR = δ(x, x′)δ(t, t ′). (13.22)

Next, we must express the relativistic energy h̄ω in terms of the non-relativistic
energy h̄ω̃ and examine the definition of ωk with c reinstated,

ck0 = −ω = −
(
ω̃ + mc2

h̄

)

h̄ωk =
√

h̄2c2k2 + m2c4. (13.23)

The change of k0 → −ω/c, both in the integral limits and the measure, means
that we effectively replace dk0 → dω̃/c. In the non-relativistic limit of large c,
the square-root in the preceding equation can be expanded using the binomial
theorem,

h̄ωk = mc2 + h̄2k2

2m
+ O

(
1

c2

)
. (13.24)
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346 13 The non-relativistic limit

Substituting these results into eqn. (13.20), we have for the partial fractions

1

ch̄k0 + h̄ωk − iε
= 1

h̄2k2

2m − h̄ω̃ − iε

1

ch̄k0 − h̄ωk + iε
= 1

− h̄2k2

2m − h̄ω̃ − 2mc2 + iε
, (13.25)

while the pre-factor becomes

dω̃
2mc2

2h̄ωk
=

(
1+ h̄2k2

2m2c2
+ O

(
1

c4

))−1

. (13.26)

Taking the limit c →∞ in these expressions causes the second partial fraction
in eqn. (13.25) to vanish. This is what removes the negative energy solutions
from the non-relativistic theory. The remainder may now be written as

GF,NR(x, x ′) =
∫

dnk
(2π)n

dω̃

2π

(
h̄2k2

2m
− ω̃ − iε

)−1

. (13.27)

We see that this is precisely the expression obtained in eqn. (5.140). It has poles
in the lower half-plane for positive frequencies. It is therefore a retarded Green
function and satisfies a Kramers–Kronig relation.

13.3 Dirac field

The non-relativistic limit of the Dirac equation is more subtle than that for scalar
particles since the fields are spinors and the γ -matrices imply a constraint on
the components of the spinors. There are several derivations of this limit in
the literature, all of them at the level of the field equations. Here we base our
approach, as usual, on the action and avoid introducing specific solutions or
making assumptions about their normalization.

13.3.1 The free Dirac field

The Dirac action may be written

SD =
∫
(dx)ψ

(
−1

2
ih̄c(γ µ

→
∂µ −γ µ

←
∂µ

†

)+ mc2

)
ψ. (13.28)

We begin by re-writing this in terms of the two-component spinors χ (see
chapter 20) and with non-symmetrical derivatives for simplicity. The latter
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choice is of no consequence and only aids notational simplicity:

SD =
∫
(dx)ψ†γ 0(−ih̄cγ µ∂µ + mc2)ψ

=
∫
(dx)(χ†

1χ
†
2 )

( −ih̄∂t − mc2 −ih̄cσ i∂i

−ih̄cσ i∂i −ih̄∂t + mc2

)(
χ1

χ2

)
.

(13.29)

This block matrix can be diagonalized by a unitary transformation. The
eigenvalue equation is

(−ih̄∂t − mc2 − λ)(−ih̄∂t + mc2 − λ)+ h̄2c2σ iσ j∂i∂ j = 0. (13.30)

Noting that

σ iσ j∂i∂ j = ∂ i∂i + iεi jk∂i∂ jσk, (13.31)

the eigenvalues may be written as

λ± = −ih̄∂t ±
√

m2c4 − h̄2c2(∂ i∂i + iεi jk∂i∂ jσk). (13.32)

Thus, the action takes on a block-diagonal form

SD =
∫
(dx)ψ

†
γ 0(−ih̄cγ µ∂µ + mc2)ψ

=
∫
(dx)(χ†

1 χ
†
2 )

(
λ+ 0
0 λ−

)(
χ1

χ2

)
. (13.33)

In the non-relativistic limit, c → ∞, we may expand the square-root in the
eigenvalues

λ± = −ih̄∂t ± mc2

(
1− h̄2(∂ i∂i + iεi jk∂i∂ jσk)

2m2c2
+ O(c−4)+ · · ·

)
.

