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Abstract

An operator is said to be nice if its conjugate maps extreme points of the dual unit ball to extreme points.
The classical Banach-Stone Theorem says that an isometry from a space of continuous functions on a
compact Hausdorff space onto another such space is a weighted composition operator. One common
proof of this result uses the fact that an isometry is a nice operator. We use extreme point methods and
the notion of centralizer to characterize nice operators as operator weighted compositions on subspaces
of spaces of continuous functions with values in a Banach space. Previous characterizations of isometries
from a subspace M of Q,( Q, X) into Q>(K, Y) require Y to be strictly convex, but we are able to obtain
some results without that assumption. Important use is made of a vector-valued version of the Choquet
Boundary. We also characterize nice operators from one function module to another.

2000 Mathematics subject classification: primary 46B04, 46E40.

1. Introduction

The classical Banach-Stone theorem says that if T is an isometry from the space C( Q)
of continuous functions on a compact Hausdorff space Q onto C(K), where K is a
compact Hausdorff space, then there is a continuous function h on K of modulus one,
and a homeomorphism <p from K onto Q such that

(1) 77 (0 = h(t)f (<p(t))

for a l l / e C(Q) and t e K. There are many proofs of this theorem existing in the
literature, and one of the best known proof (as given by Dunford and Schwartz [8], for
example) uses the fact that the conjugate of an isometry must map extreme points of
the unit ball of the dual space of C{K) onto the extreme points of the unit ball of the

© 2003 Australian Mathematical Society 1446-7887/03 $A2.00 + 0.00

125
https://doi.org/10.1017/S1446788700003505 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003505


126 Hasan Al-Halees and Richard J. Fleming [2]

dual space of C(Q). Proved first by Banach [2] for the real compact metric case and
later by Stone [19] in the general real case, the theorem has inspired numerous articles
dealing with different proof techniques and a variety of generalizations. Behrends [3]
has given an excellent account of these matters, and the reader might also consult [9]
for some of the history.

One stream of investigation has focused on the case where the continuous functions
have values in a Banach space E and the question to be answered is whether the
operator T can be described by some kind of canonical form as is given in (1). The
first such result along these lines was given by Jerison [13]. Many others followed,
and we state below a theorem of Behrends [3, Theorem 8.10] which includes many of
the earlier results.

THEOREM 1.1. Let E\ and E2 be Banach spaces which have one dimensional
centralizers Z(E\), Z(E2), respectively. Suppose further, that Q and K are locally
compact Hausdorff spaces and that there exists an isometric isomorphism T from
Co(Q, E\) onto Co(K, E2). Then there is a homeomorphism cpfrom K onto Q and a
continuous function V from K into the space of isometries from Et to E2 (given the
strong operator topology) such that

(2) TF{t) = V(t)F(<p{t))

for all t e K and F e C0(Q, Ex).

Our principal goal in this paper is to characterize isometries T as in the theorem
above, but without assuming that T is surjective, or even defined on all of Co( Q, E\).
One of the first to consider non-surjective isometries from C(Q) into C(K) was
Holsztyriski [11], who showed that one could get a canonical form, but the function
<p may not be defined on all of K. Cambern [6] extended this to the vector valued
case where E is assumed to be strictly convex. Novinger [17] considered isometries
from certain subspaces M of CQ(Q) onto a subspace TV of C0(K), and Font [10] has
studied isometries of this type for vector-valued functions. Font's approach is similar
to that of Cambern, while Novinger used extreme point techniques and the notion of
Choquet Boundary.

The characterization of an operator as in (2) above involves getting the function <p
defined in some manner. Our method will be to use the fact that the conjugate of an
isometry maps extreme points to extreme points. In order to emphasize this property,
we will consider nice operators.

An operator is said to be nice if its conjugate takes extreme points to extreme points.
An isometry is an example of a nice operator. A key role is played by the concept of
centralizer of a Banach space. This will be defined in Section 2, where we will also
prove a version for nice operators of Theorem 1.1 stated above. We treat the surjective
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case first in order to establish our methods in a more hospitable climate. In Section 3
we examine the situation in which the operator T maps a subspace M of Co(Q, E\)
onto a subspace A' of C0(K, E2) but without assuming that £2 is strictly convex. It is
necessary to put some special conditions on both M and N. Finally, in Section 4, we
consider the special case in which the space E2 is strictly convex.

It should be mentioned that many of the results in this paper are contained in the
PhD. dissertation of the first author [1].

2. Centralizers, function modules, and Behrends' Theorem

In what follows, Q, K denote locally compact Hausdorff spaces and E, E\, E2,
X, Y represent Banach spaces. As usual, CQ(K, E) will mean the Banach space
of continuous E-valued functions defined on K and vanishing at infinity. If F 6
C0{K, E), then ||F|| = \\F\\oo = swpteK ||F(f)ll- We will assume that the scalar field
F is always the complex numbers C unless specifically noted to be K. In case E is the
scalar field, we will write Co(K, E) as simply Co(K). (Of course, if K is compact,
we omit the sub-zero.) For Banach spaces X and Y, we will let .if (X, Y) denote the
bounded linear operators from X to Y, and if T e Jif(X, Y), then T* is the usual
conjugate of T defined by T*y*(x) = y*(Tx). By B(X) we will mean the closed unit
ball of X, S(X) will be the unit sphere, and ext(A) will be the set of extreme points
of A. In the particular case that A is a Banach space, we will write ext(A) in place
of ext(Z?(A)). By A" we will mean the closure of A. For 1 < p < 00, lp(n) will
denote the n-dimensional V space.

DEFINITION 2.1. Let T be a bounded linear operator on X.

(i) The operator T is a multiplier of X if every element of ext(X*) is an eigenvector
for T*. Hence for each x* e ext(X*) we have a scalar aT(x*) such that

T*x* = aT{x*)x*.

