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The linkage principle for restricted critical level

representations of affine Kac–Moody algebras

Tomoyuki Arakawa and Peter Fiebig

Abstract

We study the restricted category O for an affine Kac–Moody algebra at the critical
level. In particular, we prove the first part of the Feigin–Frenkel conjecture: the linkage
principle for restricted Verma modules. Moreover, we prove a version of the Bernstein–
Gelfand–Gelfand-reciprocity principle and we determine the block decomposition of
the restricted category O. For the proofs, we need a deformed version of the classical
structures, so we mostly work in a relative setting.

1. Introduction

The representation theory of an affine Kac–Moody algebra at the critical level is of central
importance in the approach towards the geometric Langlands program that was proposed by
Frenkel and Gaitsgory in [FG06]. While there is already a good knowledge on the connection
between critical level representations and the geometry of the associated affine Grassmannian,
central problems, for example the determination of the critical simple highest weight characters,
still remain open. In this paper we continue our approach towards a description of the critical
level category O, started in the paper [AF12].

Let ĝ be the affine Kac–Moody algebra associated to a finite-dimensional, simple complex Lie
algebra g (for the specialists we point out that we add the derivation operator to the centrally
extended loop algebra). We study the corresponding highest weight category O.

The Lie algebra ĝ has a one-dimensional center and we let K ∈ ĝ be one of its generators.
The center acts semisimply on each object of O, so O decomposes according to the eigenvalue of
the action of K. We say that an object M of O has level k ∈ C if K acts on M as multiplication
with k, and we let Ok be the full subcategory of O that consists of all modules of level k. There
is one special value, k = crit, which is called the critical level. It is the level of the simple highest
weight module L(−ρ), where ρ is a Weyl vector, i.e. a vector that takes the value 1 on each
simple affine coroot. In the usual normalization (see § 2) it is crit =−h∨, where h∨ is the dual
Coxeter number.

For all levels k 6= crit, the categorical structure of Ok is well known and admits a description
in terms of the affine Hecke algebra associated to ĝ, in analogy to the case of the category O for
a finite-dimensional simple complex Lie algebra (cf. [Fie06]). However, for k = crit the structure
changes drastically. In fact, Lusztig postulated in his International Congress of Mathematicians
address in 1990 that the representation theory at the critical level resembles the representation
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theory of a small quantum group or a modular Lie algebra (cf. [Lus91]). In particular, it should
not be the affine Hecke algebra that governs the structure of Ocrit, but its periodic module. The
Feigin–Frenkel conjecture on the simple critical characters (cf. [AF12]) points in this direction as
well. So one might hope that there is a description of the critical level representation theory that
closely resembles the one given for small quantum groups and modular Lie algebras by Andersen
et al. in [AJS94].

The main result in this paper is another step towards such a description (following the
paper [AF12]). We prove the restricted linkage principle; i.e. we show that a simple module
occurs in a restricted Verma module only if their highest weights lie in the same orbit under
the associated integral Weyl group. Moreover, we study restricted projective objects, prove
a Bernstein–Gelfand–Gelfand (BGG)-reciprocity result, and describe the corresponding block
decomposition. Our results are in close analogy to the quantum group and the modular case,
and hence they strongly support the above conjectures.

2. Affine Kac–Moody algebras and the deformed category O

In this section we recall the construction of the deformed category O associated to an affine
Kac–Moody algebra. Our main reference for the structure theory is [Kac90] and for the deformed
representation theory it is [Fie03].

2.1 Affine Kac–Moody algebras

We fix a finite-dimensional, complex, simple Lie algebra g and denote by ĝ the corresponding
affine Kac–Moody algebra. As a vector space we have ĝ = (g⊗C C[t, t−1])⊕ CK ⊕ CD, and the
Lie bracket is given by

[K, ĝ] = 0,
[D, x⊗ tn] = nx⊗ tn,

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n +mδm,−nκ(x, y)K

for x, y ∈ g, m, n ∈ Z. Here κ : g× g→ C denotes the Killing form for g.
Let us fix a Borel subalgebra b⊂ g and a Cartan subalgebra h⊂ g inside b. The corresponding

Cartan and Borel subalgebras of ĝ are

ĥ := h⊕ CK ⊕ CD,

b̂ := (g⊗C tC[t] + b⊗C C[t])⊕ CK ⊕ CD.

2.2 Roots of ĝ

The decomposition ĥ = h⊕ CK ⊕ CD allows us to embed h? in ĥ? using the map that is dual to
the projection ĥ→ h. Let δ, Λ0 ∈ ĥ? be the elements dual to D and K, respectively, with respect
to the direct decomposition, so we have δ(h⊕ CK) = Λ0(h⊕ CD) = {0} and δ(D) = Λ0(K) = 1.
Then ĥ? = h? ⊕ CΛ0 ⊕ Cδ.

Let R⊂ h? be the set of roots of g with respect to h and g = h⊕
⊕

α∈R gα the root space
decomposition. The set of roots of ĝ with respect to ĥ is then R̂= R̂re ∪ R̂im, where

R̂re = {α+ nδ | α ∈R, n ∈ Z},

R̂im = {nδ | n ∈ Z, n 6= 0}.
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Restricted linkage principle

The sets R̂re and R̂im are called the sets of real and of imaginary roots, respectively. The
corresponding root spaces are

ĝα+nδ = gα ⊗ tn,

ĝnδ = h⊗ tn.

The positive roots R̂+ ⊂ R̂ are the roots of b̂. Explicitly, we have

R̂+ = {α+ nδ | α ∈R, n > 0} ∪ {α | α ∈R+} ∪ {nδ | n > 0},

where R+ ⊂R denotes the roots of b⊂ g. We set R̂+,re := R̂+ ∩ R̂re and R̂+,im := R̂+ ∩ R̂im. We
denote by Π⊂R the set of simple roots corresponding to our choice of b. The set of simple affine
roots is

Π̂ = Π ∪ {−γ + δ},
where γ ∈R+ is the highest root.

2.3 The Weyl group and the bilinear form

To any real root α ∈ R̂re there is an associated coroot α∨ ∈ ĥ and a reflection sα : ĥ?→ ĥ? given
by sα(λ) = λ− 〈λ, α∨〉α. The affine Weyl group associated to our data is the subgroup Ŵ of
GL(ĥ?) generated by the sα with α ∈ R̂re.

We denote by (·, ·) : ĝ× ĝ→ C the standard bilinear form that is non-degenerate, symmetric
and invariant; i.e. it satisfies ([x, y], z) = (x, [y, z]) for x, y, z ∈ ĝ. Its restriction to ĥ× ĥ is non-
degenerate as well and hence induces a non-degenerate bilinear form on ĥ? that we denote again
by (·, ·). It is explicitly given by the following formulas:

(α, β) = κ(α, β),

(Λ0, h
? ⊕ CΛ0) = 0,

(δ, h? ⊕ Cδ) = 0,

(Λ0, δ) = 1,

for α, β ∈ h? (here we denote by κ : h? × h?→ C the bilinear form induced by the Killing form).
Moreover, it is invariant under the action of Ŵ; i.e. for λ, µ ∈ ĥ? and w ∈ Ŵ we have

(λ, µ) = (w(λ), w(µ)).

2.4 The deformed category O
Let S := S(h) and Ŝ := S(ĥ) be the symmetric algebras over the complex vector spaces h

and ĥ. The projection ĥ→ h along the decomposition ĥ = h⊕ CK ⊕ CD yields an algebra
homomorphism Ŝ→ S. From now on, we think of S as an Ŝ-algebra via this homomorphism.

Let A be a commutative, associative, noetherian, unital S-algebra. In the following we call
such an algebra a deformation algebra. Using the homomorphism Ŝ→ S from above we can
consider A as an Ŝ-algebra as well. We denote by τ : ĥ→A the composition of the canonical
map ĥ→ Ŝ with the structure homomorphism Ŝ→A, f 7→ f · 1A. Note that τ(D) = τ(K) = 0.

For any complex Lie algebra l we denote by lA := l⊗C A the A-linear Lie algebra obtained
from l by base change. An lA-module is then an A-module endowed with an operation of l that
is A-linear. We denote by U(lA) the universal enveloping algebra of the A-Lie algebra lA.
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Definition 2.1. Let M be a ĝA-module.