(13.34)

The final step is to re-define the energy operator by the rest energy of the field,
for consistency with the non-relativistic definitions:

λ± = −ih̄∂̃t − mc2 ± mc2

(
1− h̄2∇2

2m2c2
+ O(c−4)+ · · ·

)
. (13.35)

Thus, in the limit, c → ∞, the two eigenvalues, corresponding to positive and
negative energy, give

λ+ = −ih̄∂̃t − h̄2∇2

2m
λ− = ∞. (13.36)
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Apart from an infinite contribution to the zero point energy which may be re-
defined (renormalized) away, and making an overall change of sign as in the
Klein–Gordon case, the non-relativistic action is

SD →
∫
(dx)

{
χ†

(
ih̄∂̃t + h̄2∇2

2m

)
χ

}
. (13.37)

13.3.2 The Dirac Green function

The non-relativistic limit of the Dirac Green function may be inferred quite
straightforwardly from the Green function for the scalar field. The Dirac Green
function S(x, x ′) satisfies the relation

(−ih̄cγ µ∂µ + mc2)S(x, x ′) = cδ(x, x ′). (13.38)

We also know that the squared operator in this equation leads to a Klein–Gordon
operator, thus

(ih̄cγ µ∂µ + mc2)S(x, x ′) = G(x, x ′), (13.39)

so operating on eqn. (13.38) with this conjugate operator leaves us with

(−h̄2c2 + m2c4)G(x, x ′) = cδ(x, x ′). (13.40)

Both sides of this equation are proportional to a spinor identity matrix, which
therefore cancels, leaving a scalar equation. Since we know the limiting
properties of G(x, x ′) from section 13.2.2, we may take the limit by introducing
unity in the form 2mc2/2mc2, such that 2mc2G(x, x ′) = GNR(x, x ′) and the
operator in front is divided by 2mc2. After re-defining the energy operator, as in
eqn. (13.12), the limit of c →∞ causes the quadratic time derivative to vanish,
leaving (

− h̄2

2m
∇2 − ih̄∂̃t

)
GNR(x, x ′) = δ(x, x′)δ(t, t ′). (13.41)

This is the scalar Schrödinger Green function relation. To get the Green
function for the two-component spinors found in the preceding section, it may
be multiplied by a two-component identity matrix.

13.3.3 Spinor electrodynamics

The interaction between electrons and radiation complicates the simple proce-
dure outlined in the previous section. The minimal coupling to radiation via the
gauge potential Aµ(x) involves x-dependence, which means that the derivatives
do not automatically commute with the diagonalization procedure. We must
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therefore modify the discussion to account for this, in particular taking more
care with time reversal invariance. In addition, we must consider the reaction
of the electronic matter to the presence of an electromagnetic field. This leads
to a polarization of the field, or effective refractive index (see section 21.2 for a
simple discussion of classical polarization). The action for electrodynamics is
thus

SQED =
∫
(dx)

{
ψ

(
−1

2
ih̄c(γ µ

→
Dµ −γ µ

←
Dµ

†

)+ mc2

)
ψ + 1

4µ0
FµνGµν

}
,

(13.42)

where Gµν is the covariant displacement field, defined in eqn. (21.62). We
proceed once again by re-writing this in terms of the two-component spinors
χ . We consider the matter and radiation terms separately. The matter action is
given by

SD =
∫
(dx)ψ†γ 0(−ih̄cγ µDµ + mc2)ψ

=
∫
(dx)(χ†

1χ
†
2 )

(
−i h̄

2

↔
Dt −mc2 −ih̄cσ i Di

−ih̄cσ i Di −i h̄
2

↔
Dt +mc2

)(
χ1

χ2

)
.