(ii) The operator T is said to be M-bounded if there is a A. > 0 such that, for every
x e X, Tx is contained in every ball which contains {ixx : /x e F, |/x| < X).

(iii) For a multiplier T on X, we say that a multiplier 5 on X is an adjoint for T if
as = of. If T has an adjoint, we will denote it by T".

(iv) The centralizer of X, written as Z(X), is the set of all multipliers for which an
adjoint exists. (Note that in case F = K, the centralizer just consists of the multipliers.)

DEFINITION 2.2. A function module is a triple (K, (Xt),eK, X), where K is a non-
void compact Hausdorff space (the base space), (X,),eK a family of Banach spaces
(the component spaces), and X a closed subspace of Y[™K %t s u c n t n a t t n e following
conditions are satisfied
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(i) hx eX forx e X and h e C(K) ((hx)(t) = h(t)x(t));
(ii) t -> ||JC (r) || is an upper semicontinuous function for every x € X;

(iii) X, = W ( ) : j c e X) for every t e K\
(iv) [t:teK,X,^ {0}}- = K.

Note: The space fire* ^» denotes the functions x in the product space for which
||*||=sup{||jc(r)| |:f € AT} < O O .

The above definitions along with their history and many properties may be found
in [3]. Of particular interest to us is the fact that T is a multiplier if and only if it
is M-bounded. A natural example of a function module is a space C(K, E) where
we take X, = E for each t e K. In the locally compact case, we can replace K
by its Stone-Cech compactification fiK and take X, = E if t e K and X, = {0} if
t€0K\K.

A property of function modules that will be of importance later is that a function
module is norming. We will say that a function space M with functions defined on a
set Q and values in E is norming for Q if for each s e Q and u e E there is some
F e M such that F(s) = u and | | F ( J ) | | = | |F| | .

LEMMA 2.3. lf(K, (X,)ieK, X) is a function module and t e K, u e X, are given,
there exists F e X such that F(t) = u and \\F\\ = \\F(t)\\ = \\u\\. Furthermore, if U
is a neighbourhood oft, F may be chosen as above so that F(r) = Ofor r e K\U.

PROOF. This follows directly from [3, Lemma 4.2]. •

A function module representation [p, (K, (X,)I€K, X)] of a Banach space X is a
function module (AT, (X,),€K, X) together with an isometric isomorphism p : X —> X.
If for h e C(K) we let Mh be the multiplication operator on X defined by Mhx(t) —
h(t)x(t), then ZP(X) = [p'lMhp : h e C(K)} is contained in Z(X). It is known that
for any Banach space X there is a function module representation of X as above such
that ZP{X) = Z(X) [3]. We will not use this idea directly in the current paper. It is
easy to see that for h e C(K), Mh is a multiplier and M% is its adjoint, and, in fact,
Z(C(K)) = {Mh '• h e C(K)}. In the locally compact case, the centralizer consists
of multiplications by elements of Cb{K), the bounded continuous functions on K. It
is natural to ask about the centralizer of C0(K, E).

Before doing anything else, we want to state the following well-known fact about
extreme points. The proof is straightforward and we omit it. However, the result will
be used many times in the remainder of the paper.

LEMMA 2.4. For a given x in a Banach space X, there exists x* € ext(X*) such
thatx*{x) = \\x\\.
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The extreme points of the unit ball of CQ(K , E)* are known to be of the form x* o \Js,
wherex* e ext(£*) and Vo is the evaluation functional at t e K [3, 4]. If h e Co(K),
then Ml {x * o f,) = h (t) {x * o \j/,) so that Mh is a multiplier with adj oint Mj. Hence Mh

is in the centralizer of C0(K, E). Behrends [3] has shown that these operators describe
the centralizer entirely under a certain condition on E. We will say that E has trivial
centralizer if Z(E) has dimension 1, that is, if the only elements in the centralizer
are multiples of the identity operator. We are first going to describe the centralizer of
a Banach space X which is, itself, a function module. We will need the fact, proved
in [3, Theorem 4.5], that the extreme points of the unit ball of (K, (X,),gJf, X) are
precisely those elements of the form x* o \jr, where x* e ext(X*). A proof of the next
lemma can also be found in [3], but we give one here in order to show clearly the
importance of the assumptions about a trivial centralizer.

LEMMA 2.5. Let (K, (X,),€K, X) be afunction module with the property thatZ(X,)
is trivial for each t e K. Then Z(X) = [Mh : h is bounded on K andhF € X
for all F eX}.

PROOF. If h is a bounded scalar-valued function on K such that h F e X for all
F e X, then it is straightforward to show Mh is in the centralizer of X. Suppose, on the
other hand, that W e Z(X). Given t e Ko = [t e K : X, £ {0}} and x* e ext(X,*)
we have a scalar aw(x*, t) such that W*(x* o yjr,) = aw(x*, t)(x* o ty,). Note that

(3) \aw(x\ 01 = IIM**. 0(** ° VOII = II W*(x* o Vo)|| < || VT\\ = || W\\.

Let us define P(t) on X, by P(t)u = WF(t), where F e X with F(t) = u.
Now P(t) is well defined, for if F(t) = H(t), then

x*(WF(t)) = aw(x*, t)x*(F(t)) = aw(x\ t)x*(H(t))

= aw(x\ t)(x* o f,){H) = W\x* o V,)(//) = x*(WH(t))

for all x* e ext(A7). Hence, WF(t) = WH(t). Moreover, P(t) is bounded,
for if M e X,, and F(0 = «. by Lemma 2.4 there exists x* e ext(X*) such that
x*(WF(t)) = || WF(t)\\. Thus, from (3) we obtain

\\P(t)u\\ = \\WF(t)\\ = W*(x*of,)(F)

= \aw(x*,t)(x*oir,)(F)\ <

Similar manipulations show that P*(t)x* = aw(x*, t)x*, and P(t) is a multiplier.
Since it will have an adjoint obtained from the adjoint W of W, we conclude that
P(t) e Z(X*). Consequently, there is a scalar h(t) such that P(t) = h(t)I and we
have WF(t) = h(t)F(t) for all t e Ko, where h(t) = aw(x*, t) for all JC*. That h is
bounded on Ko follows from (3). It does not matter what values h is given outside
Ko; they can be any finite constant. •
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The corollary below was observed by Behrends in his proof of Theorem 8.10 in [3].