(1) We say that M is a weight module if M =
⊕

λ∈ĥ?
Mλ, where

Mλ := {m ∈M |H ·m= (λ(H) · 1A + τ(H))m for all H ∈ ĥ}.

We call Mλ the weight space of M corresponding to λ (even though its weight is actually λ+ τ).

(2) We say that M is locally b̂A-finite, if for each m ∈M the space U(b̂A) ·m is a finitely
generated A-module.

We define OA as the full subcategory of ĝA-mod that consists of locally b̂A-finite weight modules.

One checks easily that OA is an abelian subcategory of the category of all ĝA-modules. In
the following we write O for the non-deformed category, i.e. for the category OC that is defined
by giving C the structure of a deformation algebra by identifying it with S/mS, where m⊂ S is
the ideal generated by h⊂ S.

Suppose that A= K is a field. Then we can consider ĥK and b̂K as Cartan and Borel
subalgebras of ĝK. The C-linear map τ : ĥ→K induces a K-linear map ĥK→K that we denote by
τ as well and which we consider as an element in the dual space ĥ

?

K = HomK(ĥK,K). Moreover,
each λ ∈ ĥ? induces a K-linear map ĥK→K, and hence we can consider ĥ? as a subset of ĥ?K.
Then OK is the full subcategory of the usual category O over ĝK that consists of modules with
the property that all weights lie in the set τ + ĥ? ⊂ ĥ?K.

2.5 The level

Suppose that M is a weight module. Since τ(K) = 0, the element K acts on a weight space Mλ

by multiplication with the scalar λ(K) ∈ C. For k ∈ C we denote by Mk the eigenspace of the
action of K on M with eigenvalue k. Since K is central, each eigenspace Mk is a submodule of
M and we have M =

⊕
k∈C Mk. In the case M =Mk we call k the level of the module M and

we let OA,k ⊂OA be the full subcategory whose objects are those of level k.
It turns out that there is a distinguished level crit ∈ C which is critical in the sense that the

structure of OA,crit differs drastically from the structure of OA,k for all k 6= crit. For the definition
of crit see § 2.15.

Let A→A′ be a homomorphism of deformation algebras. The following result is easy to
prove.

Lemma 2.2. The functor · ⊗A A′ induces a functor OA→OA′ and for any k ∈ C a functor
OA,k→OA′,k.

We denote by ĥ?k ⊂ ĥ? the affine hyperplane containing all λ with λ(K) = k.

2.6 The duality

For M ∈ OA we define

M? :=
⊕
λ∈ĥ?

HomA(Mλ, A).

Then M? carries an action of ĝ that is given by (X.φ)(m) = φ(−ω(X) ·m) for X ∈ ĝ, φ ∈M?

and m ∈M . Here ω : ĝ→ ĝ is the Chevalley-involution (cf. [Kac90, § 1.3]). It has the property
that it maps the root space ĝα to ĝ−α and acts as multiplication by −1 on ĥ. In particular, we
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have (M?)λ = HomA(Mλ, A). Together with the obvious A-module structure, M? is an object
in OA, and if M is of level k, then M? is also of level k.

2.7 The deformed Verma modules
For λ ∈ ĥ? we denote by Aλ the b̂A-module that is free of rank one as an A-module and on which
b̂ acts via the character λ+ τ ; this means that H ∈ ĥ acts as multiplication with the scalar
λ(H) · 1A + τ(H) and each X ∈ [b̂, b̂] acts by zero. The deformed Verma-module with highest
weight λ is

∆A(λ) := U(ĝA)⊗
U (̂bA)

Aλ.

The deformed dual Verma module associated to λ is

∇A(λ) := ∆A(λ)?.

Both ∆A(λ) and ∇A(λ) are locally b̂A-finite weight modules, hence are contained in OA. If
A→A′ is a homomorphism of deformation algebras, then we have isomorphisms

∆A(λ)⊗A A′ ∼= ∆A′(λ), ∇A(λ)⊗A A′ ∼=∇A′(λ).

2.8 Simple objects in OA

Now suppose that A is a local deformation algebra with maximal ideal m⊂A and residue field
K =A/m. The residue field inherits the structure of an S-algebra and is, as such, a deformation
algebra as well. The canonical map A→K gives us a base change functor · ⊗A K : OA→OK by
Lemma 2.2.

As we have observed before, the category OK is just a direct summand of the usual category
O for the affine Kac–Moody algebra ĝK. Its objects are those whose weight spaces correspond
to weights in τ + ĥ? ⊂ ĥ?K. By the classical theory, the simple isomorphism classes in OK are
parametrized by their highest weights in τ + ĥ?, and we denote by LK(λ) a representative
corresponding to τ + λ.

In [Fie03, Proposition 2.1] we showed the following.

Proposition 2.3. Suppose that A is a local deformation algebra with residue field K. Then the
functor · ⊗A K yields a bijection{

simple isomorphism
classes of OA

}
∼→
{

simple isomorphism
classes of OK

}
.

We denote by LA(λ) the simple object corresponding to LK(λ) under the above bijection.

2.9 Characters and Jordan–Hölder multiplicities
We denote by ‘6’ the usual partial order on ĥ? defined by λ6 µ if µ− λ is a sum of positive
roots of ĝ. Suppose now that A= K is a field. In this case we consider the full subcategory OfK of
OK that consists of objects M such that each weight space Mλ is finite dimensional as a K-vector
space and such that there exist µ1, . . . , µn ∈ ĥ? with the property that Mλ 6= 0 implies λ6 µi
for some i.

Let Z[ĥ?] =
⊕

λ∈ĥ?
Zeλ be the group ring of the additive group ĥ? and Ẑ[ĥ?]⊂

∏
λ∈ĥ?

Zeλ its

completion with respect to the partial order: an element in Ẑ[ĥ?] is an element
∑

λ∈ĥ?
fλe

λ such

that there exist µ1, . . . , µn ∈ ĥ? with the property that fλ 6= 0 implies λ6 µi for some i. For
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each M ∈ OfK we can then define its character

chM :=
∑
λ∈ĥ?

dimK Mλ · eλ ∈ Ẑ[ĥ?].

Now each simple object LK(λ) belongs to OfK and there are well defined numbers aµ ∈ N with

chM =
∑
µ∈ĥ?

aµ ch LK(µ)

(cf. [DGK82]). Note that the sum on the right-hand side is in general an infinite sum. We define
the multiplicity of LK(µ) in M as

[M : LK(µ)] := aµ.

2.10 Truncation
Our next aim is to study the projective objects in OA. Unfortunately, not all of the LA(λ) admit
a projective cover. In order to overcome this slight technical problem, we introduce certain
truncated subcategories of OA in which a projective cover exists for each of its simple objects.

Let J be a subset of ĥ?. We call J open if for all λ ∈ J , µ ∈ ĥ? with µ6 λ we have µ ∈ J .
This indeed defines a topology on ĥ?. Note that a subset I ⊂ ĥ? is closed in this topology if λ ∈ I,
µ ∈ ĥ? with µ> λ implies µ ∈ I.

We now construct a functorial filtration on each object of OA that is indexed by the set of
closed subsets of ĥ? and, dually, a functorial cofiltration indexed by the set of open subsets of ĥ?.

Definition 2.4. Suppose that J ⊂ ĥ? is open and let I := ĥ?\J be its closed complement. Let
M ∈ OA.

(1) We define MI ⊂M as the ĝA-submodule generated by the weight spaces corresponding
to weights in I, i.e.

MI := U(ĝA) ·
⊕
λ∈I

Mλ.

(2) We define

MJ :=M/MI .

Let OA,I ⊂OA be the full subcategory of objects M with M =MI and OJA ⊂OA the full
subcategory of objects M with M =MJ .

Note that an object M of OA belongs to OA,I if and only if it is generated by its weight
spaces corresponding to weights in I. Dually, M belongs to OJA if and only if Mλ 6= 0 implies
that λ ∈ J .

If J ′ ⊂ J is another open subset with complement I ′ ⊃ I, then we have a natural inclusion
MI ⊂MI′ and a natural quotient MJ →MJ

′
. For λ ∈ ĥ?, each of the modules ∆A(λ), ∇A(λ)

and LA(λ) is contained in OJA if and only if λ ∈ J . Note that M →MI defines a functor from
OA to OA,I that is right adjoint to the inclusion OA,I ⊂OA. Dually, M 7→MJ defines a functor
from OA to OJA that is left adjoint to the inclusion OJA ⊂OA.