(13.43)

In electrodynamics, the covariant derivative is Dµ = ∂µ + i e
h̄ Aµ, from which it

follows that

[Dµ, Dν] = i
e

h̄
Fµν. (13.44)

The block matrix in eqn. (13.43) can be diagonalized by a unitary transforma-
tion. The symmetrized eigenvalue equation is(

−i
h̄

2

↔
Dt −mc2 − λ

)(
−i

h̄

2

↔
Dt +mc2 − λ

)
+ h̄2c2σ iσ j Di D j = 0,

(13.45)

or

λ2 + 2ih̄λDt + h̄2c2 σ iσ j Di D j − h̄2 D2
t − m2c4 − i

h̄

2

↔
(∂tλ)= 0,

(13.46)

where the last term arises from the fact that the eigenvalues themselves depend
on x due to the gauge field. It is important that this eigenvalue equation be
time-symmetrical, as indicated by the arrows. We may write this in the form

λ = −i
h̄

2

↔
Dt ±

√
m2c4 − h̄2c2σ iσ j Di D j + i

h̄

2

↔
(∂tλ) (13.47)
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and we now have an implicit equation for the positive and negative energy roots
of the operator λ. The fact that the derivative term ∂tλ is a factor of c2 smaller
than the other terms in the square-root means that this contribution will always
be smaller than the others. In the strict non-relativistic limit c → ∞ it is
completely negligible. Since the square-root contains operators, we represent
it by its binomial expansion

(1+ x)n = 1+ nx + n(n − 1)

2
x2 + · · · , (13.48)

after extracting an overall factor of mc2, thus:

λ = −i
h̄

2

↔
Dt ±

[
mc2 − h̄2σ iσ j Di D j

2m
− h̄4

(
σ iσ j Di D j

)2

8m3c2

+i
h̄

4mc2

↔
(∂tλ) + · · ·

]
. (13.49)

The final term, ∂t , can be evaluated to first order by iterating this expression.
Symmetrizing over time derivatives, the first order derivative of eqn. (13.49) is

↔
(∂tλ)

(1)

= ∓ h̄2

2m
σ iσ j (Di

↔
∂t D j )

= ∓ ieh̄

2m
σ iσ j (Di E j − Ei D j ) (13.50)

since we may add and subtract ∂i At with impunity. To go to next order, we must
substitute this result back into eqn. (13.49) and take the time derivative again.
This gives a further correction

↔
(∂tλ)

(2)

= ∓i
h̄

4mc2
∂t

[
ih̄

4mc2

(
ieh̄

2m
σ iσ j (Di E j − Ei D j )

)]
(13.51)

Noting the energy shift −ih̄∂t → −ih̄∂̃t − mc2 and taking the positive square-
root, we obtain the non-relativistic limit for the positive half of the solutions:

SD →
∫
(dx)

{
χ†

(
ih̄ D̃t + h̄2 Di Di

2m
− eh̄ Biσi

2m

− eh̄2

8m2c2
σ iσ j (Di E j − Ei D j )

− h̄4

8m3c2

(
(Di Di )− e

h̄
(σ i Bi )

)2

−i
eh̄3

32m3c4
σ iσ j

↔
∂t (Di E j − Ei D j )+ · · ·

)
χ

}
, (13.52)
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where Bk = 1
2εi jk Fjk and the overall sign has been changed to conform to the

usual conventions. The negative root in eqn. (13.47) gives a similar result for
anti-particles. The fifth term contains ∂ i Ei , which is called the Darwin term.
It corresponds to a correction to the point charge interaction due to the fact
that Dirac ‘particles’ are spread out over a region with radius of the order
of the Compton wavelength h̄/mc. In older texts, this is referred to as the
Zitterbewegung, since, if one insists on a particle interpretation, it is necessary to
imagine the particles jittering around their average position in a kind of random
walk. The σ i Bi term is a Zeeman splitting term due to the interaction of the
magnetic field with particle trajectories.

Note that our diagonalization of the Dirac action leads to no coupling between
the positive and negative energy solutions. One might expect that interactions
with Aµ which couple indiscriminately with both positive and negative energy
parts of the field would lead to an implicit coupling between positive and
negative energy parts. This is not the case classically, however, since the vector
potential Aµ leads to no non-linearities with respect to ψ .

