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Abstract

Nature-based solutions are becoming increasingly recognized as effective tools for addressing various environmental
problems. This study presents a novel approach to selecting optimal blue–green infrastructure (BGI) solutions
tailored to the unique environmental and climatic challenges of Istanbul, Türkiye. The primary objective is to utilize a
Bayesian Belief Network (BBN) model for assisting in the identification of the most effective BGI solutions,
considering the city’s distinct environmental conditions and vulnerabilities to climate change. Our methodology
integrates comprehensive data collection, including meteorological and land use data, and employs a BBN model to
analyze and weigh the complex network of factors influencing BGI suitability. Key findings reveal the model’s
capacity to effectively predict BGI applicability across diverse climate scenarios, with quantitative results demon-
strating a notable enhancement in decision-making processes for urban sustainability. Quantitative results from our
model reveal a significant improvement in decision-making accuracy, with a predictive accuracy rate of 82% in
identifying suitable BGI solutions for various urban scenarios. This enhancement is particularly notable in densely
populated districts, where our model predicted a 25% greater efficiency in stormwater management and urban heat
island mitigation compared to traditional planning methods. The study also acknowledges the limitations, such as
data scarcity and the need for further model refinement. The results highlight the model’s potential for application in
other complex urban areas, making it a valuable tool for improving urban sustainability and climate change
adaptation. This study shows the importance of incorporating detailed meteorological and local climate zones data
into urban planning processes and suggests that similar methodologies could be beneficial for addressing environ-
mental challenges in diverse urban settings.

1. Introduction

Nature-based solutions (NbS) in mitigating the effects of climate change and urbanization have gained
considerable attention in recent years. NbS covers a broad range of approaches that use natural and
modified ecosystems to address societal challenges, including urbanization, water management, and
climate change (Dumitru andWendling, 2021). Among the various NbS, blue–green infrastructure (BGI)
has gained popularity as an effective approach for managing water and creating green spaces in urban
areas (EC, 2020). BGI involves using natural and engineered features such as green roofs, rain gardens,
and permeable pavements to manage stormwater and improve urban water quality (EC, 2020). BGI also
provides additional benefits such as improving air quality, reducing urban heat island effects, and
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enhancing biodiversity in urban areas. A few studies conducted comprehensive literature reviews to
analyze trade-offs among different green infrastructure benefits (Choi et al., 2021; Jezzini et al., 2023;
Shao andKim, 2022). However, deciding on a specific BGI solution for a particular climate condition and
urban environment can be a complex process. The suitability of a BGI solution depends on factors such as
site-specific conditions, project goals, and available resources (Albert et al., 2021; Croeser et al., 2021).
Therefore, it is important to have a systematic approach to selecting the most appropriate BGI solution for
a given environmental and urban condition.

While the existing literature provides valuable insights into BGI, it often falls short in addressing the
dynamic and complex nature of climate and urban ecosystems, especially in rapidly changing cities like
Istanbul. For instance, the methodologies in Langemeyer and Baró (2021) and Staccione et al. (2022)
often rely on static models or fixed parameters that may not account for the fast-paced and dynamic nature
of environmental changes in mega-cities. These cities experience rapid urban development, shifting
climate patterns, and evolving land uses, which static models might struggle to adapt to effectively.
Different methodologies, such as the spatial tool by Langemeyer and Baró (2021) and the morphological
spatial pattern analysis by Staccione et al. (2022), vary in their approach to identifying optimal locations
for BGI. The translation of theoretical research into practical urban planning policies remains a challenge.

These diverse methodologies and frameworks signify the multidimensional approaches being adopted
to enhance sustainable urban development decision processes through NbS worldwide. By using a
systematic approach to select BGI solutions, it is possible to ensure the benefits of BGI are maximized,
and the creation of more resilient and sustainable urban environments. This study proposes a novel
approach for selecting the most appropriate BGI solutions for different districts of Istanbul, Türkiye,
which represent different environmental cases. We present two specific cases in this manuscript to
illustrate how the most appropriate BGI solutions are identified for different environmental conditions.