COROLLARY 2.6. Let K be a locally compact Hausdorff space and E a Banach
space with trivial centralize* Then Z(Q>(K, E)) = [Mh : h € Cb{K)}.

This corollary follows immediately from Lemma 2.5 since C0(K, E) is a function
module. The continuity of h is easy to show using the fact that there is a function F
that is constant on some neighbourhood of a given t.

DEFINITION 2.7. An operator T e -S?(X, Y) is said to be nice if

r ( e x t ( r » Cext(X*).

This notion is apparently due to Morris and Phelps [16] and is a sufficient (but
not necessary) condition for T to be an extreme point of the unit ball of S£(X, Y).
Every isometry is nice, but not every nice operator, nor even a nice isomorphism, is
necessarily an isometry. Clearly, if both T and T"1 are nice, then T is an isometry.

Werner [20] has observed that a nice operator from C( Q) to C{K) can be described
as a weighted composition operator as given by (1). We are going to extend that result
to the vector-valued case. First we show that a nice isomorphism from one function
module to another has the canonical form (2).

Note that a nice operator is necessarily a contraction. For, if x e X and if
y* eext(y*)sothat \y*(Tx)\ = ||TJC||, then

THEOREM 2.8. Suppose T is a nice isomorphism from the function module X =
(Q, (Xs)seQ, X) onto the function module (K, (Y,)ieK, Y) where Z(Y,) is trivial for
each t e K such that Y, ^ {0}. Then there is a function <pfrom Ko — {t € K : Y, ̂  0}
onto a dense subset of Q and a function t —• V(t) from Ko into the family of nice
operators from XV(,y to Y, such that

(4) TF(t) = V(t)F(<p(t))

for all t e Koand F eX.

PROOF. Let h be a continuous function on Q. We will first show that TMhT~l is
in the centralizer of Y. If t e Ko, y* 6 ext(y*), then, since T is nice, there are s e Q
andx* e e\t(X*s) such that T*(y* o r//,) = x* o x/fs. Hence, for G = TF e Y, we have
(after a bit of manipulation),

(TMhT-l)*(y* o f,){G) = h(s){y* o
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This shows that each extreme point of S(Y*) is an eigenvector and so TMhT~l is a
multiplier. Its adjoint will be given by TMf, T~x and so TMh T'1 is in the centralizer.
By Lemma 2.5, there is a bounded function h on K such that TMhT~x = M-h. This
implies that TMh = M-h T. It is easy to show that

h(s)x'(F(s)) = (TMk)*(y* o f,)(F) = (Afj)*(y* ° f,)(TF) = h(t)x*(F(s))

for any F e X. Hence, we must conclude that h(s) = h{t). Now, if we have
y*,z* eext (T;)and

(5) T*(y*o1r,)=x*o\lr, and T*(z* o f,) = w* o fr,

it follows that h(s) = h(t) = h(r). Since there are enough continuous functions on
Q to separate points of Q, we must have r — s. We define the function <p on Ko by
<p(t) = s according to the pairing determined by T*.

Next we define, for each t e Ko an operator V(t) on Xs — XvW by V{t)u = TF{t),
where F e X has the property that F(<p(t)) = u. To see that V(t) is well defined,
suppose that s = q>{t) and F{s) = H(s). Then for any extreme point y* for B(Y*),
and T*(y* o TJ/,) = x* o \j/s we have

y*(TF{t)) = x*(F(s)) = x\H{s)) = y\TH{t)),

from which it follows that TF(t) = TH(t). Let u e Xv(0 be given and F e X so
that F(<p(t)) = u. There exists y* e ext(K,*) with || V(t)u\\ = \\TF(t)\\ = y*{TF{t).
Hence, || V(r)u|| = y*(TF(t) = T*(y* o f,){F) = x*(F((p(t)) < ||u||. Thus V(t) is
bounded and nice, since V(t)* maps extreme points of Y* to extreme points of X^(ly
Hence we have established (4), for by its definition, V{t)F((p(t)) = TF(t).

To complete the proof, we show that <p(K0) is dense in Q. Suppose s0 is such that
XQ, ^ 0 and ^0 e Q\<p(K0)~. By Lemma 2.3 there exists F e X so that F(s0) / 0
but F(r) = 0 for all r e <p(£<>)"• T h u s TF^ = ^(f)F(<p(O) = 0 for all r € AV
This contradicts the fact that T is injective, and from part (iv) of Definition 2.2, we
conclude that <p(Ko) is dense. D

We want to note here that Behrends [3, Theorem 4.16, Corollary 4.17] proves
the above theorem for T an isometric isomorphism and under the assumption that
Z(X) = {Mh : h € C(Q)} and Z(Y) = {Mh : h e C{K)}. In that case, the function
<p is proved to be continuous, since TMhT~x induces an isometric isomorphism co
from C ( 0 onto a closed self-adjoint subalgebra of C(K). Hence co(h) = h o <p for
some continuous function <p by classical results. In our case we are unable to show that
<p, as we defined it, is necessarily continuous. Indeed, it need not be continuous. For
example, consider the subspace X of the bounded scalar-valued functions on [0, 1]
where X = [f : {t : | / ( f ) | > e} is finite for every e > 0}. Then X is a Banach
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function module [3, page 78] and if <p is a one-to-one function from [0, 1] onto [0, 1],
then Tf = / o <p is an isometry from X onto X. However, (p could be taken to be
discontinuous on [0, 1].