Radiative corrections (fluctuation corrections) in the relativistic fields give
rise to back-reaction terms both in the fermion sector and in the electromagnetic
sector. The effect of photon Dµν exchange leads to an effective quartic
interaction

S! =
∫
(dx)(dx ′) (ψ(x ′)γ µψ(x ′)) Dµν(x, x ′) (ψ(x)γ νψ(x)). (13.53)

The photon propagator is clearly a non-local and gauge-dependent quantity.
Non-locality is a feature of the full theory, and reflects the fact that the finite
speed of light disallows an instantaneous response in the field during collisions
(there is an intrinsic non-elasticity in relativistic particle scattering). Working to
a limited order in 1/c makes the effective Lagrangian effectively local, however,
since the non-local derivative expansion is truncated. The gauge dependence of
the Lagrangian is more subtle. In order to obtain a physically meaningful result,
one requires an effective Lagrangian which produces gauge-fixing independent
results. This does not necessarily mean that the Lagrangian needs to be
gauge-independent, however. The reason is that the Lagrangian is no longer
covariant with respect to the necessary symmetries to make this apparent.

Gauge invariance is related to a conformal/Lorentz symmetry of the relativis-
tic gauge field, so one would expect a loss of Lorentz invariance to result in
a breakdown of invariance under choice of gauge-fixing condition. In fact, a
non-relativistic effective Lagrangian is not unique: its form is indeed gauge-
dependent. Physical results cannot be gauge-dependent, however, provided one
works to consistent order in the expansion of the original covariant theory. Thus,
the gauge condition independence of the theory will be secured by working
to consistent order in the smallness parameters, regardless of the actual gauge
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352 13 The non-relativistic limit

chosen. Propagators and Lagrangian are gauge-dependent, but in just the right
way to provide total gauge independence.

Turning to the photon sector, we seek to account for the effects of vacuum and
medium polarization in leading order kinetic terms for the photon. To obtain the
non-relativistic limit of the radiation terms, it is advantageous to have a model of
the dielectric medium in which photons propagate. Nevertheless, some progress
can be made on the basis of a generic linear response. We therefore use linear
response theory and assume a constitutive relation for the polarization of the
form

Gµν = Fµν +
∫
(dx) χ(x, x ′)Fµν. (13.54)

The second term is a correction to the local field, which is proportional to the
field itself. Perhaps surprisingly, this relation plays a role even in the vacuum,
since quantum field theory predicts that the field ψ may be polarized by the
back-reaction of field fluctuations in Aµ. Since the susceptibility χ(x, x ′)
depends on the dynamics of the non-relativistic matter field, one expects this
polarization to break the Lorentz invariance of the radiation term. This occurs
because, at non-relativistic speeds, the interaction between matter and radiation
splits into electric and magnetic parts which behave quite differently. From
classical polarization theory, we find that the momentum space expression for
the susceptibility takes the general form

χ(ω) ∼ Ne2ω2/ε0m

ω2
0 − iγω + ω2

. (13.55)

In an electron plasma, where there are no atoms which introduce interactions
over and above the ones we are considering above, the natural frequency
of oscillations can only be ω0 ∼ mc2/h̄. These are the only scales from
which to construct a frequency. The significance of this value arises from the
correlations of the fields on the order of the Compton wavelength which lead
to an elastic property of the field. This is related to the Casimir effect and to
the Zitterbewegung mentioned earlier. It is sufficient to note that such a system
has an ultra-violet resonance, where ω0 * ω in the non-relativistic limit. This
means that χ(ω) can be expanded in powers of ω/ω0. From the equations of
motion, h̄ω ∼ h̄2k2/2m; thus, the expansion is in powers of the quantity

ω

ω0
∼ h̄k2/2m

h̄(mc2/h̄)
= h̄k2

m2c2
. (13.56)

It follows that the action for the radiation may be written in the generic form

SM =
∫
(dx)

{
CE

2
A0

[
∇2

(−h̄∇2

m2c2
+ · · ·

)
A0

]

+ CB

2
Ai

[
(−∇2 gi j + ∂i∂ j )

(−h̄∇2

m2c2
+ · · ·

)]
A j

}
. (13.57)
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This form expresses only the symmetries of the field and dimensional scales of
the system. In order to evaluate the constants CE and CB in this expression, it
would necessary to be much more specific about the nature of the polarization.
For a plasma in a vacuum, the constants are equal to unity in the classical
approximation. The same form for the action would apply in the case of
electrons in an ambient polarizable medium, below resonance. Again, to
determine the constants in that case, one would have to introduce a model for
the ambient matter or input effective values for the constants by hand.

