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BAYESIANS LEARN WHILE WAITING *

WILLIAM S. JEWELL

In many estimation problems, incomplete as well as complete samples are
available for Bayesian prediction. After developing the theory for a special, but
useful family of distributions, examples are given in life testing, renewal risk
processes, life contingencies, and the problem of estimating a defective distribution.

1. INTRODUCTION

In Bayesian prediction problems, one is interested in using observed values
of a given process to update the prior knowledge about the process para-
meters, and thence to make better predictions about the process itself. Most
of the theory concerns itself either with exact calculations using so-called
natural-conjugate families of prior and likelihood distributions 1, or with best
linear least-squares approximations, referred to in the actuarial literature as
credibility theory2. However, both approaches consider only the use of
complete data samples.

The purpose of this paper is to show that there are many situations in
which incomplete observations also provide updating information, that is,
Bayesians can learn while waiting for the finish of the sampling experiment.
After developing the necessary theory and introducing the gamma-pro-
portional-hazard family of distributions most appropriate for incomplete data
formulations, examples are given from life testing, renewal risk processes,
and life contingency reserving. It is shown in what sense an individual life
(or cohort of similar lives) can learn about his (their) own remaining lifetime
distributions with the passage of time. The paper concludes with the problem
of estimating the parameters and the defect in a defective distribution.

2. MODEL

As is usual in Bayesian models, we assume that ~x, the random lifetime of
interest, has a likelihood distribution function, P(x\Q), which depends upon an
unknown random parameter 6 which has a prior distribution function, P(6).
We use P c = i - P to denote the complementary distribution (or survival)
function, and we assume that (continuous or discrete) densities exist, denoted

* An earlier version of this paper was presented at the 13th ASTIN Colloquium,
Washington, D.C., May 1977.

1 see AITCHINSON and DUNSMORE (1975),
2 see JEWELL (1978).
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The basic problem is to use observational data, sampled from the likelihood
distribution with fixed, but unknown parameter, in Bayes' law to find the
posterior-to-data distribution of the parameter, and thence to predict various
moments and economic functions of the underlying lifetime process.

To illustrate the natural wa3̂  in which incomplete samples arise, we consider
a life-testing scheme in reliability, as in JEWELL (1977), in which:

1. N items, all with lifetimes drawn as samples from P (x j 6) with common
and fixed 6, are put "on test" at epochs {ti}, and removed from test at
epochs {ti + Ti], (i,i,2,...,N);

2. C of these items (with indices in the set S) will have failed before removal
with observed lifetimes (xt = x% < Ti} (i e S);

3. The remaining lifetimes are not completely observed, since the items are
still operating at removal, so it is known only that {xi>Ti} (i $S).

Depending upon the experimental protocol, the {Ti} may be fixed in
advance, giving then a random C; or, C may be fixed in advance for a simul-
taneous test, giving a common, random time-on-test, T. Considering for a
moment that the {Ti} are fixed, and denoting the observed data by D = { yx,
y2, . . . , yN; S}, where

\xt {ieS)
2.1 Vi = <

(Tt{itS)

we can easily argue that the likehood density of this data set, given 6, is:

(2.2) p {D I 0) = n p(xi\Q) n Pc [T] I 0).

Bayes' law then gives the predictive density for continued testing of items
j $ S, or for future experiments on other items with the same parameter value:

= Jf f p [ I ) p (6)
(2.3) P(* I D ) = J p {x 1 e ) [ ^ f

The ratio in square brackets is the posterior-to-data parameter density,
P (9 I D).

(2.2) is also useful for many other life testing protocols. Suppose that all
items are put on test at the same epoch; the common testing interval T need
not be fixed in advance, but may be a continuously-evaluated stopping rule,
a possibly random decision to stop experimenting that depends upon the
values {xlt x2, ..., xc', S} observed up to and including T, but not directly
upon 6. In this case, the likelihood includes additional terms relating to the
stopping rule that cancel out of the ratio in (2.3); the stopping rule is non-
informative, and the likelihood kernel (2.2) is sufficient for 0. For instance,
one could stop after the fifth failure, or at T equal to twice the first-observed
complete lifetime.

https://doi.org/10.1017/S0515036100006486 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006486