THEOREM 2.9. Suppose T is a nice isomorphism from C0(Q, E\) onto CQ{K, E2)
and suppose that E2 has a trivial centralizes Then there exists a continuous function
(p from K onto a dense subset of Q and a continuous function t —> V(t) from K into
the collection of nice operators contained in J?(EU E2) (given the strong operator
topology) such that TF(t) = V(t)F(cp(t))for all t e K and F e Q(Q, £,) .

PROOF. The canonical form comes immediately from Theorem 2.8, since the spaces
in question are function modules as described in the paragraph following Defini-
tion 2.2. Once again, K plays the role of Ko in that theorem.

It remains to prove the continuity assertions. Suppose the function <p is not contin-
uous at some t e K. Then there is a net {tp} in K converging to t and a neighbourhood
U of s = <p(t) such that for every /30 there exists fi > $0 with <p(tp) € Q\U. Let
u e Ei be such that || V(t)u\\ - 1. By Lemma 2.3, there is an F e C0(Q, Ex)
such that F(s) - u, \\F\\ = \\u\\, and F(r) - 0 for r e Q\U. Now we have
|| TF(t)\\ = || V(t)u\\ = 1, and by the continuity of TF and the choice of U and {^}
we must have 1 = || TF(t)\\ = liminf || TF(tfi)\\ = 0. This contradiction establishes
the continuity of <p.

The continuity of t -» V(t) comes immediately from the facts that for a given
u e E\, and t e K, there is a function F e C0(Q, E\) which is constantly equal to u
on a compact neighbourhood of <p(t) and TF is continuous at t. •

REMARKS. (i) The crucial part of the argument for the theorems above is the
establishment of the function (p. The pairing of t with s is easy using the extreme
points but the chief difficulty is in showing that <p is well-defined; that is, showing that
statement (5) implies that s = r. It is here that the hypothesis about Z(E2) is needed.
Examples show that some such requirement is necessary [5].

(ii) The condition that dimCZC^)) = 1 is not as restrictive as it might appear.
Strictly convex spaces, smooth spaces, and reflexive spaces with no M-summand all
have this property [3].

(iii) If T~l is also nice, so that T* maps ext(T*) onto ext(X*), then <p maps K
onto Q. In this case, of course, T is an isometry.

(iv) In Theorem 2.9, if K is compact, then <p is surjective so that Q is also compact.
(v) Let v be a non-strictly convex norm on K2 whose dual ball has extreme points

as a proper subset of the unit circle. Let E\ be I 2 with Euclidean norm and let E2 be R2

withthenorm v. Let V(l) = V(2) be a nice linear operator from E\ to E2 (for example,
the identity), and let <p be a permutation of {1,2}. Then TF(t) = V(t)F(<p(t)) defines
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a nice isomorphism from X = C({1, 2}, Ex) onto Y = C({1, 2}, F,2) which is not an
isometry and for which r*(ext(T*)) ^ ext(X*).

(vi) If, in the statement of Theorem 2.9, we assume that T~x is also nice and Z{E\)
is trivial, we can conclude that <p is a homeomorphism. Simply apply Theorem 2.9 to
T'1 to conclude that (p is one-to-one with a continuous inverse. This gives Behrends'
Theorem 1.1.

3. Nice operators on subspaces of C0(K, E)

A bounded linear operator T from Q>(Q, X) into C0(K, Y) is said to be a gener-
alized weighted composition operator[\2\ if there is a subset K\ of K, a continuous
function <p from /if! onto Q and a continuous operator valued map V from K\ into the
space of bounded operators from X to Y (with the strong operator topology) such that
TF{t) = V(t)F(<p(t)) for t 6 flfi. A theorem of Cambern [6] shows that if the Banach
space Y is strictly convex, then any isometry T as above is a generalized weighted
composition operator. Moreover, it has been pointed out by Jeang and Wong [12] that,
at least in the case of real spaces, if every isometry T from C0(Q, X) into Co(K, Y) is
a generalized weighted composition operator for any Q, X, K, then Y must be strictly
convex.

In light of this, we can ask what can be said in case Y is not strictly convex.
As in the previous section, we wish to make use of extreme point methods, and so
we will investigate what happens with nice operators. Since isometries are nice,
we accomplish some new results for isometries as well. Following the methods of
Novinger [17] in the scalar case, we are led to consider an extension of the notion of
Choquet Boundary, usually defined for subspaces of a C(JQ-space.

DEFINITION 3.1. Let K be a locally compact Hausdorff space, and N a closed
subspace of C0(K, E) where £ is a Banach space. An element t € K is in the
Choquet Boundary of N, written ch(N), if there exists x* e ext(£*) such that*' o \j/t

is an extreme point of the unit ball of N*.

It can be shown that ch(A0 is a boundary, that is, given any F e N there exists some
t e ch{N) such that ||F(r)|| = ||F||. The definition we have given is an extension of
the one due to Novinger [17]. The little book by Phelps [18] is an excellent reference
for information on the classical Choquet Boundary.

The Choquet Boundary in the vector-valued case presents some complications not
present in the scalar-valued case. We will illustrate this with some examples. Before
giving the examples, we need to introduce some special notation. Given A', K, E as
in Definition 3.1, we let E(t) = [G(t) e E : G 6 N], and

N*(t) = [x* e ext(£*) : x* o \j/, e ext(/V*)}-
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We note that if E(t) is not closed, we can take its closure and not cause any significant
changes to arguments involving it. Also, since an extreme point for B(E(t)*) is
the restriction to E(t) of an extreme point of B(E*), we will not always distinguish
between the two.

In the examples below, we will consider the scalars to be real.

EXAMPLE 3.2. . (i) Let N c C({1, 2, 3}, £2(2)) be the collection of functions F
such that F(3) = ((F(l), <?,), ((F(l), e2) + (F(2), e2))/2). (By eu e2 are meant the
usual unit vectors, and (-, •) is the inner product.) Then ch(N) = {1, 2, 3}, and while
e* o i/r3 is extreme, e\ o ^3 is not. However, x* = (2/\/5, 1/V5) € N*(3) so that
N*(3) spans E*(3) = E*.