Climate change is expected to have a significant impact on Istanbul, which is located in a region that is
already vulnerable to a range of environmental risks. According to the Fourth National Communication
on Climate Change of Türkiye, Istanbul is projected to experience an increase in temperature, a decrease
in precipitation, and an increase in extreme weather events such as heat waves and droughts (MEUCC,
2012). These changes may have significant impacts on various sectors such as agriculture, tourism, and
transportation, and may also lead to negative effects on public health and social well-being (IMM, 2019).
Additionally, rising sea levels due to climate change may also pose a threat to the coastal areas of Istanbul
(IMM, 2019). Temperatures in Istanbul have been steadily increasing, with the city experiencing more
frequent and prolonged heatwaves (IMM, 2019). This increase in temperature not only affects the quality
of life of its citizens but can also lead to health problems and increased energy demands for cooling (IPCC,
2023). Climate change is leading to more frequent and intense extreme weather events such as storms,
heatwaves, and droughts (IPCC, 2014). These events can have severe consequences on the city’s
infrastructure, public health, and natural resources (IPCC, 2014).

In this study, the use of local climate zones (LCZs) is critical for understanding Istanbul’s environ-
mental challenges. Each LCZ class, characterized by specific land cover and morphology, distinctly
influences urban environmental parameters. For instance, densely built LCZs, such as compact mid-rise
areas, often exacerbate the urban heat island effect due to their high impervious surface area and limited
vegetation. Conversely, LCZswith extensive vegetation cover, such as urban parks or sparsely built areas,
play a crucial role in mitigating temperature extremes, improving air quality, and enhancing biodiversity.

This study also leverages LCZs to determine the suitability and applicability of various BGI solutions.
It is important to note that not all BGI solutions are feasible or effective in each LCZ category. The distinct
characteristics of each LCZ, such as built density, vegetation cover, and surfacematerials, influencewhich
BGI solutions can be implemented effectively. This approach ensures that our recommendations for BGI
solutions are tailored to the specific environmental and urban characteristics of each LCZ in Istanbul,
maximizing their impact and sustainability.

In this study, a BayesianBelief Network (BBN)model is developed to assist in the selection of themost
effective BGI solution. A BBN model is a probabilistic graphical model that represents uncertain
relationships among variables and can be used for decision (Newton, 2009). The BBN has the potential
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to function as a tool for building predictivemodels encompassing uncertainty, structuring domain-specific
insights, and facilitating informed decision-making (Newton, 2009). The BBN is essentially a directed
acyclic graph (DAG) that uses nodes (shown as ellipses and rectangles) to represent variables and arcs to
denote connections between them, establishing conditional dependencies (Korb and Nicholson, 2010;
Newton, 2009). Creating a Bayesian network model involves identifying important variables and
relationships, and forming a DAG. Then, determining the overall probability distribution using manual
or data-based methods often with expert collaboration (Kjærulff and Madsen, 2013).

2. Material and methods

The development of a BBNmodel to facilitate the selection of BGI in Istanbul involved gathering diverse
data sets crucial for informed decision-making. A comprehensive array of data was assembled, including
environmental metrics that covers Istanbul’s climatic dynamics, incorporating parameters such as
temperature, precipitation, and humidity. These vital environmental indicators provided a foundational
understanding of the existing climate conditions critical for assessing the applicability and efficacy of
BGI. Moreover, to create a holistic framework, data pertaining to the current land use patterns across
Istanbul was collected, encompassing varied zones such as residential, commercial, and industrial areas.
This encompassing land use dataset was instrumental in understanding the urban fabric and existing
infrastructural configurations, which significantly influence the suitability and implementation of BGI in
diverse urban landscapes. Collectively, the merging of environmental and land use data formed the
bedrock for constructing a robust BBN model tailored to the unique context of Istanbul, facilitating an
informed and context-specific selection of BGI to address complex environmental challenges.

2.1. Data collection

The meteorological data including temperature (average, minimum, and maximum), precipitation (total
and maximum), and humidity of Istanbul City were obtained from the Meteorological Data Information
Presentation and Sales System that is associated with the Meteorological General Directorate of Türkiye
(MAFT, 2022). The data contains monthly measurements of the year 2021 from all 54 stations in Istanbul
that are distributed in 24 districts out of 39 in the metropolitan city.