Lemma 2.5. Suppose that J is an open subset in ĥ? and that P is a projective object in OJA .

Then for any open subset J ′ ⊂ J , the object PJ
′

is projective in OJ ′A .
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Proof. This follows immediately from the fact that the functor (·)J ′ : OJA →O
J ′
A is left adjoint

to the (exact) inclusion functor OJ ′A →O
J
A . 2

Lemma 2.6. Let M ∈ OA. Suppose that J ′ ⊂ J ⊂ ĥ? are open subsets. Then there is a canonical
isomorphism MJ

′ ∼→ (MJ )J
′
.

Proof. Clearly, the kernel of the quotient M →MJ
′

as well as the kernel of the composition
M →MJ → (MJ )J

′
is generated by the weight spaces Mµ with µ 6∈ J ′. 2

2.11 Verma flags
We start this subsection with a well-known definition.

Definition 2.7. Let M be an object in OA. We say that M admits a Verma flag if there is a
finite filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M

such that, for i= 1, . . . , n, Mi/Mi−1 is isomorphic to ∆A(µi) for some µi ∈ ĥ?.

Suppose that M ∈ OA admits a Verma flag. For each µ ∈ ĥ?, the number of occurrences of
∆A(µ) as a subquotient of a Verma flag of M is independent of the chosen filtration. We denote
this number by (M : ∆A(µ)).

Let µ ∈ ĥ? and M ∈ OA. The set J = {ν ∈ ĥ? | ν 6 µ} is open and we define M6µ :=MJ . We
define M<µ likewise. Then we set

M[µ] := ker(M6µ→M<µ).

Note that M[µ] is generated by its µ-weight space. If M admits a Verma flag, then M[µ] is a direct
sum of (M : ∆A(µ))-copies of ∆A(µ). This follows from the fact that one can reorder each Verma
flag such that subquotients corresponding to higher weights occur earlier (see Lemma 3.14 for
an analogous result).

2.12 Projective objects in OA

As before, we assume that A is a local deformation algebra with residue field K. For general λ
the simple module LA(λ) admits a projective cover in OA only if we restrict the set of allowed
weights from above. So let us call a subset J of ĥ? bounded (rather locally bounded from above)
if for any λ ∈ J the set J ∩ {> λ}= {µ ∈ J | µ> λ} is finite.

Theorem 2.8. Suppose that A is a local deformation algebra with residue field K. Let J be a
bounded open subset of ĥ?.

(1) For each λ ∈ J there exists a projective cover PJA (λ) of LA(λ) in OJA . It admits a Verma
flag and we have

(PJA (λ) : ∆A(µ)) =

{
[∇K(µ) : LK(λ)] if µ ∈ J ,

0 otherwise.

(2) If J ′ ⊂ J is open as well, then

PJA (λ)J
′ ∼= PJ

′

A (λ).

(3) If A→A′ is a homomorphism of local deformation algebras and P ∈ OJA is projective,
then P ⊗A A′ ∈ OJA′ is projective.
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(4) We have PJA (λ)⊗A K∼= PJK (λ).

(5) Suppose that P is a finitely generated projective object in OJA and that A→A′ is a
homomorphism of local deformation algebras. For any M ∈ OJA the natural map

HomOA(P, M)⊗A A′→HomOA′ (P ⊗A A
′, M ⊗A A′)

is an isomorphism.

Proof. Part (1) is contained in [Fie11, Theorems 4.2 and 5.3]. Part (2) is shown in the course of
proving [Fie11, Theorem 4.2]. The statements in (3) and (5) are found in [Fie03, Proposition 2.4].
Finally, part (4) is shown in the course of the proving [Fie11, Theorem 5.3]. 2

2.13 The block decomposition of OA

Let A be a local deformation algebra with residue field K. We let ∼A be the equivalence relation
on ĥ? that is generated by the following relations. We have λ∼A µ for all λ, µ ∈ ĥ? for which
there exists an open bounded subset J of ĥ? such that LA(µ) is a subquotient of PJA (λ). The
latter condition is equivalent to the existence of a non-zero homomorphism PJA (µ)→ PJA (λ).

Lemma 2.9. The equivalence relation ∼A is also generated by either of the following sets of
relations:

(1) λ∼A µ if there exists an open bounded subset J of ĥ? such that (PJA (λ) : ∆A(µ)) 6= 0;

(2) λ∼A µ if [∆K(λ) : LK(µ)] 6= 0.

Proof. See [Fie11, Lemma 5.5]. 2

For an equivalence class Λ ∈ ĥ?/∼A we define the full subcategory OA,Λ of OA that contains
all objects M that have the property that each highest weight of a subquotient lies in Λ. Note
that it is the subcategory generated by the objects PJA (λ) for all λ ∈ Λ and all bounded open
subsets J of ĥ? that contain λ. Then we have the following result on the decomposition of OA.

Theorem 2.10 [Fie11, Theorem 5.1]. The functor∏
Λ∈ĥ?/∼A

OA,Λ→OA

(MΛ) 7→
⊕

Λ

MΛ

is an equivalence of categories.

2.14 The Kac–Kazhdan theorem, integral roots and the integral Weyl group

The Kac–Kazhdan theorem gives a rather explicit description of the set of pairs (λ, µ) such that
[∆K(λ) : LK(µ)] 6= 0. By Lemma 2.9, these pairs generate the equivalence relation ‘∼A’.

Recall the bilinear form (·, ·) : ĥ? × ĥ?→ C. For any deformation algebra A we set ĥ?A :=
ĥ? ⊗C A= HomC(ĥ, A) and denote by (·, ·)A : ĥ?A × ĥ?A→A the A-bilinear continuation of (·, ·).
The structure map τ : ĥ→A can be considered as an element in ĥ?A. Let ρ ∈ ĥ? be an element
with (ρ, α) = 1 for any simple affine root α ∈ Π̂.

Now we can state the result of Kac and Kazhdan (we slightly reformulate their original
theorem in terms of equivalence classes).
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Theorem 2.11 [KK79]. The relation ‘∼A’ is generated by λ∼A µ for all pairs λ, µ such that

there exists a root α ∈ R̂ and n ∈ Z with 2(λ+ ρ, α)K = n(α, α)K and λ− µ= nα.

For λ ∈ ĥ? we define the set of integral roots (with respect to λ) by

R̂A(λ) := {α ∈ R̂ | 2(λ+ ρ, α)K ∈ Z(α, α)K}

and the corresponding integral Weyl group by

ŴA(λ) := 〈sα | α ∈ R̂A(λ) ∩ R̂re〉 ⊂ Ŵ.

Let Λ⊂ ĥ? be an equivalence class with respect to ‘∼A’. It follows from the Kac–Kazhdan theorem
that we have R̂A(λ) = R̂A(µ) and ŴA(λ) = ŴA(µ) for all λ, µ ∈ Λ. Hence we can denote these
two objects by R̂A(Λ) and ŴA(Λ).

2.15 The critical level
Let Λ ∈ ĥ?/∼A be an equivalence class. For each λ, µ ∈ Λ we then have λ(K) = µ(K), and hence
there is a certain k = k(Λ) ∈ C such that each object in OA,Λ is of level k. Note that ν(K) = (ν, δ)
for all ν ∈ ĥ?.

Lemma 2.12 [AF12, Lemma 4.2]. Let Λ ∈ ĥ?/∼A be an equivalence class. The following are
equivalent.

(1) We have λ(K) =−ρ(K) for some λ ∈ Λ.

(2) We have λ(K) =−ρ(K) for all λ ∈ Λ.

(3) We have λ+ δ ∈ Λ for all λ ∈ Λ.

(4) We have nδ ∈ R̂A(Λ) for some n 6= 0.

(5) We have nδ ∈ R̂A(Λ) for all n 6= 0.

The level, crit :=−ρ(K), is called the critical level. An equivalence class Λ satisfying the
equivalent conditions of the above lemma is called a critical equivalence class.