(ii) Let N C C({1, 2), i2(2)) be the space of functions G such that

G(2) = ((G(l),e,),(G(l), e2)/2).

Then ch(N) = {1,2} and AT (2) = {±e*}, which does not span E*(2) = E*.
(iii) Let <p\, <p2 be continuous functions from a locally compact Hausdorff space K

to a compact Hausdorff space Q and suppose there is a proper subset F of K which
is the set of all t e K such that <pi(t) = <p2{t), and for which <p,(O = Q. Let T
be defined on C{Q, E) into C0(K, E) by TF(t) = [F(<p,(r) + F(^(r))]/2 for all
F e C( 2. E). (Here, as usual, E is a given Banach space.) Then T is an isometry, and
if AT denotes the range of T, we have ch(A0 = F, and N*(t) = ext(£*(0) = ext(E*)
for all t e r .

The example in (iii) above is an adaptation of an example given originally by
McDonald [15]. Note that T does not have the canonical form for all t € K, but does
for t e ch(A0.

We will see now that the methods used in the proof of Theorem 2.8 can be used
in the subspace setting. We begin by characterizing the centralizer of a subspace N
of C0(A

r, E). It requires some special assumptions and for that we need a bit more
notation (borrowed from Font [10]). For a closed subspace A of C0(K), we say
N e si/(A) if for every u e E and h e A, the function h(-)u e N.

LEMMA 3.3. Let N be a closed subspace of C0(K, E) with dim Z(E(t)) = 1 for
every t € ch(/V). Suppose further that either

(i) N*(t) = ext(£(r)*) for each t e ch(JV) or
(ii) the linear span ofN*(t) is dense in E{t)* for each t e ch(A0 and N e J^(A),

where A is norming for K.

Then for each W € Z(N), there is a scalar-valued function h defined on ch(jV) such
that WG(t) = h(t)G(t)forall t 6 ch(A^).
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PROOF. If (i) above is satisfied, then the proof follows exactly the argument in the
proof of Lemma 2.5. The statements about extreme points in that proof are still valid
since N*(t) = ext(E(t)*). Suppose then, that (ii) holds. Since A is norming and
N e a/(A), E{t) = E for each t. Given W € Z(N), t e ch(/V), andx* e N'(t) we
have W*(x" o ft) = aw(x\ t)(x* o $,).

We can define P(t) on E by P(t)u = WG(t) for G 6 N with G(t) = u. The
fact that P(t) is well defined follows exactly as in the proof of Lemma 2.5 and
by using the condition that the span of N*(t) is dense in E*. The boundedness of
P(t) is straightforward to show since for any u e E, there is some F e N with
| |F| | = || F(t) || = ||M||. We now show that P(t) is M-bounded and therefore a
multiplier.

Since W is a multiplier, it is M-bounded for some bound X. Recall that this means
there exists X > 0 such that for every G € N, WG is contained in every ball which
contains {/xG : /i e F, |/x| < X). If P{t) is not A-bounded, there exist u,x e E
and r > 0 such that \\ixu - x\\ < r for all /x with | / i | < A. but H/^O" - *ll > ''•
Since A is norming, there is an A 6 A with 1 = \\h\\ = h(t) and the functions
G(-) = h(-)u, //(•) = /I(-)A: are both in N. Now ||/xG - H\\ < r for all |/x| < A and
since VK is A-bounded, we must have || WG — H\\ < r. However,

II WG - H\\ > || WG(t) - / / ( r ) | | = | |P (0« — JcII > r

by the definition of G and H. We conclude that ^ ( 0 is M-bounded.
The remainder of the proof follows as in Lemma 2.5. •

Given a subspace A of Co(Q), we will say that s 6 Q is a strong boundary point
for A if for each neighbourhood U of s, and each e > 0, there is a function /i in A
such that 1 = \\h\\ = h(s) and |/j(r)| < e for all r e Q\U. The set of all strong
boundary points will be denoted by a{A). For a subspace M of C o (2 . £ ) . w e s a v

that M is an A-module if / F 6 M for all / e A and F e M. We are now ready to
give theorems for nice operators from a subspace of a C0(Q, £ ) onto a subspace N
such as discussed above.

THEOREM 3.4. LetTbe a nice isomorphism from a closed subspace M O/CQ(Q, E\)
onto a closed subspace N of C0(K, E2). Assume that M e srf{A) and that M is an
A-module for a subspace A ofC0( Q) which separates the points of Q.

Suppose that Z(E2(t)) is trivial and that N*(t) = e\t(E2(t)*) for each t 6 ch{N).
Then there exists a function cpfrom ch(N) into ch(M) and for each t e ch(N) there is
a nice operator V(t)from E\(<p{t)) into E2(t) such that TF{t) = V(t)F(<p(t))forall
t € ch(A0 and F e M. The function <p is continuous at each t for which <p(t) e a (A)
and its range is dense in a (A). In particular, if a {A) is dense in Q, then the range of
<p is dense in Q.
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PROOF. Given t e ch(N) and y* e N*(t) there exists s e ch(M) and x* e
ext(X(s)*) such that T*(y* o \jr,) = x* o \j/s. This holds because T is nice. We define
<p(t) = s and because of Lemma 3.3 we can show that <p is well defined with the
same argument used for that purpose in the proof of Theorem 2.8. The definition
of V(t) and the fact that it is well-defined, bounded, and nice can also be proved as
before. If <p(t) e o-(A), then we can find the necessary function F e M so that the
continuity of cp follows as in the proof of Theorem 2.9, with the exception that we get
liminf || TF(<p(tfi))\\ < € rather than zero.