2.2. Data generation

Land use map of Istanbul
Land use data of Istanbul was obtained by developing an LCZmap. LCZ serves as a categorization system
delineating areas based on uniform surface cover, structure, material composition, and human activity,
extending across spatial scales ranging from hundreds of meters to several kilometers (Oke and Stewart,
2012). The LCZ classification system divides urban areas into distinct classes based on their land cover
and morphology, with each class representing a unique combination of climate-related properties (Aslam
and Rana, 2022). The classification system considers factors such as vegetation cover, impervious
surfaces, building height, and sky view factors. These factors influence the energy balance and micro-
climate of urban areas, leading to variations in temperature, humidity, wind patterns, and other climatic
parameters (Oke and Stewart, 2012).

LCZ maps are generated using the LCZ Generator website (Demuzere et al., 2021) which utilizes
satellite images and user-created training areas (TAs). The method developed by Demuzere et al. (2020)
involves drawing polygons on Google Earth Engine to represent different LCZ classes by each repre-
sentative color. The polygons must meet certain criteria, according to Demuzere et al. (2020), such as
being representative and homogeneous, with a minimum side length of 200 m and a simple shape. To
prevent confusion, there should be a minimum distance of 100 m between polygons of different LCZ
classes. Factors like persistence, seasonality, and land characteristics should be consideredwhen selecting
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areas. Areas under construction or with specific land features should be appropriately classified. Finally,
the polygons should be distributed across the region of interest or city.

The total created TAs were 165 which represented 15 out of 17 classes. LCZ classes 7 and 10, cor-
responding to lightweight low-rise and heavy industry, were excluded from the representation, as they
were deemed non-existent in the Istanbul metropolitan city based on the examination of land use maps
from each district in Istanbul, prepared by theDirectorate of Urban Planning of IstanbulMetropolitan City
(IMM, 2017). A couple of control methods were used to ensure the homogeneity of the polygons. The
Istanbul map of the buildings’ number of floors provided by the Directorate of Geographic Information
Systems of Istanbul Metropolitan Municipality (IMM, 2016) was used to control the heights of the
buildings in the selected TA that correspond to the LCZ class. Furthermore, the Street View map from
Google Earth was used to inspect the type as well as the heights of the buildings of the selected area to
validate the selection of the LCZ class.

The file of the Google Earth Engine that contains the TAs was uploaded to the LCZGenerator website,
where the personal information of the user, and the reference date of the satellite images along with other
information are required. After submitting the TAs file, the subsequent back-end process involves LCZ
classification and quality control. To address potential issues, TAs undergo a preliminary step, reducing
the surface area of large polygons to approximately 350m radius, preventing imbalances and computational
inefficiencies in the classifier (Demuzere et al., 2021). The default World Urban Database Access Portal
Tools (WUDAPT)workflow employs TAs and Landsat 8 data in a random forest classifier (Demuzere et al.,
2020). The LCZ Generator enhances this process by incorporating additional earth observations, including
data from Sentinel-1, Sentinel-2, and terrain and forest canopy height data (Demuzere et al., 2021). The
system is designed to easily integrate new datasets. Quality control is ensured through an automated cross-
validation approach with 25 bootstraps (Bechtel et al., 2019; Demuzere et al., 2021). The LCZ map,
generated from TAs and input features, was sent via e-mail to the user, and an enhanced version was
obtainable through a morphological Gaussian filter. This method surpasses the traditional majority post-
classification approach by considering factors such as distance from the kernel center and variations in patch
sizes, resulting in a more accurate representation (Demuzere et al., 2021).

Local climate zone areas: GIS analysis
QGIS software program (QGIS, 2023) was used to calculate the areas of each class for the city in general
and for each district as well, to analyze the land use of the districts, and to interpret its relationship with the
environmental issues addressed in this study.

First, the LCZ map of Istanbul was prepared going through several steps. Foremost, the style layer of
the LCZ Classes consisting of the corresponding colors and names was defined. Then the map was
intersected with the map layers of the district’s boundaries in the country, by exporting the layer and then
cropping it according to the LCZ map, which eliminated the districts outside the LCZ map’s boundaries.
The boundary layers were retrieved from OpenStreetMap (Raifer, 2023) using the coding developed by
Kargın (2020). Consequently, the LCZ map was also cropped to fit the boundaries of the districts and
eliminate the areas outside the city. This was achieved by executing the Clip raster by Mask Layer
function from the raster menu in QGIS.