3. Restricted representations

In this section we recall one of the most significant structures that we encounter for the categoryO
of an affine Kac–Moody algebra at the critical level. Recall that we add the derivation operator D
to the central extension of the loop algebra corresponding to g. This allows us to consider O
(and the deformed versions OA) as graded categories.

3.1 A shift functor
Suppose that M is a ĝA-module and that L is a ĝ = ĝC-module. Then M ⊗C L acquires the
structure of a ĝA-module such that ĝ acts via the usual tensor product action (X(m⊗ l) =
Xm⊗ l +m⊗Xl for X ∈ ĝ, m ∈M , l ∈ L) and A acts on the first tensor factor. The following
is easy to prove.

Lemma 3.1. (1) If M is locally b̂A-finite and L is locally b̂-finite, then M ⊗C L is locally b̂A-
finite.

(2) If M and L are weight modules, then M ⊗C L is a weight module.

(3) If M ∈ OA and L ∈ O, then M ⊗C L ∈ OA.
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Note that the simple module L(δ) = LC(δ) is one-dimensional (the subalgebra g̃ = [ĝ, ĝ] acts
trivially, while D acts as the identity operator). The ĝ-module L(δ)⊗C L(−δ)∼= L(0) is the trivial
module. In particular, the shift functor

T : OA→OA
M 7→M ⊗C L(δ)

is an equivalence with inverse T−1 = · ⊗C L(−δ). Since L(δ) has level 0 the shift functor T
preserves the subcategoriesOA,k; i.e. we get induced autoequivalences T : OA,k→OA,k for each k.

Let Λ ∈ ĥ?/∼A be an equivalence class. The corresponding block OA,Λ is preserved by the
functor T if and only if for each λ ∈ Λ we have λ+ δ ∈ Λ, hence if and only if Λ is critical
(cf. Lemma 2.12).

In the following we will study natural transformations z : Tn→ id (for some n ∈ Z) from the
functor Tn to the identity functor (on OA, OA,k or OA,Λ). Note that, if k 6= crit, then there is
no non-vanishing natural transformation from Tn to idOA,k if n 6= 0. In contrast, for k = crit the
space of natural transformations from Tn to idOA,crit is huge.

3.2 The Feigin–Frenkel center
For a more thorough discussion of the structure that we introduce now we refer to [AF12, § 5]. We
denote by V crit(g) the universal affine vertex algebra associated with g at the critical level and by
z its center. Then each smooth g̃ = [ĝ, ĝ]-module M can be considered as a graded module over
the vertex algebra V crit(g) and hence over z. In [AF12] we exhibited homogeneous generators
p(1), . . . , p(l), where l denotes the rank of g, of z and this yields an action of the graded polynomial
ring

Zcrit = C[p(i)
s | i= 1, . . . , l, s ∈ Z] =

⊕
n∈Z
Zncrit

on M . Here, Zncrit is the subspace of Zcrit spanned by the elements p(i1)
n1 · · · p

(ir)
nr with n1 + · · ·+

nr = n. We set Z−crit =
⊕

n<0 Zncrit, Z
+
crit =

⊕
n>0 Zncrit, Z

>0
crit =

⊕
n>0 Zncrit and Z60

crit =
⊕

n60 Zncrit.
Now ĝ = g̃⊕ CD and the action of the grading operator D allows us to view each z ∈ Zncrit as

a natural transformation from Tn to the identity functor on OA,crit. For M ∈ OA,crit we denote by
zM : TnM →M the resulting homomorphism. This natural transformation is compatible with
the base change functors OA,crit→OA′,crit associated to a homomorphism A→A′ of deformation
algebras, in the sense that zM⊗AA

′
= zM ⊗ id : Tn(M ⊗A A′) = (TnM)⊗A A′→M ⊗A A′.

3.3 Restricted representations
Let A be a local deformation algebra.

Definition 3.2. Let M ∈ OA,crit. We say that M is restricted if for all n 6= 0 and all z ∈ Zncrit

the homomorphism zM : TnM →M is zero.

We denote by OA,crit the full subcategory of OA,crit that consists of restricted representations.
For an open subset J of ĥ? we set OJA,crit =OA,crit ∩ OJA,crit.

For M ∈ OA,crit we define Mres, the largest restricted submodule, and M res, the largest
restricted quotient, as follows. For each z ∈ Zncrit we can view zT

−nM as a homomorphism from
T−nTnM =M to T−nM . Then

Mres = {m ∈M | zT−nM (m) = 0 for all z ∈ Zncrit, n 6= 0}.
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Let ZncritM be the submodule of M generated by the images of all homomorphisms zM : TnM →
M with z ∈ Zncrit. Then

M res =M
/ ∑

n∈Z,n6=0

ZncritM.

Both Mres and M res are restricted objects in OA,crit. We get functors M 7→Mres and M 7→M res

from OA,crit to OA,crit that are right respectively left adjoint to the inclusion functor OA,crit→
OA,crit.

3.4 Restriction, truncation and base change

We now collect some results on the restriction functor M 7→M res.

Lemma 3.3. Let J ⊂ ĥ? be open. For each M ∈ OA there is a natural isomorphism

(M res)J ∼= (MJ )res.

Proof. The kernel of both compositions M →M res→ (M res)J and M →MJ → (MJ )res is
generated by all weight spaces Mµ with µ 6∈ J together with

∑
n6=0 ZncritM . 2

Lemma 3.4. Let M ∈ OA and fix a homomorphism A→A′ of deformation algebras. Then there
is a canonical isomorphism

(M ⊗A A′)res ∼→ (M res ⊗A A′)res.

Proof. We consider the canonical homomorphisms a : M ⊗A A′→ (M ⊗A A′)res and b : M ⊗A
A′→M res ⊗A A′→ (M res ⊗A A′)res and we show that ker a= ker b. Note that the kernel of
a is generated by the subspaces Zncrit(M ⊗A A′) = (ZncritM)⊗A A′ for n 6= 0, and the kernel
of b is generated by the spaces Zncrit(M ⊗A A′), n 6= 0, and (ZmAM)⊗A A′, m 6= 0, so clearly
ker a= ker b. 2

3.5 Restricted Verma modules

For each critical λ ∈ ĥ? we define the restricted Verma module by

∆A(λ) := ∆A(λ)res

and the restricted dual Verma module by

∇A(λ) :=∇A(λ)res.

We clearly have Z+
crit∆A(λ) = 0 and Z−crit∇A(λ) = 0. Hence we obtain the following lemma.

Lemma 3.5. For each critical λ ∈ ĥ? we have ∆A(λ) = ∆A(λ)/Z−crit∆A(λ), and ∇A(λ)⊂∇A(λ)
is the set of Z+

crit-invariant elements.

3.6 The character of a restricted Verma module

Let us define the numbers p(n) ∈ N for n> 0 by the following equation (in Ẑ[ĥ?]),∏
l>0

(1 + e−lδ + e−2lδ + · · · )rk g =
∑
n>0

p(n)e−nδ,
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and the numbers q(n) ∈ Z, n> 0 by the corresponding equation for the inverse of the left-hand
side, (∏

l>0

(1 + e−lδ + e−2lδ + · · · )rk g

)−1

=
∏
l>0

(1− e−lδ)rk g =
∑
n>0

q(n)e−nδ.

Lemma 3.6. Suppose that A= K is a field. Let λ ∈ ĥ? be critical.

(1) We have

ch ∆K(λ) = eλ
∏

α∈R̂+,re

(1 + e−α + e−2α + · · · ).

(2) For all µ ∈ ĥ? we have

[∆K(λ) : LK(µ)] =
∑
n>0

q(n)[∆K(λ− nδ) : LK(µ)].

Proof. The first statement is due to Feigin and Frenkel, and Frenkel (cf. [Fre07, proof of Theorem
6.4.1]). Using the well-known character formula for the usual Verma modules we get

ch ∆K(λ) = eλ
∏
α∈R̂+

(1 + e−α + e−2α + · · · )dim ĝα

=
∏
l>0

(1 + e−lδ + e−2lδ + · · · )rk g ch ∆K(λ).