It remains to prove the assertion about the density of (p(ch(N)). Suppose that
s e cr(A) is not in the closure of (p(ch(N)). For any positive integer n, there is an
hn e A such that ||An|| = hn(s) = 1 and \hn(r)\ < l/n for all r e <p(ch(N))-. If
u e Ei with ||u|| = 1, let Fn = hn • u. Then Fn e M and

||7Fn(OH = II V(t)Fn((p(t))\\ < \\Fn(<p(t))\\ < l/n

for all t e ch(AO. It follows that \\TFn\\ < l/n because ch(N) is a boundary for
N. Since each Fn has norm 1, this would imply that T~l is unbounded which is a
contradiction. •

In the previous theorem, we assumed that N satisfied condition (i) of Lemma 3.3.
If we assume that N satisfies condition (ii) of that lemma, we get a slightly weaker
conclusion; namely, we can no longer prove that V(t) is nice.

THEOREM 3.5. Assume that M has the same properties as in Theorem 3.4, and
that T is a nice isomorphism from M onto N C C0(K, £2). Suppose that Z(E2(t)) is
trivial, the linear span of N * (t) is dense in E2(t)* for each t 6 ch(N), and N € £/(B)
where B is normingfor K as a subspace ofC0(K). Then there exists a function (pfrom
ch(N) into ch(M)andfor each t e ch(N) there is an operator V(t)from E\(<p(t)) to
E2(t) such that TF(t) = V(t)F(<p(t))for all t e ch(N) and F e M. The function <p
has range dense in a (A). // is continuous and the operator V(t) is a contraction for
each t such that (p(t) 6 a (A). If a (A) is dense in Q, then the range ofcp (and so also,
ch(M)) is dense in Q.

PROOF. We get <p well defined as in the previous theorem. Again, for / e ch(N)
and u 6 Ex(<p(t)), we define V(t)u = TF{t) where F e M such that F(<p(t)) = u.
If H e M with H(<p(t)) = u, we can easily show that y*{TF(t)) = y*(TH(t)) for
all y* in the linear span of N*(t). We now use the density of such functionals in
E2(t) to show that the above equality holds for all y* e E2(t)*. If (p(t) € a{A), and
u 6 Ei((p(t)), there exists/ e A such that 1 = / (<p(t)) - \\f\\ and F = / ( • ) " 6 M.
Thus ||V(0«|| = \\V(t)F(<p(t))\\ = \\TF(t)\\ < \\F\\ = \\u\\. Hence, V(t) is a
contraction. The asserted continuity of <p and density of its range follows as in the
previous theorem. •
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REMARKS. (i) The condition that A separates the points of Q in both Theo-
rems 3.4 and 3.5 could be weakened slightly by supposing that A separates the points
of ch(M). Similarly, it would be enough, in the statement of Lemma 3.3 (ii), and
in the statement of Theorem 3.5, to assume that A or B are norming for ch(N). If
in Example 3.2 (iii), we take K = [0, 1] = £), T = [0, 1/2] and assume that <px is
one-to-one on F, then for A = [h e C(K) : h o <px = h o <p2], the space N will be in
&/(A), where A is norming for ch(A )̂ = F.

(ii) A subspace A of C0(Q) is said to be extremely regular if a (A) = Q. It is
shown in [7] that such subspaces arise, for example, as kernels of nonzero, continuous
complex-valued finite regular Borel measures on Q, and that Co(Q) has proper ex-
tremely regular subspaces whenever Q is not dispersed. It is also known that if A is a
point-separating closed subalgebra of C o ( 0 , then the strong boundary of A is dense
in the Silov boundary of A [10], which itself is dense in Q if A is a regular closed
subalgebra.

(iii) If A is extremely regular, or if it is a regular closed subalgebra of Co( Q), then
for M as in the hypotheses of either Theorem 3.4 or Theorem 3.5, we would have
<p(ch(A0) (and therefore also ch(M)) dense in Q.

(iv) Obviously, M — C0(Q, E\) satisfies all the required hypotheses for M. Theo-
rem 3.4 applies, in this case, to the interesting example given by Cambern [6]. In this
example, Cambern constructs an isometry from C({1, 2}, I2) into C{K, I2), where K
is the one point compactification of the positive integers N, for which ch(Af) = N and
the function <p cannot be extended continuously to K.

(v) The methods of this section can be easily applied to show that the conclusions
of both Theorem 3.4 and Theorem 3.5 hold if M is replaced by a function module
(Q,(X,),eQ,X).

(vi) The reader may also wish to compare the conditions given by Font [10, Theo-
rem 1] for isometries from M onto N. The map corresponding to <p in his case goes
from a set Ko C K into a {A). This set Ko is not necessarily the same as ch(N) as
we will see in an example later. The assumption there about M is that M e s/{A)
where A is regular. (Font defines A to be regular if for each closed subset C of Q and
s 6 Q\C,there is h e A with h(s) = 1 and h = 0 on C) The space E2 is assumed to
be strictly convex and no other conditions are put on N.

We will end this section with several examples. First, we want to make a rather
special observation. Note that in Example 3.2, part (iii), we have a subspace Af
of C(K, E) which is defined as the range of a certain isometry with the canonical
form on the subset T = ch(A^). Since N*(t) — ext(£*) for each t e ch(Ar), it will
follow from Theorem 3.4 that if E{t) has trivial centralizer for each t e ch(/V) then
any nice isomorphism T from any Co(Q, Ex) onto A' will be a generalized weighted
composition operator. That is, if there is a canonical isometry with range N and
E(t) has trivial centralizer for each t, then every nice isomorphism onto N will be
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canonical. We state this formally as follows.

THEOREM 3.6. Suppose there exists an isometry Tfrom CQ(Q, E\) onto a subspace
N ofC0(K, E) so that TF(t) - V(t)F(<p(t))forall t e ch(N) where (p is continuous
and V(t) is nice for each t € ch(A^). Suppose further that E(t) has trivial centralizer
for each t e ch(/V). If L is any locally compact Hausdorff space, E2 is any Banach
space and S is a nice isomorphism from CQ{L, E2) onto N, S will be a generalized
weighted composition operator whose operator weights are nice.