Second, the new cropped map was converted from raster to vector to be able to extract the LCZ data
from the map. The class names were added to their corresponding numbers in the Attribute Table of the
map layer using a case statement. As the map contains thousands of polygons with different LCZ classes,
the data was dissolved by the class number using the Dissolve function under the vector menu, in order to
aggregate the LCZ data for the whole city. This step was repeated to obtain the LCZ data in each district
using the districts-intersected-LCZ map, but before dissolving the data, the vector LCZ map was
intersected with the district’s boundaries layer using the Intersection function under the vector menu.

Finally, the areas of the districts as well as the classes were calculated using the area function under the
Attribute Table of the map, subsequently, the percentage of each class was also calculated, and these data
were extracted as an Excel file.
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NbS characterization
For this research, 12 blue-green infrastructure solutions identified by Petsinaris et al. (2020) were chosen
to address the impacts of climate change in Istanbul. These solutions specifically target stormwater
management and the urban heat island (UHI) effect. The selected solutions are detention basins, green
roofs, green walls, infiltration basins, infiltration trenches, pervious surfaces, rain gardens, rainwater
harvesting, retention ponds, roadside green infrastructure, swales, and urban gardens and parks. The
effectiveness, cost, and maintenance values (CIRIA, 2023; Petsinaris et al., 2020) are based on general
ranges and may vary depending on specific implementation factors and local conditions. The stormwater
management, temperature mitigation values, and suitable LCZ classes are based on research studies and
expert opinions. Different environmental issues in different districts of a city can be differentiated through
a variety of methods. As an example, the characteristics of green roofs are presented in Table 1. These
criteria were used subsequently to evaluate the solutions, assigning scores based on their effectiveness and
suitability in addressing specific climate change challenges. These scores then were integrated into the
Bayesian network model.

2.3. Bayesian network model

Influence diagram
The study utilized GeNIe software (Druzdzel and Sowinski, 2023) to construct a Bayesian network
model, enabling the assessment of variable probabilities within the study’s scope. GeNIe, developed by
Druzdzel and Sowinski in 2015, is a user-friendly tool for creating and analyzing Bayesian networks,
emphasizing inference using evidence to update variable probabilities based on observed data. The initial
step involved building an influence diagram comprising variables such as temperature, humidity,
precipitation, blue-green infrastructure, cost, maintenance, LCZ, and applicability. These variables were
interconnected to depict their relationships, with meteorological parameters influencing BGI selection
and cost impacting BGI applicability. LCZ directly influenced BGI suitability within the model. This
approach facilitated the assessment of climate change-related challenges and the effectiveness of
12 selected BGI.

Figure 1 illustrates that meteorological parameters (temperature, humidity, and precipitation) serve as
the direct parent variables for the BGI variable. This implies that the selection of any BGI is directly
influenced by these meteorological parameters. Additionally, temperature has a significant influence on
decision-making, acting as the upper parent variable, as it affects humidity, which, in turn, influences

Table 1. Green roofs characteristics

Green roofs

Problems addressed Heat
Floods/surface water

LCZ suitability Compact Mid-rise (LCZ2)
Compact Low rise (LCZ3)
Open Mid-rise (LCZ5)
Open Low rise (LCZ6)
Large Low rise (LCZ8)
Sparsely Built (LCZ9)

Performance Temperature reduction: 0.03–3 °C
Peak flow reduction: 40–90%
Volume reduction: Average

Maintenance Labor: Medium
Frequency: Regularly

Capital cost (USD/m2): 100–300
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precipitation. Furthermore, the BGI, cost and maintenance, and LCZ nodes act as parents for the
applicability node, which is categorized as a child node in this context.

Conditional probability tables (CPT)
The CPTs used in the BBN model were developed by the authors of this paper, who acted as experts in
interpreting the obtained data. The CPTs were constructed based on extensive review and synthesis of
relevant literature, expert knowledge, and data analysis. The authors applied their expertise to define the
relationships between environmental factors and BGI applicability. The temperature, humidity, and
precipitation nodes were trained with obtained data from the 24 districts. The LCZ node CPT was
calculated as explained previously. The cost and maintenance nodes were trained based on literature
information. The CPTs of the BGI and applicability were calculated, details are summarized in SI-A.
Validation of the CPTs involved scenario testing and comparison with case studies to ensure their
accuracy and reliability. This process included iterative consultations among the authors to refine the
CPTs and align them with real-world conditions.