(Note that dim ĝα = 1 for real roots α, and dim ĝlδ = rk g for all l 6= 0.) Dividing this equation
by
∏
l>0(1 + e−lδ + e−2lδ + · · · )rk g yields

ch ∆K(λ) =
(∏
l>0

(1 + e−lδ + e−2lδ + · · · )rk g

)−1

ch ∆K(λ)

=
∑
n>0

q(n)e−nδ ch ∆K(λ)

=
∑
n>0

q(n) ch ∆K(λ− nδ),

hence part (2) of the lemma. 2

3.7 Restricted Verma modules over local rings
The following is an easy consequence of Nakayama’s lemma.

Lemma 3.7. Let A be a local domain with residue field K and quotient field Q. Let M be a
finitely generated A-module and suppose that

dimK M ⊗A K = dimQM ⊗A Q.

Then M is a free A-module with rkAM = dimK M ⊗A K = dimQM ⊗A Q.

From now on let A be a local deformation domain with residue field K and quotient field Q.

Lemma 3.8. Suppose λ ∈ ĥ? is critical. Then the following holds. For any µ ∈ ĥ? the weight
space ∆A(λ)µ is a free A-module of rank

rkA∆A(λ)µ = dimK ∆K(λ)µ.
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Proof. The base change remark in § 3.2 shows that we have isomorphisms

∆A(λ)⊗A Q∼= ∆Q(λ), ∆A(λ)⊗A K∼= ∆K(λ).

As these isomorphisms induce isomorphisms on any weight space and since the weight space
dimensions coincide by Lemma 3.6, we can apply Lemma 3.7, which immediately yields the
statement that we want to prove. 2

Lemma 3.9. Let λ ∈ ĥ? be critical. Then we have ∆A(λ)? ∼=∇A(λ), ∇A(λ)? ∼= ∆A(λ).

Proof. Note that by Lemma 3.8, each weight space of ∆A(λ) is a free A-module of finite rank,
so it is reflexive, i.e. (∆A(λ)?)? = ∆A(λ). Hence it is enough to prove that ∆A(λ)? ∼=∇A(λ).

We consider now the short exact sequence

0→
∑
n6=0

Zncrit∆A(λ)→∆A(λ)→∆A(λ)→ 0.

As each weight space of ∆A(λ) and of ∆A(λ) is a free A-module of finite rank, the sequence
above splits as a sequence of A-modules. Hence each weight space of

∑
n6=0 Zncrit∆A(λ) is free,

and the dual sequence

0→∆A(λ)?→∇A(λ)→
(∑
n6=0

Zncrit∆A(λ)
)?
→ 0

is exact as well.
The injective map factors over the inclusion ∇A(λ)→∇A(λ), as ∆A(λ)? is restricted. By

definition, the composition of ∇A(λ)→∇A(λ) with the surjection ∇A(λ)→ (
∑

n6=0 Zncrit∆A(λ))?

is zero. Hence ∆A(λ)? ∼=∇A(λ). 2

3.8 An auxiliary category
In the following it is convenient to work with ‘half-restricted’ objects.

Definition 3.10. We let O−A,crit be the full subcategory of OA,crit that consists of all objects M

such that Z−critM = 0. For an open bounded subset J of ĥ? we let O−JA,crit be the full category of
O−A,crit of objects that are also contained in OJA,crit.

It is clear that O−A,crit and O−JA,crit are stable under taking quotients or subobjects. For a base
change homomorphism A→A′ and an object M of O−A,crit we have that M ⊗A A′ is contained in
O−A′,crit. Note that a critical Verma module does not belong to O−A,crit, but each critical restricted
Verma module does. Also, the dual non-restricted critical Verma modules belong to O−A,crit.

In analogy to the restriction functors M 7→M res, M 7→Mres we have functors M 7→M−,
M 7→M− that are left respectively right adjoint to the inclusion of O−A,crit in OA,crit. For example,
M− is the quotient of M by the submodule Z−critM .

3.9 Restricted Verma flags
Now we state the definition of a restricted Verma flag in analogy to Definition 2.7.

Definition 3.11. We say that a module M ∈ O−A,crit admits a restricted Verma flag if there is
a finite filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M

such that, for each i= 1, . . . , n, Mi/Mi−1 is isomorphic to ∆A(µi) for some µi ∈ ĥ?.
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Again, if M ∈ O−A,crit admits a restricted Verma flag, then for each µ ∈ ĥ? the number
of occurrences of ∆A(µ) is independent of the chosen filtration. We denote this number by
(M : ∆A(µ)).

Note that if M ∈ O−A,crit admits a restricted Verma flag, then so does M ⊗A A′ ∈ O−A′,crit for
any homomorphism A→A′ of deformation algebras (as a restricted Verma module is free over
the deformation algebra and ∆A(λ)⊗A A′ ∼= ∆A′(λ)), and we have

(M ⊗A A′ : ∆A′(µ)) = (M : ∆A(µ)).

Proposition 3.12. (1) Suppose that M ∈ OA,crit admits a Verma flag. Then M− admits a

restricted Verma flag and we have (M− : ∆A(λ)) = (M : ∆A(λ)) for any λ ∈ ĥ?.

(2) Let 0→M →N → L→ 0 be an exact sequence in OA,crit and suppose that M , N and
O admit a Verma flag. Then the induced sequence

0→M−→N−→ L−→ 0

is also exact.

Proof. This follows easily from the fact that each Verma module is free over Z60
crit (cf. [Fre07,

Theorem 9.5.3]). 2

Lemma 3.13. Let M ∈ O−A,crit and let λ ∈ ĥ? be maximal with Mλ 6= 0. Then each surjective

map M →∆A(λ) splits.

Proof. Let x ∈Mλ be a preimage of a generator of ∆A(λ). By maximality of λ there is a
homomorphism ∆A(λ)→M that sends a generator of ∆A(λ) to x. As M is in O−A,crit, this
map factors over the quotient map ∆A(λ)→∆A(λ)− = ∆A(λ). 2

Lemma 3.14. Let M ∈ O−A,crit.

(1) Suppose that M admits a restricted Verma flag and let {µ1, . . . , µl} be an enumeration

of the multiset that contains each µ ∈ ĥ? with multiplicity (M : ∆A(µ)). Suppose furthermore
that this enumeration has the property that µi > µj implies i < j. Then there is a filtration
0 =M0 ⊂M1 ⊂ · · · ⊂Ml =M with Mi/Mi−1

∼= ∆A(µi) for each i= 1, . . . , l.

Let J be an open subset of ĥ? and let I := ĥ?\J be its complement.

(2) The module M admits a restricted Verma flag if and only if both MI and MJ admit
restricted Verma flags.

(3) If M admits a restricted Verma flag, then we have for all µ ∈ ĥ?

(MI : ∆A(µ)) =

{
(M : ∆A(µ)) if µ ∈ I,
0 otherwise,

(MJ : ∆A(µ)) =

{
(M : ∆A(µ)) if µ ∈ J ,
0 otherwise.

Proof. Part (1) follows directly from Lemma 3.13. So let us prove parts (2) and (3). Consider
the short exact sequence 0→MI →M →MJ → 0. Clearly, if MI and MJ admit restricted
Verma flags, then so does M . So suppose that M admits restricted Verma flag. By part (1) we
can find a filtration 0 =M0 ⊂M1 ⊂ · · · ⊂Ml =M such that Mi/Mi−1

∼= ∆A(µi) and such that
{µ1, . . . , µn} ⊂ I and {µn+1, . . . , µl} ⊂ J for some n> 0. We then have MI =Mn, as Mn is
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generated by its vectors of weights µ1, . . . , µn and the weights of M/Mn belong to J . Hence
MJ =M/Mn, and we deduce that both MI and MJ admit a restricted Verma flag and that
the multiplicity statements in part (3) hold as well. 2

4. Restricted projective objects

Let A be a local deformation algebra and J ⊂ ĥ? a bounded open subset. For each λ ∈ J we
have a projective cover PJA (λ)→ LA(λ) in OJA,crit. By applying the functor (·)res we obtain a
surjective map PJA (λ)res→ LA(λ)res = LA(λ). As (·)res is left adjoint to the (exact) inclusion
functor OJA,crit ⊂OJA,crit, P

J
A (λ)res is a projective object in OJA,crit. It is even indecomposable as

PJA (λ) has a unique simple quotient (see [Fie11, § 4.3]). We define

P
J
A (λ) := PJA (λ)res.