PROOF. Given t e ch(N) and y* € ext(£(r)*), since V(t) is nice, there exists
x* e ext(£f) such that V(t)*y* = x*. Sox* o \J/m e ext(C0(£>, Ei)*) and since T
is an isometry, y* o \jr, = (T*)~1(x* o 1/̂ (0) is an extreme point for B(N*). Then
N*(t) = ext(E(r)*), and the theorem follows from Theorem 3.4. •

The following example shows that the set A'o mentioned in (vi) above can differ
from ch(N).

EXAMPLE 3.7. Let E be two dimensional real space with norm

The dual norm is given by

(|a| + |0 | ) /2 if (V2 - 1) < \B\ <

W\ i

Let N = sp{d, G2) where G,, G2 are elements of CO({1, 2, 3}, E) defined by

G,(l) = e1, G,(2) = - e , , G,(3) = - e , ,

e1, G2(2) = e,, G2(3) = - e , .

Then for G = aGx+ bG2 e N, we have ||G|| = \a\ + \b\. Also ch(A )̂ = {2, 3},
E(t) = sp{e,} for r e ch(N), and ext(£(/)*) = N*(t) for t e ch(A'). The operator T
fromC({l},£1(2))toA'definedbyrF = (F(l), e,>G, + (F(l), e2)G2 is an isometry.
In fact, it has the canonical form with cp defined on all of {1, 2, 3}, which is the set
Ko = B(T) as defined by Font [10] (and also Cambern [6]).

Let W be defined on C({1, 2}) to N by

Here, W is an isometry with canonical form where <p is defined only on ch(A') = Ko.
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The space E in the example is not strictly convex, and the isometries have the form
guaranteed by Theorem 3.4. In fact, the operators act in the same way even if we
replace E by I2(2). Note that the set Ko = B(T) is dependent on the operator T,
while ch(N), of course, depends on N.

Before giving the next example, we wish to observe that if T is a generalized
weighted composition operator, then

(6) F(<p(t)) = 0 => TF(t) = O

for any t in the domain of the function cp. Jeang and Wong [12] have observed that if
E is real and not strictly convex, there exist norm-one elements uu u2 in E such that

(7) \\aux + £ H 2 | | =U + P, for all a, /5 > 0.

Then the operator T from C({1, 2}, K) into C({1, 2}, E) by

is an isometry.
The next two examples show that the conclusion of Theorem 3.4 and Theorem 3.5

can fail if either the density of the linear span of N*(t) or the triviality of Z(E2(0) is
not satisfied.

EXAMPLE 3.8. Let E be the space D&2 with norm determined by the unit ball which
is the convex set bounded by the unit circle except that the arcs of the circle in the
first and third quadrants are replaced by the line segments connecting (0, 1), (1, 0)
and (—1, 0), (0, —1) respectively. Then e\ = (1, 0), e2 = (0, 1) are elements of E
satisfying (7). Let T be defined as above, and N be the range of T. It can be
shown that (1, 1 ) 0 ^ , (1, 1) o \jf2 are extreme points for the unit ball of Af* so that
ch(A0 = {1,2}. However, N*{\) = N"{2) = {(1, 1), ( - 1 , -1)} which does not
span E*. The isometry T is not a generalized weighted composition operator because
it does not satisfy (6). In this case, the function (p could be defined, but V(t) cannot
be defined correctly since A^*(l) and N*(2) are not big enough. The space E does
have trivial centralizer since it has no M-summands.

EXAMPLE 3.9. Let E be the real space V (2) and define T as in the previous example.
Here we have

7*((1, 1) o Vi) = iA. and r ( ( - l , l ) o V , ) = -V2

and the function <p is not well-defined. Of course, the centralizer of E is not trivial in
this case.
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4. The strictly convex case

A Banach space E is strictly convex if every element on the surface of the unit ball
is an extreme point. This property has been part of the hypotheses in many of the
vector-valued Banach-Stone Theorems, including the first such theorem by Jerison
[13] as well as in the previously cited papers of Cambern [6] and Font [10]. The
presence of this assumption allows a different approach and we want to show how that
goes for nice operators. There are only slight differences from what has been done for
isometries by Font. The lemma below is the key. We do it first for a nice isomorphism
defined on a function module and the basic ideas in this setting actually go back to
Cambern [6].

LEMMA 4.1. Let X = (Q, (XS)S(EQ, X) be a function module with the property that
each Xs is reflexive. Suppose that T is a nice isomorphism from X onto N C Co (K, E),
where E is strictly convex. Suppose that y* o\jr, e ext(N*) and T*(y* o if/,) — x* o \J/S.
IfFeX and F(s) = 0, then TF(t) = 0.

PROOF. We begin by assuming F e X vanishes on a neighbourhood U of s 6 Q,
and also that ||F|| < 1. Since Xs is reflexive, there exists u e Xs such thatx*(u) =
\\u\\ = 1. Furthermore, by Lemma 2.3, there exists F\ e X such that \\F\\\ = 1,
F,(j) = M, and ||F,(/-)|| = 0 if r € Q\U. Let G = F + Fx and H = [G + F,]/2.
Now G{s) = H(s) = F\(s) = u and each of the functions has norm one. Moreover,

\=y\TFl(t))=x*{Fl(s))

= x*(H(s)) = y*(TH(t)) = x*(G(s)) = y*(TG(t)).

Since T is nice, and therefore a contraction, we conclude that

Note that TH{t) is a proper convex combination of the other two, and since all lie on
the surface of the unit ball of the strictly convex space E, they must all be equal to
each other. Since TG(t) = TF(t) + TFx(t), we must conclude that TF(t) = 0.