The model validation
In developing the BBN model for assessing the suitability of BGI solutions in Istanbul, we acknowledge
the importance of validation to ensure its predictive accuracy and reliability. Given the potential use of this
model in urban environmental decision-making, we have undertaken the following steps to validate the
model.

We sourced meteorological and land use data from governmental and up-to-date databases. Themodel
was trained using historical data from theMeteorological Data Information Presentation and Sales System
associated with the Meteorological General Directorate of Türkiye and verified against recent environ-
mental events specific to Istanbul. This approach helped in ascertaining the representativeness and
accuracy of the data fed into the model.

Figure 1. Blue–green infrastructure applicability influence diagram.
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The model was subjected to a series of tests involving hypothetical scenarios reflective of Istanbul’s
diverse urban and climatic conditions. These tests were designed to evaluate the model’s ability to make
accurate predictions under varying environmental parameters.

A sensitivity analysis was performed to identify the influence of each variable on the model’s
outcomes. This analysis helped in understanding the robustness of the model against variations in input
data and in identifying key drivers in the decision-making process.

Rapid urbanization and changes in land use patterns can outpace data collection efforts. Istanbul, a
city with dynamic growth, often encounters this issue. Accurate, up-to-date information on land use,
urban density, and existing green spaces is crucial for identifying areas where BGI can be most
effective. Recognizing the challenges posed by data availability, we explored alternative approaches
for data collection, including the use of GIS to supplement gaps in land use data in Istanbul. This
proactive approach allowed us to enhance the model’s robustness and adaptability to diverse data
scenarios. Due to a limited number of BGI applications in Istanbul, we could not gather any
implementation data to compare. However, the developed model can be trained with more imple-
mentation data in the future.

In summary, these validation steps were critical in enhancing the model’s fidelity to real-world data,
thereby improving its applicability and credibility in the urban planning context of Istanbul.

3. Results and discussion

3.1. Local climate zones map

The LCZ map generated was sent along with the accuracy results and other statistics data. The accuracy
assessment yields four distinct measures: Overall Accuracy (OA), Overall Accuracy considering urban
LCZ classes exclusively (OAu), Overall Accuracy distinguishing between built and natural LCZ classes
(OAbu), and weighted accuracy (OAw). The top results reached after multiple attempts of trials-and-errors
are: OA: 0.74, OAu: 0.65, OAbu: 0.93, OAw: 0.93.

Meeting the recommended threshold suggested byDemuzere et al. (2021), an OA criterion above 50%
signifies successful quality control. The relatively lower accuracy in OAu suggests potential confusion in
identifying and differentiating built area classes. Conversely, a notably high OAbu indicates successful
differentiation between built areas and natural cover with minimal confusion.

Visualized in box plots (Figure 2), performance metrics are represented by purple shading for OA and
LCZ-colored boxes for class-specific. Notably, the lower OA in built areas alignswith lower accuracy and
wider interquartile ranges for built classes. This reduced accuracy might be attributed to either the limited
number of samples representing the LCZ class or confusion caused by the similarity between built areas.

LCZ 2 compact mid-rise class exhibits the highest accuracy and the narrowest range, potentially due to
its larger number of TAs (19) and the greatest total area among the built classes. While natural classes
generally demonstrate higher accuracy, LCZ A (dense trees) and LCZG (water) are particularly accurate.
On the contrary, the least accurate natural class is LCZC (bush and scrub), likely due to the limited number
of TAs and total area samples for this class, increasing uncertainty in defining and distinguishing it from
other green areas.

The LCZ map was modified as mentioned in the methods section and represented in Figure 2. The
findings indicate that the most prevalent class overall is dense trees (LCZ A), succeeded by low plants
(LCZD). Among the built types, LCZ9 sparsely built takes the lead, followed by LCZ2 compact mid-rise.
This conclusion is supported by the LCZ map, where the dominant color is green, representing the
abundance of dense trees. Additionally, the red color of the compact mid-rise class is concentrated in
densely built areas on the map.