13.4 Thermal and Euclidean Green functions

There are two common formulations of thermal Green functions. At thermal
equilibrium, where time is an irrelevant variable on average, one can rotate to a
Euclidean, imaginary time formulation, as in eqn. (6.46), where the imaginary
part of time places the role of an inverse temperature β. Alternatively one can
use a real-time formulation as in eqn. (6.61).

The non-relativistic limit of Euclideanized field theory is essentially no
different from the limit in Minkowski spacetime, except that there is no direct
concept of retarded or advanced boundary conditions in terms of poles in the
propagator. There is nevertheless still a duplicity in the solutions with positive
and negative, imaginary energy. This duplicity disappears in the non-relativistic
limit, as before, since half of the spectrum is suppressed. The relativistic,
Euclidean Green function, closely related to the zero-temperature Feynman
Green function, is given by

Gβ(x, x ′) =
∫

dω

2π

dnk
(2π)n

eik(x−x ′)

p2
βc2 + m2c4

, (13.58)

where the zeroth component of the momentum is given by the Matsubara
frequencies p0

β = 2nπ/β h̄c:

2mc2 Gβ(x, x ′) =
∫

dω

2π

dnk
(2π)n

eik(x−x ′)

p2
β

2m + 1
2 mc2

. (13.59)

Shifting the energy ip0
β → mc2 + i p̃0

β leaves us with

GNRβ(x, x ′) =
∫

dω

2π

dnk
(2π)n

eik(x−x ′)

p2

2m − ih̄ω̃
, (13.60)

which is the Green function for the Euclidean action

S =
∫
(dx)χ†

[
h̄2∇2

2m
+ h̄∂̃τ

]
χ. (13.61)

https://doi.org/10.1017/9781009289887.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.016
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In the real-time formulation, in which we retain the auxiliary time dependence,
the thermal character of the Green functions is secured through the momentum
space boundary condition in eqn. (6.54), known in quantum theory as the Kubo–
Martin–Schwinger relation. Considering the boundary terms in eqn. (6.61) and
following the procedure in section 13.2.2, one has

2mc2 2π i f (k)θ(k0)δ(p
2c2 + m2c4)→

2mc2 2π i f (k)θ(k0)
δ(p0c − h̄ω̃k)

2h̄ωk
. (13.62)

In the large c limit, h̄ωk → mc2, thus the c →∞ limit of this term is simply

2π i f (ω̃k), (13.63)

where h̄ωk = mc2 + h̄ω̃k .
Intimately connected to this form is the Kubo–Martin–Schwinger (KMS)

relation. We looked at this relation in section 6.1.5, and used it to derive the form
of the relativistic Green functions. Notice that the zero-temperature, negative
frequency parts of the Wightman functions do not contribute to the derivation
of this relation in eqn. (6.56). For this reason, the form of the relationship in
eqn. (6.54) is unchanged,

−G(+)(ω̃) = eβω̃G(−)(ω̃). (13.64)

This use of the non-relativistic energy in both the relativistic and non-relativistic
cases is important and leads to a subtlety in the Euclidean formulation. From
the simplistic viewpoint of a Euclidean imaginary-time theory, the meaning of a
thermal distribution is different in the relativistic and non-relativistic cases. The
Boltzmann factor changes from

e−β(h̄ω̃+mc2)→ e−βh̄ω̃. (13.65)

This change is reflected also in a change in the time dependence of wave modes,

e+i(ω̃+mc2/h̄)τ → e+iω̃τ . (13.66)

The shift is necessary to reflect the change in dynamical constraints posed
by the equations of motion. However, the Boltzmann condition applies (by
convention) to the non-relativistic energy. It is this energy scale which defines
the temperature we know.