Similarly, using the functor (·)− instead of (·)res, we can define a restricted projective cover
PJA (λ)−→ LA(λ) in the category O−JA,crit. In particular, O−JA,crit contains enough projectives, so
we can calculate Ext-groups.

By Proposition 3.12, PJA (λ)− admits a restricted Verma flag with multiplicities

(PJA (λ)− : ∆A(µ)) = (PJA (λ) : ∆A(µ)).

Among the main results in this article are that PJA (λ) also admits a restricted Verma flag and
that the multiplicities are given by a BGG-reciprocity formula.

4.1 An Ext-vanishing criterion

We now prove a result that is well known in similar, more classical situations. For this we need
to assume that A= K is a field. Let J ⊂ ĥ? be open and bounded.

Proposition 4.1. Let X ∈ O−JK,crit. The following conditions are equivalent:

(1) X admits a restricted Verma flag;

(2) X is finitely generated and ExtiO−JK,crit
(X,∇K(λ)) = 0 for any i> 1 and any λ ∈ J ;

(3) X is finitely generated and Ext1
O−JK,crit

(X,∇K(λ)) = 0 for any λ ∈ J .

Proof. For brevity we write Exti for ExtiO−JK,crit
in the course of this proof. We show that

statement (1) implies statement (2). So suppose that X admits a restricted Verma flag. It is
clear that each module admitting a restricted Verma flag is finitely generated. We prove the
vanishing of Exti by induction on i.

Let i= 1 and let X =X0 ⊃X1 ⊃X2 ⊃ · · · ⊃Xl = 0 be a restricted Verma flag of X. From
the exact sequence

0→X1→X →X/X1→ 0,

we obtain the exact sequence

Ext1(X/X1,∇K(λ))→ Ext1(X,∇K(λ))→ Ext1(X1,∇K(λ)).
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Now X1 and X/X1 admit a restricted Verma flag. Hence, by using induction on l, one sees that
it is enough to prove the case when l = 1. So let X = ∆K(µ) with µ ∈ J , and let

0→∇K(λ)→M →∆K(µ)→ 0

be an exact sequence in O−JK,crit. We have to show that this sequence splits.
If µ> λ, then this splits by Lemma 3.13. If µ 6> λ, apply the duality functor and consider the

exact sequence

0→∇K(µ)→M?→∆K(λ)→ 0

in the category OJK,crit (note that this is not a sequence in O−JK,crit). This splits because λ is a
maximal weight in M?, and hence the former sequence splits as well, so Ext1(∆K(λ),∇K(µ)) = 0.
We have now proved statement (2) of the proposition for i= 1.

Next let i> 2. By the same argument as above, it is enough to consider the case X = ∆K(µ)
for some µ ∈ J . One has an exact sequence

0→N → PJK (µ)→∆K(µ)→ 0

in the category OJK,crit and each occurring module admits a (non-restricted) Verma flag. By
Proposition 3.12, this yields an exact sequence

0→N−→ PJK (µ)−→∆K(µ)− = ∆K(µ)→ 0

in the category O−JK,crit and each module admits a restricted Verma flag. Note that PJK (µ)− is
projective in O−JK,crit.

The above exact sequence yields the exact sequence

Exti−1(N−,∇K(λ))→ Exti(∆K(µ),∇K(λ))→ Exti(PJK (µ)−,∇K(λ))(= 0).

However, Exti−1(N−,∇K(λ)) = 0 by the induction hypothesis, so we can deduce Exti(∆K(µ),
∇K(λ)) = 0. This finishes the proof that statement (1) implies statement (2).

It is clear that statement (2) implies statement (3), and now we prove that statement (3)
implies statement (1). Let X be as in statement (3). Let 0 =X0 ⊂X1 ⊂X2 · · · ⊂Xl =X be
a highest weight series of X. That means each quotient Xi/Xi−1 is a highest weight module with
highest weight µi. We may also assume that µi 6< µj for any i < j. We prove by induction on l
that this sequence is actually a restricted Verma flag of X.

Let l = 1. Then, X =X1 is a highest weight module of highest weight µ := µ1. As it is
contained in O−JK,crit we have a surjection ∆K(µ)→X. Let N be its kernel. We have to show
that N = 0. This is equivalent to showing that Hom(N,∇K(λ)) = 0 for all λ. From the exact
sequence

0→N →∆K(µ)→X → 0

we obtain, for any λ, the exact sequence

Hom(∆K(µ),∇K(λ))→Hom(N,∇K(λ))→ Ext1(X,∇K(λ))(= 0).

However, the space Hom(∆K(µ),∇K(λ)) vanishes unless λ= µ and for λ= µ the space
Hom(N,∇K(µ)) is zero, since there is no weight vector of weight µ in N (here we need the
assumption that our deformation algebra is a field). Hence Hom(N,∇K(λ)) = 0 for all λ, and
therefore N = 0 and X ∼= ∆K(µ).
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Now let l > 2 and consider the exact sequence

0→X1→X →X/X1→ 0.

Using the induction hypothesis it is sufficient to show that

Ext1(X1,∇K(λ)) = Ext1(X/X1,∇K(λ)) = 0

for all λ. Consider the long exact sequence

0→Hom(X/X1,∇K(λ))→Hom(X,∇K(λ))→Hom(X1,∇K(λ))

→ Ext1(X/X1,∇K(λ))→ Ext1(X,∇K(λ))(= 0)→ Ext1(X1,∇K(λ))

→ Ext2(X/X1,∇K(λ))→ · · · .

Since X1 is a quotient of ∆K(µ1), it follows that Hom(X1,∇K(λ)) = 0 unless λ= µ1. Hence,
Ext1(X/X1,∇K(λ)) = 0 unless λ= µ1. We now show that Ext1(X/X1,∇K(µ1)) = 0; so let

0→∇K(µ1)→ Y →X/X1→ 0

be a short exact sequence in O−JK,crit and consider the dual sequence

0→ (X/X1)?→ Y ?→∆K(µ1)→ 0.

Since µ1 6< µi for any i> 2, µ1 is a maximal weight of Y . This means that the above sequences
split, proving that Ext1(X/X1,∇K(µ1)) = 0.

Hence Ext1(X/X1,∇K(λ)) = 0 for any λ ∈ J , and so by our induction hypothesis X/X1

admits a restricted Verma flag. By what we have already proven, Ext2(X/X1,∇K(λ)) = 0 for all
λ ∈ J . From the long exact sequence above we deduce Ext1(X1,∇K(λ)) = 0 for all λ ∈ J , hence
X1 admits a restricted Verma flag, and therefore so does X. This completes the proof. 2

4.2 An Ext-vanishing result

We can now prove that, in the case that A= K is a field, the module PJK (λ) admits a restricted
Verma flag. For this we have to check an Ext-vanishing property, by Proposition 4.1.

Proposition 4.2. One has Ext1
O−JK,crit

(PJK (λ),∇K(µ)) = 0 for all λ, µ ∈ J .

Proof. Let

0→∇K(µ)→M → P
J
K (λ)→ 0

be an exact sequence in O−JK,crit. One needs to show that this sequence splits.

Because ∆K(µ) is a free Z60
crit-module we have

Ext1
Z+

crit
(C,∇K(µ)) = Ext1

Z−crit
(∆K(µ), C) = 0,

where C is the trivial Z±crit-module. Therefore, by applying the functor HomZ+
crit

(C, ?) to the
above sequence, we obtain the exact sequence

0→∇K(µ)→HomZ+
crit

(C, M)→PJK (λ)→ 0

in the category OJK,crit. As the module on the right is projective in this category, we obtain a

splitting P
J
K (λ)→HomZ+

crit
(C, M), and the composition with HomZ+

crit
(C, M)→M also splits

our original short exact sequence. 2
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Corollary 4.3. Each P
J
K (λ) admits a restricted Verma flag.

Using Corollary 4.3, the following assertion can be proved in the same manner as
Proposition 4.1.

Proposition 4.4. Let X ∈ OJK,crit. The following conditions are equivalent:

(1) X admits a restricted Verma flag;

(2) X is finitely generated and Exti
OJK,crit

(X,∇K(λ)) = 0 for any i> 1 and all λ ∈ J ;

(3) X is finitely generated and Ext1

OJK,crit
(X,∇K(λ)) = 0 for all λ ∈ J .