Suppose F(s) = 0 and let f > 0 be given. Since the map s -> ||F(i)|| is upper
semicontinuous, there is a neighbourhood U of s such that || F{r) || < e for all r e U.
There exists a continuous real function g on Q of norm one such that g = 0 on a
closed neighbourhood V of s which is contained in t/and which has the value 1 on the
closed set Q\ U. Then gF e X vanishes on a neighborhood of s and || F — gF|| < 2e.
By the first part of the argument, we have T(gF)(t) — 0 and therefore,

| | T F ( t ) \ \ = | | T F ( t ) - T(gF)(t)\\ <\\TF- T(gF)\\ <\\F- gF\\ < 2e.

It follows that TF(t) = 0. •
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Font [10] gives a similar result for isometries on certain subspaces M of Co( Q, Ei).
We state the lemma for the case of nice operators where M is a C0((?)-module which
is norming. We seem to need this condition in order to be sure that the functions that
vanish on a neighbourhood of s are dense in the functions that vanish at the single
point.

LEMMA 4.2. Let M be a subspace of C0(Q, £]) which is norming for Q (or even
just for ch(M)), where F-i is reflexive and suppose M is a C0(Q) -module. Suppose
that T is a nice isomorphism from M onto N c Co(K, E), where E is strictly convex.
Suppose that y* o V, € ext(N*) and T*(y* o f,) = x* o fs. If F e M and F(s) - 0,
then TF(t)= 0.

PROOF. Assume that F vanishes on a neighbourhood U of s. Since E\ is reflexive,
there exists u e Ex such that x*(u) = \\u\\ = 1. The norming property of M gives
Fo e M such that F0(s) = u and 1 = ||F0|| = ||F0(.s)||. Furthermore, there exists
h e Co(Q) with 1 = h(s) = \\h\\ and h(r) = 0 for r e Q\U, and because M is a
Co(©-module,tne function F, = hF0 is in M and has the same properties as the F\
defined in the beginning of the proof of the previous lemma. The remainder of the
proof differs from that of the previous lemma only in the second part. Given that
F(s) = 0, and e > 0, there is a neighbourhood U of s and a compact set D such
that || F(r)|| < e for all r e U and all r € Q\D. There exists g € C0(Q) such that
||g|| = 1, g = 0 on a compact neighbourhood V contained in (/ and g = 1 on D\ £/.
Then gF e M vanishes on a neighbourhood of 5, and we complete the argument as
before. •

The conclusions of the above lemmas are just what is needed to show that a nice
operator has the canonical form.

THEOREM 4.3. Let T be a nice isomorphism as in the statement of Lemma 4.1
(alternately, Lemma 4.2). Then there exists a continuous function <p from ch(N) into
Q whose range is dense andfor each t e ch(N), there is a bounded operator V(t)from
Xm (alternately, £,) to E2(t) such that TF(t) = V(t)F((p(t))for all t e ch(JV).

PROOF. Let t e ch(W) and suppose

T*(y* o V,) = x* o xlr,; T*(z* o yj,,) = w" o fr.

Let u € Xr (alternately, u e E\) be such that w*(u) ^ 0. There exists F with
F(s) =0and F(r) = u. ByLemma4.1 (alternately, Lemma4.2) we have TF(t) = 0.
However, 0 £ w*(F(r)) = (w*o\lrr)(F) = z*(TF(t)) - 0. This contradiction shows
that there is a well-defined function <p which pairs t with s.
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For s = <p(t) and H(s) = F(s), we have (H - F)(s) = 0, and by Lemma 4.1
(alternately, Lemma 4.2) again, we get T(H — F)(t) — 0. We conclude that the
equation

V(t)u = TF(t), where F(s) = u,

describes a well-defined operator from Xs to E2{t). The rest of the argument for T
as in Lemma 4.1 follows as in earlier proofs. For the case in which T is defined on
M as in Lemma 4.2, the proof of continuity and density of the function <p depends
on the existence of certain functions in M. Given u e E\, s e Q, a neighbourhood
U of s, and e > 0, we can follow the ideas of the construction given in the proof
of Lemma 4.2 above to find a function F e M with F(s) = «, ||F|| = ||w||, and
F(r) = 0 for r e Q\ U. The continuity of <p and the density of its range can be proved
as in the proof of Theorem 3.4. •

The result above holds for T defined on Co(Q, E\) onto N. This is the theorem
of Cambern [6] for nice operators instead of isometries. Of course we have had to
assume that E\ is reflexive.

REMARKS. (i) The assumption that E2 is strictly convex implies that Z(E2(t))
is trivial for every t e ch(N). However, we get the conclusion of Theorem 4.3 without
any of the other assumptions about TV needed in the Theorems in Section 3. Of course,
we did have to assume the reflexivity condition on E\.

(ii) The map t :—*• V(t) of Theorem 4.3 (the alternate case) can be proved to be
continuous from ch(N) into Jif(Eu E) with the S.O.T provided that for each u e E\
there is a function F e M which is constantly equal to u on a neighbourhood of t.
This would hold, for example, if M € £?(A) where A is normal. (A subspace A
is normal if given a pair of disjoint compact sets, there is a function in A which is
identically 1 on one of the sets and zero on the other.) This remark is also pertinent
for the theorems of Section 3. It is known that a closed regular subalgebra A of Co( Q)
is normal [14].

(iii) As we mentioned before, Lemma 4.2 is given by Font [10] for T an isometry,
but Font onJy assumes that M e £?(A) where A is a regular subspace of C0(Q).
It is argued there that under these conditions, the set of functions that vanish in a
neighbourhood of a point s in the strong boundary of A is dense in the set of functions
that vanish at s. We were unable to prove that assertion. Our proof of this fact seems
to need a slightly stronger condition than normality for A. It is tempting to define A
to be strongly normal if for any disjoint pair of compact sets there is an element of A
which has norm 1 (or at least some uniform bound on the norm) which is zero on one
compact set and 1 on the other. However, it is known that such a subspace of C0(Q)
is necessarily all of C o ( 0 [14, page 178].
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