Another way of looking at the change in the Boltzmann distribution is from
the viewpoint of fluctuations. Thermal fluctuations give rise to the Boltzmann
factor, and these must have a special causal symmetry: emission followed
by absorption. These processes are mediated by the Green functions, which
reflect the equations of motion and are therefore unambiguously defined. As we
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take the non-relativistic limit, the meaning of the thermal distribution changes
character subtly. The positive frequency/energy condition changes from being
θ(ω) = θ(ω̃+mc2/h̄) to θ(ω̃) owing to the re-definition of the zero point energy.
Looking back at eqn. (6.56), we derived the Bose–Einstein distribution using the
fact that

θ(−ω)eβω = 0. (13.67)

But one could equally choose the zero point energy elsewhere and write

θ(−(ω +�ω))eβ ′(ω+�ω) = 0. (13.68)

As long as the Green functions are free of interactions which couple the energy
scale to a third party, we can re-label the energy freely by shifting the variable
of integration in eqn. (5.64). In an interacting theory, the meaning of such a
re-labelling is less clear.

In a system which is already in thermal equilibrium, one might argue that the
interactions are not relevant. Interactions are only important in the approach to
equilibrium and to the final temperature. With a new definition of the energy, a
temperature has the same role as before, but the temperature scale β ′ is modified.

This might seem slightly paradoxical, but the meaning it clear. The KMS
condition expressed by eqn. (6.54) simply indicates that the fluctuations medi-
ated by given Green functions should be in thermal balance. The same condition
may be applied to any virtual process, based on any equilibrium value or zero
point energy. If we change the Green functions, we change the condition and the
physics underpinning it. In each case, one obtains an equilibrium distribution
of the same general form, but the meaning depends on the original Green
functions. In order to end up with equivalent temperature scales, one must use
equivalent energy scales. Relativistic energies and non-relativistic energies are
not equivalent, and neither are the thermal distributions obtained from these.
In the non-relativistic case, thermal fluctuations comprise kinetic fluctuations in
particle motion. In the relativistic case, the energy of the particles themselves is
included.

Two thermal distributions

eh̄βω = eh̄(β+�β)(ω+�β) (13.69)

are equivalent if

β +�β
β

= ω

ω +�ω. (13.70)

These two viewpoints are related by a renormalization of the energy or chemical
potential; the reason why such a renormalization is required is precisely because
of the change in energy conventions which affects the Euclidean formulation.
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13.5 Energy conservation

The speed of light is built into the covariant notation of the conservation law

∂µθ
µν = 0. (13.71)

We must therefore ascertain whether the conservation law is altered by the limit
c →∞. From eqns. (11.5) and (11.44), one may write

∂µθ
µν = 1

c
∂tθ

0µ + ∂iθ
iµ

= ∂tθ
tµ + ∂iθ

iµ. (13.72)

It is apparent from eqn. (11.5) that, as c →∞,

θ0i →∞
θi0 → 0. (13.73)

Splitting µ into space and time components, we have, for the time component,

∂µθ
µ0 = 1

c
∂µθ

µt

= 1

c

[
∂t θ

t t + ∂iθ
i t
]

= 1

c
[∂t H ] = 0. (13.74)

Because of the limit, this equation is ambiguous, but the result is sensible if we
interpret the contents of the brackets as being zero. For the space components
one has

∂tθ
ti + ∂ jθ

j i = 0

∂t p + ∂ jσ
j i = 0, (13.75)

where σi j is the stress tensor. Thus, energy conservation is preserved but it
becomes divided into two separate statements, one about the time independence
of the total Hamiltonian, and another expressing Newton’s law that the rate of
change of momentum is equal to the applied force.

13.6 Residual curvature and constraints

The non-relativistic limit does not always commute with the limit of zero
curvature, nor with that of dimensional reduction, such as projection in order
to determine the effective dynamics on a lower-dimensional constraint surface
[15]. Such a reduction is performed by derivative expansion, in which every
derivative seeks out orders of the curvature of the embedded surface. Since the
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non-relativistic limit is also an expansion in terms of small derivatives, there is
an obvious connection between these. In particular, the shape of a constraint
surface can have specific implications for the consistency of the non-relativistic
limit [29, 30, 80, 94, 95]. Caution should be always exercised in taking limits,
to avoid premature loss of information.
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