4.3 A BGG-reciprocity formula

The next result allows us to compute restricted Verma multiplicities.

Proposition 4.5. Suppose that A is a local deformation algebra and that M ∈ O−JA,crit admits
a restricted Verma flag. For ν ∈ J the following holds:

(1) we have Ext1
O−JA,crit

(M,∇A(ν)) = 0;

(2) the HomO−JA,crit
(M,∇A(ν)) is a free A-module of rank (M : ∆A(ν)).

Proof. The proof of part (1) is analogous to the proof of the corresponding statement in
Proposition 4.1 (the field case). In particular, it can be analogously reduced to the case that
M ∼= ∆A(λ) for some λ ∈ J . Consider a short exact sequence

0→∇A(ν)→X →∆A(λ)→ 0.

If ν 6> λ, then this sequence splits by Lemma 3.13. Each weight space in the above sequence is
a free A-module of finite rank, so the duality is involutive and exact on the above sequence. If
ν > λ, then the dual sequence

0→∇A(λ)→X?→∆A(ν)→ 0

splits. Hence Ext1
O−JA,crit

(∆A(λ),∇A(ν)) = 0.

Now let us prove part (2). Again we use induction on the length l of a restricted Verma flag
of M . Suppose that M ∼= ∆A(λ). We have

HomO−JA,crit
(∆A(λ),∇A(ν)) = HomO−JA,crit

(∆A(λ),∇A(ν)).

The latter space vanishes if λ 6= ν and it is free of rank 1 if λ= ν (by the statement that is dual
to statement (2) in Lemma 3.8). So suppose that l > 1 and choose M1 ⊂M such that M1 and
M/M1 are non-zero and admit restricted Verma flags. By (1) we have an exact sequence

0→HomO−JA,crit
(M/M1,∇A(ν))→HomO−JA,crit

(M,∇A(ν))→

→HomO−JA,crit
(M1,∇A(ν))→ 0

and part (2) follows from the induction hypothesis and the additivity of the multiplicities with
respect to short exact sequences. 2

Now we can prove a reciprocity statement for the restricted projectives in the field case.
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Theorem 4.6. Suppose that A= K is a field. Let J ⊂ ĥ? be open and bounded and let λ ∈ J
be critical. Then we have

(PJK (λ) : ∆K(µ)) =

{
[∇K(µ) : LK(λ)] if µ ∈ J ,
0 otherwise.

Proof. Clearly, (PJK (λ) : ∆K(µ)) = 0 if µ 6∈ J . So suppose that µ ∈ J . Using Proposition 4.5 we
have

(PJK (λ) : ∆K(µ)) = dimK HomO−JK,crit
(PJK (λ),∇K(µ))

= dimK HomOJK,crit
(PJK (λ),∇K(µ))

= [∇K(µ) : LK(λ)].

The last identity is a consequence of the fact that PJK (λ)→ LK(λ) is a projective cover in
OJK,crit. 2

4.4 Base change

Now we need the following variant of Lemma 3.7.

Lemma 4.7. Let A be a local deformation domain with residue field K and quotient field Q.
Suppose that M ∈ O−A,crit has the property that both M ⊗A K ∈ O−K,crit and M ⊗A Q ∈ O−Q,crit

admit restricted Verma flags and that the multiplicities coincide, i.e. that for all µ ∈ ĥ? we have

(M ⊗A K : ∆K(µ)) = (M ⊗A Q : ∆Q(µ)).

Then M admits a restricted Verma flag with (M : ∆A(µ)) = (M ⊗A K : ∆K(µ)) for all µ ∈ ĥ?.

Proof. Let µ ∈ ĥ?. From the above equality of multiplicities we deduce that

dimK Mµ ⊗A K = dimQMµ ⊗A Q.

By Lemma 3.7, Mµ is a free A-module. In particular, the natural homomorphism M →M ⊗A Q
is injective.

Now let µ ∈ ĥ? be a maximal weight of M , and let v ∈Mµ be a preimage of a non-zero
element v ∈ (M ⊗A K)µ. Let M1 ⊂M be the ĝA-submodule generated by v. We have a surjective
homomorphism ∆A(µ)→M1 that sends a generator of ∆A(µ) to v, as M1 ∈ O−A,crit. Now
M1 ⊗A Q is generated by the non-zero vector v ⊗ 1, and, since M ⊗A Q admits a Verma flag and
µ is maximal, we have M1 ⊗A Q∼= ∆Q(µ). We deduce that the homomorphism ∆A(µ)→M1 is
also injective, and hence an isomorphism.

As M1 ⊗A K is generated by v and by maximality of µ we have that M1 ⊗A K∼= ∆K(µ).
Moreover, (M/M1)⊗A K and (M/M1)⊗A Q admit restricted Verma flags with coinciding
multiplicities. Hence we can assume, by induction on the length of the Verma flags of M ⊗A K
and M ⊗A Q, that M/M1 admits a restricted Verma flag. Hence so does M . 2

4.5 The case of a local deformation domain

Now we have proved all relevant statements in the field case. Our next objective is to generalize
them to the local case. The following is an almost immediate consequence of the BGG-reciprocity
that we proved above.
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Lemma 4.8. Suppose that the deformation algebra A= K is a field. Let J ⊂ ĥ? be a bounded
open subset and let P ∈ OJK,crit be projective. Then the module P res admits a restricted Verma
flag and the multiplicities are given by the following formula:

(P res : ∆K(µ)) =
∑
n>0

q(n)(P : ∆K(µ− nδ))

for all µ ∈ J .

Proof. We can assume that P = PJK (λ) for some λ ∈ J , so P res = P
J
A (λ). By the reciprocity

results in Theorems 2.8 and 4.6, the assertion is equivalent to

[∇K(µ) : LK(λ)] =
∑
n>0

q(n)[∇K(µ− nδ) : LK(λ)]

which is statement (2) of Lemma 3.6 in terms of the dual Verma modules. 2

Now we can translate the results that we have obtained so far to the case of a local deformation
domain A. We denote by K its residue field and by Q its quotient field.

Theorem 4.9. Suppose that A is a local deformation domain. Let J ⊂ ĥ? be open and bounded

and let λ ∈ J be critical. Then P
J
A (λ) admits a restricted Verma flag with multiplicities

(PJA (λ) : ∆A(µ)) =

{
[∇K(µ) : LK(λ)] if µ ∈ J ,
0 otherwise.

Proof. Note that the functor M 7→M res commutes with the base change functors · ⊗A K
and · ⊗A Q. By Lemma 4.8, the restricted Verma multiplicities of (PJA (λ)⊗A K)res and of
(PJA (λ)⊗A Q)res coincide, and so, by Lemma 4.7, PJA (λ)res = P

J
A (λ) admits a restricted Verma

flag with the same multiplicities. Hence the statement follows from the BGG-reciprocity result
for K, as PJA (λ)⊗A K∼= PJK (λ). 2

5. The restricted linkage principle and the restricted block decomposition

In this section we use the above BGG-reciprocity to prove our main theorem, the restricted
linkage principle.

Theorem 5.1. For all critical λ, µ ∈ ĥ? we have [∆(λ) : L(µ)] = 0 if µ 6∈ Ŵ(λ) · λ.

Note that the above statement refers to the non-deformed objects (i.e. we have A= C here).
However, for its proof we need the deformation theory developed in the main body of this paper.
So let A be an arbitrary local deformation domain with residue field K. As a first step we study
the restricted block decomposition.

5.1 The restricted block decomposition

Let ĥ?crit be the set of critical weights in ĥ? and let ∼res
A be the relation on ĥ?crit that is generated

by setting λ∼res
A µ if there is some open subset J ⊂ ĥ?crit such that LA(µ) is isomorphic to a

subquotient of PJA (λ). For an equivalence class Λ ∈ ĥ?crit/∼res
A

let OA,Λ ⊂OA,crit be the full
subcategory that contains all objects M that have the property that if LA(λ) occurs as a
subquotient of M , then λ ∈ Λ. Then well-known arguments yield the following.
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Theorem 5.2. The functor ∏
Λ∈ĥ?crit/∼res

A

OA,Λ→OA,crit

(MΛ) 7→
⊕

MΛ,

is an equivalence of categories.