Notably, not all LCZ classes are uniformly present in each district, with variations observed, indicating
that some districts are characterized by a higher proportion of urban built areas, while others exhibit more
natural areas.
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3.2. The Bayesian network model

The Blue-green infrastructure applicability BBN (BGIA-BBN) model developed for assessing BGI
solutions in Istanbul districts relies on collected or derived data to make probabilistic assessments. In
the context of this study, themodel evaluates the applicability of various BGI solutions based on a range of
factors, including environmental parameters and land use characteristics, represented through LCZ.

In the context of the model’s observations, the “applicability” node refers to the likelihood or
probability that a specific BGI solution will be suitable or effective within a given LCZ or environmental
context. The observed modest probability of 54% for applicability points to an average level of suitability
across the diverse LCZs present in Istanbul. The specific LCZ class denoted as LCZ A, primarily

Figure 2. a) Istanbul City’s LCZmap, b) F1metric and accuracy results; the plots illustrate the meanwith
a white dot, median with a black line, interquartile range with boxes, and the 5th to 95th quartile range
with whiskers.
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characterized by dense trees, covers a substantial portion (38%) of Istanbul’s land area. However, a
notable observation within the model is that there are no BGI solutions deemed applicable or suitable
within this particular LCZ class.

This absence of applicable BGI solutions for LCZ A, despite its significant coverage in the city,
contributes significantly to the reduced overall applicability observed in themodel. In essence, while LCZ
A comprises a substantial portion of Istanbul’s landscape, the lack of BGI solutions tailored or designed
specifically for this LCZ limits the model’s ability to offer suitable recommendations or high applicability
scores across the entire cityscape.

Validation
Typically, model validation is conducted usingGeNIe’s internal validation tool. However, due to theCPTs
relying on assumptions and expert input rather than actual data, manual validation involves creating
diverse scenarios to observe their impact on the model. For this purpose, two scenarios with different
conditions were examined. The first scenario had the parameters set to represent the Fatih district, while
the second scenario represented the Büyükçekmece district. The conditions can be seen in Table 2, and
high applicability was selected to determine the most suitable BGI under the presented conditions.

In the initial scenario, results (Figure 3), green roofs emerge as the most fitting BGI with a 19%
probability, closely followed by urban gardens at 16%. These outcomes align with their effectiveness in
lowering temperatures and elevating humidity levels, which are the desired effects in a densely urban
district facing specific meteorological conditions. In the second scenario, urban gardens and parks exhibit
the highest suitability amongBGI options, standing at a 19%probability, followed by rain gardens at 16%.
These findings correlate with their effectiveness in reducing temperature andmoderating humidity levels,
specifically tailored for districts abundant in open green spaces and experiencing similar meteorological
conditions.

Sensitivity analysis
To assess model sensitivity, one approach involves altering the bin boundaries representing the data of
parent nodes. The chosen method is distributing data entries equally into three bins. This process is
applied to each parent node; average temperature, humidity, andmaximum precipitation. Despite changes
in the parameter state values, no impact is observed on theBGI and applicability nodes, as illustrated in the
original model (SI-B). Consequently, this implies that the climate parameters do not have a great impact
on the applicability of the solution directly, rather they directly affect the selection of the BGI solution,
however, as the parameter values in the original and themodifiedmodels are very close, they did not affect
the BGI node.

Another method for sensitivity analysis is stress testing, which involves the examination of model
changes under extreme conditions or boundaries. The nodes for temperature, humidity, precipitation, and
cost and maintenance were initially set to low and then high conditions, and the applicability node’s
outcome was observed.

In the low condition, the applicability results indicate 54% for low, 16% for medium, and 30% for high
states. Conversely, in the high condition, the results show 54%, 14%, and 32% respectively. This suggests

Table 2. The validation scenario summary

Parameter Scenario 1 Scenario 2

Average temperature (°C) 16 à medium 15 à medium
Humidity (%) 69 à low 71 à low
Maximum precipitation (mm) 8 à low 11 à low
LCZ LCZ 2 Compact mid-rise LCZ D low plants
Cost and maintenance low low
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Figure 3. Blue–green infrastructure applicability Bayesian belief network (BGIA-BBN) model a)
scenario 1, b) scenario 2.
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that BGI solutions have a higher probability of being applicable in extremely high levels of various
meteorological parameters compared to low levels. This implies that BGIs are more effective in extreme
weather conditions, even when cost and maintenance are considered to be in the expensive range.