5.2 Critical restricted equivalence classes

Let us denote by · : ĥ?→ h?, λ 7→ λ, the map that is dual to the inclusion h→ ĥ = h⊕ CD ⊕ CK.
Note that δ = Λ0 = 0. For any subset Λ of ĥ? we denote by Λ⊂ h? its image.

Suppose that Λ ∈ ĥ?crit/∼res
A

is a critical restricted equivalence class. We define the
corresponding set of finite integral roots and the finite integral Weyl group by

RA(Λ) := {α ∈R | 2(λ+ ρ, α)K ∈ Z(α, α)K for all λ ∈ Λ},
WA(Λ) := 〈sα | α ∈RA(Λ)〉 ⊂W.

Lemma 5.3. Let Λ ∈ ĥ?crit/∼res
A

be a critical restricted equivalence class. Then we have

Λ =WA(Λ) · λ

for all λ ∈ Λ.

Proof. Let Λ′ be the equivalence class under ∼A generated by ∼res
A (note that ∼res

A is finer
than ∼A). By the Kac–Kazhdan theorem, Λ′ is the orbit of λ under the group ŴA(Λ′)× Zδ,
so Λ = Λ′ is the image of the ŴA(Λ′)-orbit of λ. As Λ is critical, ŴA(Λ′) is the affinization of
WA(Λ), and the translations act by translating by a multiple of δ. Hence, the image of Λ in h?

coincides with the WA(Λ)-orbit of λ. 2

5.3 Generic and subgeneric equivalence classes

Now we define the two most basic cases for equivalence classes.

Definition 5.4. Let Λ ∈ ĥ?crit/∼res
A

be a critical restricted equivalence class. We call Λ:

(1) generic, if Λ⊂ h? contains exactly one element;

(2) subgeneric, if Λ⊂ h? contains exactly two elements.

We call λ ∈ ĥ?crit generic (subgeneric, respectively) if it is contained in a generic (subgeneric,
respectively) equivalence class.

Let Λ be a critical restricted equivalence class and α ∈RA(Λ). Let λ ∈ Λ and suppose that
sα · λ 6= λ. Then we have sα · λ > λ if and only if s−α+δ · λ < λ. We define α ↑ λ to be the element
in the set {sα.λ, s−α+δ.λ} that is bigger than λ.

5.4 A special deformation

Let S̃ be the localization of S at the maximal ideal Sh. This is a local deformation domain with
the obvious S-algebra structure. Its residue field is C = S̃/S̃h and the category OC is identified
with the usual category O. For each prime ideal p⊂ S̃ we denote by S̃p the localization of S̃ at p.
We let Q̃= S̃(0) be the quotient field of S̃.
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Lemma 5.5. Let p⊂ S̃ be a prime ideal of height one and let Λ⊂ ĥ?crit be an equivalence class
for ∼res

S̃p
.

(1) If α∨ 6∈ p for all α ∈R, then Λ is generic.

(2) If α∨ ∈ p for some α ∈R, then Λ is either generic or subgeneric. In both cases we have
R
S̃p

(Λ)⊂ {α,−α}.

Proof. Let K be the residue field of S̃p. For any β ∈R we have (λ+ τ, β)K = (λ, β)K + (τ, β)K
with (λ, β)K ∈ C and (τ, β)K ∈ h. Hence we have 2(λ+ τ, β)K ∈ Z(β, β)K if and only if 2(λ, β)K ∈
Z(β, β)K and (τ, β)K = 0. The latter equality implies β =±α. From this we deduce both of the
above statements. 2

Part (1) of the following theorem is a direct consequence of the corollary above and [Fre05,
Theorem 4.8] (which states that a generic restricted Verma module is simple, see also [Hay88])
and part (2) is a direct consequence of the above and [AF12, Theorem 5.9] (the main result in
that paper), which calculates the Jordan–Hölder multiplicities in the subgeneric situations.

Theorem 5.6. Let Λ ∈ ĥ?crit/∼res
A

be a critical restricted equivalence class and fix λ ∈ Λ. Let

J ⊂ ĥ?crit be open and bounded.

(1) Suppose that Λ is generic. Then

P
J
A (λ)∼= ∆A(λ)

if J contains λ.

(2) Suppose that Λ is subgeneric and suppose that Λ = {λ, sα.λ} for some α ∈R. Then there
is a non-split short exact sequence

0→∆A(α ↑ λ)→ P
J
A (λ)→∆A(λ)→ 0

if J contains λ and α ↑ λ.

Corollary 5.7. Let Λ ∈ ĥ?crit/∼res
A

be a critical restricted equivalence class.

(1) If Λ is generic, then Λ contains only one element.

(2) If Λ is subgeneric, then there is some α ∈R(Λ) such that Λ is an orbit under the action

of the subgroup Ŵα ⊂ Ŵ that is generated by the reflections sα+nδ for n ∈ Z.

Proposition 5.8. The equivalence relation ∼res
S̃

is the common refinement of all the relations

∼res
S̃p

for prime ideals p⊂ S̃ of height one; i.e. ∼res
S̃

is generated by the relations λ∼res
S̃
µ if there

is a prime ideal p⊂ S̃ of height one such that λ∼res
S̃p
µ.

Proof. Let us denote by ∼′ the common refinement of the relations ∼res
S̃p

for prime ideals of height

one. It suffices to show that if λ, µ ∈ ĥ? are critical such that there is an open bounded subset
J of ĥ?crit and (PJS̃ (λ) : ∆

S̃
(µ)) 6= 0, then λ∼′ µ.

Let us consider the object PJS̃ (λ)⊗
S̃
Q̃. It is an object in OJQ̃,crit and admits a restricted

Verma flag. We are going to apply the decomposition result in Theorem 5.2 for the categories
O
Q̃,crit

and O
S̃p,crit

.
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Let Λ′ ⊂ ĥ?crit be the equivalence class under∼′ that contains λ. As Λ′ is a union of equivalence
classes for ∼res

Q̃
we can find a unique decomposition

P
J
S̃ (λ)⊗

S̃
Q̃=X ⊕ Y,

where X and Y are objects in O
Q̃,crit

admitting a restricted Verma flag such that for all ν ∈ ĥ?

we have

(X : ∆
Q̃

(ν)) 6= 0⇒ ν ∈ Λ′,

(Y : ∆
Q̃

(ν)) 6= 0⇒ ν 6∈ Λ′.

Let p⊂ S̃ be a prime ideal of height one. As ∼′ is coarser than ∼res
S̃p

, we deduce that the

inclusion P
J
S̃ (λ)⊗

S̃
S̃p→ P

J
S̃ (λ)⊗

S̃
Q̃=X ⊕ Y induces a direct sum decomposition

P
J
S̃ (λ)⊗

S̃
S̃p = (PJS̃ (λ)⊗

S̃
S̃p∩X)⊕ (PJS̃ (λ)⊗

S̃
S̃p∩ Y ).

Now each weight space of PJS̃ (λ) is a free S̃-module of finite rank and we deduce that

P
J
S̃ (λ) =

⋂
p

P
J
S̃ (λ)⊗

S̃
S̃p,

where the intersection is taken over all prime ideals of height one. Hence we get an induced
decomposition

P
J
S̃ (λ) = (PJS̃ (λ) ∩X)⊕ (PJS̃ (λ) ∩ Y ).

As P
J
S̃ (λ) is indecomposable, and since X 6= 0 (since the restricted Verma module ∆

Q̃
(λ)

certainly occurs in X), we get Y = 0; i.e. all restricted Verma subquotients of PJS̃ (λ) have highest
weights in Λ′. Hence ∼res

S̃
=∼′. 2

Now we can prove our main result, Theorem 5.1.

Proof. We show that λ∼res
C µ implies µ ∈ Ŵ(λ).λ. Note that, by definition, we have ∼res

C =∼res
S̃

.
By Proposition 5.8 we have that ∼res

S̃
is the common refinement of all ∼res

S̃p
. Lemma 5.5 shows that

the equivalence classes of ∼res
S̃p

are either generic or subgeneric. However, those we determined

in Corollary 5.7 either contain one element or are orbits under a certain subgroup Ŵα of Ŵ(λ).
Hence λ and µ must be contained in a common Ŵ(λ)-orbit. 2
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