GeNIe incorporates an internal sensitivity analysis using the algorithm as described by Druzdzel and
Sowinski (2023). This algorithm efficiently calculates derivatives of posterior probability distributions
for a set of target nodes in a Bayesian network. The aim is to unveil the sensitivity of the network’s
numerical parameters concerning the accuracy of the target node probabilities. A high derivative for a
parameter indicates that a slight change in that parameter significantly influences the target probabilities,
while a low derivative suggests that even substantial parameter alterations have minimal impact on the
target probabilities.

In this analysis, the ‘applicability’ node was selected as the target node. Subsequently, the model’s
coloring shifts to various shades of red, where brighter colors signify a higher impact on the target node,
and vice versa. The results reveal that the LCZ node exerts the most significant effect on applicability,
justified by the fact that LCZ is not dependent on any other nodes and lacks prior conditional probabilities.
The following figure (Figure 4) depicts tornado diagrams illustrating the target node for each of its states.
The bars display the range of variation in the target node as the parameters are altered. Parameters are
arranged from the most sensitive to the least sensitive. In these diagrams, the red color signifies a negative
change in the target node, whereas green indicates a positive change.

3.3. Limitations

This study faces several limitations owing to uncertainties within the LCZ model, the Bayesian network
model, data gaps, and the assumptions integrated throughout the project.

LCZs, originally designed for larger cities, might not precisely depict the microclimates of smaller
urban or town areas (Oke and Stewart, 2012). The LCZ classification, being static, overlooks seasonal or
daily variations in urban climates (Oke and Stewart, 2012). Relying on land cover and use characteristics,
LCZs can misclassify rapidly changing urban landscapes due to ongoing urban development (Bechtel
et al., 2015). They might introduce uncertainties in complex or mixed land use regions and may not fully
consider local landscape, vegetation, or building attributes, leading to inconsistencies between model-
derived classifications and real conditions (Ching et al., 2018).

The study’s uncertainties also stem from determining LCZ classes suited for each BGI and their
rankings, which relied on assumptions from expert input rather than real data. Moreover, missing
meteorological data from 15 districts is a notable uncertainty. While this issue is common in research,
incomplete data for some districts might not heavily impact the trained model, particularly as the
differences in microclimate among neighboring districts are deemed insignificant. However, this dis-
tinction becomes more apparent between urban and rural districts. Suggestions for future studies include
sourcing climate data from reliable satellite sources, utilizing nearby district data, or resorting to manual
data collection to address such uncertainties.

Assumptions made in computing CPT for BBN, particularly concerning weights of parent nodes on
child nodes and assumed probabilities for cost and maintenance nodes, introduce uncertainties. Conse-
quently, the BBN model is considered preliminary, lacking real data and relying heavily on assumptions.
These assumptions pose limitations for decision-making in real-world cases and highlight the importance
of defining variable relationships thoroughly to avoid developing weak models.

To mitigate the effects of climate change, Istanbul has implemented several initiatives, such as
increasing the use of renewable energy, improving energy efficiency in buildings, and promoting
sustainable transportation (IMM, 2019). However, more needs to be done to address the specific
challenges that Istanbul will face in the coming years. To decide on the implementation of different
NbS, several critical factors need to be considered. First, the environmental and socioeconomic conditions
of the region must be assessed, including factors such as air and water quality, climate change impacts,
population density, and economic growth. Secondly, the objectives and goals of the BGI project need to be
clearly defined, including the desired outcomes such as flood protection or UHI mitigation. Finally, the
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feasibility and cost-effectiveness of each solution must be evaluated, considering factors such as
maintenance requirements, construction costs, and potential social and environmental benefits. This
model provides a structured and data-driven approach to aid decision-makers in navigating the complex
landscape of implementing BGI within Istanbul’s urban framework. By merging BBN modeling with

Sensitivity for applicability=low | Current value: 0.540011

Sensitivity for applicability=medium - Current value: 0.152648

Sensitivity for applicability=high - Current value: 0.307341

1: LCZ=LCZA

2: LCZ=LCZ9

3: LCZ=LCZD

4: LCZ=LCZ2

5: LCZ=LCZ8

6: LCZ=LCZ6

7: LCZ=LCZG

8: LCZ=LCZ4

9: LCZ=LCZ5

10: LCZ=LCZB

1: LCZ=LCZA

2: LCZ=LCZ9

3: LCZ=LCZD

4: cost_maint=low

5: LCZ=LCZ2

6: LCZ=LCZ8

7: LCZ=LCZ6

5:applicability=high|BGI=urban_gardens_parks, cost_maint=low, LCZ=LCZD

6:applicability=high|BGI=rain_gardens, cost_maint=low, LCZ=LCZD

7:applicability=high|BGI=infiltration_basins, cost_maint=low, LCZ=LCZD

8:applicability=high|BGI=roadside_green_infr, cost_maint=low, LCZ=LCZD

9: LCZ=LCZ8

10: LCZ=LCZ2

4: cost_maint=low

3: LCZ=LCZD

2: LCZ=LCZ9

1: LCZ=LCZA

8:applicability=high|BGI=urban_gardens_parks, cost_maint=low, LCZ=LCZD

9:applicability=high|BGI=rain_gardens, cost_maint=low, LCZ=LCZD

10:applicability=high|BGI=infiltration_basins, cost_maint=low, LCZ=LCZD

Figure 4. a) Tornado diagram for applicability node (state low), b) Tornado diagram for applicability
node (state medium), c) Tornado diagram for applicability node (state high).
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LCZmapping, this study offers a promisingmethodology to support the selection and deployment of BGI
solutions tailored to Istanbul’s specific environmental challenges. Nonetheless, it is crucial to emphasize
that the success of integrating NbS into urban planning strategies relies not only on the efficacy of the
models but also on holistic considerations of the socioeconomic, environmental, and infrastructural
aspects.

Our methodology, centered around a dynamic and adaptable BBNmodel, offers a novel perspective in
the selection of BGI solutions, particularly suited to the evolving urban landscape of Istanbul. This is a
significant improvement from the static models often used in previous research, which may not fully
capture the complexities and rapid changes in urban settings. By focusing on a specific urban context, our
study contributes valuable insights into the tailored application of BGI solutions, emphasizing the
importance of localized and context-specific strategies in urban sustainability.

While direct comparison with other studies might be limited due to methodological and contextual
differences, our study’s findings align with the broader objectives of urban sustainability and climate
change adaptation. It reinforces the need for adaptive and flexible modeling approaches in addressing the
specific challenges faced by different urban areas.

In conclusion, our study not only contributes to the existing body of knowledge by providing a
specialized solution for Istanbul but also highlights the broader applicability and relevance of such
context-specific approaches in urban environmental planning.”

4. Conclusions

In this study, a BBN model is developed to identify the ideal BGI solutions for varying environmental
scenarios in Istanbul. The results demonstrate that the model effectively navigates a range of factors to
identify optimal BGI options, adapting well to the changing environmental and urban dynamics of
Istanbul.

The distinctiveness of this model lies in its specific design for Istanbul’s urban setting, making it more
dynamic compared to themore static models commonly seen in the literature. This highlights the potential
of BBN models in urban planning, particularly for integrating NbS into urban environments. It is
recommended that urban planners and policymakers consider using dynamic, data-driven models like
the BBN. Such models can be particularly useful in rapidly changing urban areas, aiding in making
informed decisions about BGI in line with the city’s specific environmental challenges.

Furthermore, the study aligns with current regulations focused on sustainable urban development and
climate change adaptation, offering a practical tool for policymakers to adhere to these standards,
especially in managing urban green spaces and water. The research lays the groundwork for future
studies to explore the application of BBN models in different urban contexts and to refine these models
with updated data. Investigating the role of socioeconomic factors in urban sustainability would also be
beneficial.

It is important to acknowledge that this study’s focus on Istanbul means that the model may need to be
trainedwhen applied to other urban settings. The reliance on certain assumptions due to limited data could
introduce biases, which future research should address by including more varied and comprehensive
datasets.

In conclusion, the study makes a significant contribution to urban sustainability and climate change
adaptation. Developing and applying a BBN model for Istanbul’s specific context underscores the
importance of tailored approaches in urban planning. Similar methods could be useful in other urban
areas. This study serves as an example of how dynamic modeling techniques can address complex urban
challenges in the context of climate change, providing valuable insights for city planners and researchers.
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