BAYESIANS LEARN WHILE WAITING 165

3. THE PROPORTIONAL-HAZARD FAMILY

The calculation of (2.3) can, of course, be carried out by computer for any
given prior and likelihood distributions. However, for model-building, it is
desirable to use a family of distributions in which the calculations are es-
pecially tractable so that parametric behavior can be analyzed theoretically.
Unfortunately, the Koopman-Pitman-Darmois exponential family of distri-
butions so useful in credibility theory has no simple form for Pc; see JEWELL

(1974)-
However, a special case of the exponential family, the proportional-hazard

family, has useful properties:

(3.1) Pc (x I 6) = 0-e<2<*); p (x\Q) = Qq (x) r « « W , (x > o)

where Q (x) is a monotone non-decreasing function (Q (o) = o), and q (x) =
dQ {x)jdx. We note:

1. QQ (x) is the cumulative hazard (failure) function, making q (x) a unit- or
prototype failure rate;

2. If w is a random variable with absolute failure rate, q (w), and 0 is an
integer, the original lifetime, ~x, has a physical interpretation as

x = min (wlt w%, . . ., w6);

3. This family includes the exponential, Weibull, and Gumbel (extreme-
value) distributions.

The data likelihood (2.2) becomes:

(3.2) p(D\Q)= II q(Xl) [QCe-6TQT(,D)jt

where TQT is a statistic,

(3.3) TQT (D) = XQ (xt) = S Q (Xi) + S Q {Tt),

referred to in JEWELL (1977) as the total-Q-on-test-statistic, a generalization
of the "total-time-on-test" concept of reliability life-testing. Note that if
item k was already age S^ (and still working) when placed on test, then Q (Sjc)
should be subtracted from the TQT.

A convenient natural conjugate prior for 6 is the gamma density,

(3.4) P (6) = p (6 I Co> Qo) = K ' r ; , (6 > o)

with hyperparameters Co, Qo; the usefulness of (3.4) in modelling uni-modal
densities is well known. It is easy to see that Bayes' law then gives a posterior-
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to-data density of the parameter, p (6 | D), that is also gamma, with updated
parameters:

(3-5) Co+-Co + C; Q0^Q0

Furthermore, the updated means of 0 and 6 x obey the exact credibility
formulae:

(3.6) [£{6|Z)}]-i = (i-Z,) [ ^ ] \

\TQT (D)
(3-7) EiQ^lD} = (l-Z^EiQ-1} + Z2 I

with credibility factors:

(3-8) Z, = C I (Co + C); Za = C I (Co- i + C).

The posterior-to-data variances are also easily obtained:

(3-9) V{Q\D} =

(3.10) F{0-! D) =

the first terms decrease with increasing C, and so, ultimately, with probability
one, do the variances. This makes precise the difference between incomplete
and complete samples; two different data sets could lead the to same mean
forecast, but we would have more "confidence" in the result with the larger
number of complete samples.

The terms in square brackets in (3.6) (3.7) are the classical maximum-like-
lihood estimators got from the term in square brackets in (3.2). If the experi-
ment gives a large number of complete observations, relative to Co, then the
Bayesian and maximum-likelihood estimators coincide. However, for relatively
incomplete tests, more weight is given the prior means, E {0} = Co / Qo,
or Eft-1} = Q0/(C0-i).

Classical estimators are often obtained from Bayesian formulae when the
prior knowledge becomes "diffuse"; in our model this corresponds to keeping
E {0} or E {0 -1} fixed, and letting the corresponding variances (the prior
uncertainty) increase without limit. From (3.9) (3.10) we see this corresponds
to letting Co —> o or Co -> 2, respectively (with corresponding adjustments
in Qo). Thus, with very uncertain prior knowledge, we get:

(3.11) E$\D} =
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Thus, when estimating 0, we place "full credibility" in the maximum-
likelihood estimator, and ignore all prior information; but, when estimating
0"1, a Bayesian would always insist on keeping the prior mean as an initial
data point, because the prior is still informative and proper in this case.

The mixed, or predictive distribution of x, averaged over all possible values
of 9, is:

(3.13) PC (x I Co, <3o) = [<3o / (<3o + Q W)]c°, (* > o)

with density

(3.14) P (x I Co, Qo) = {Coq (x) I Qo) [Qo / (Qo+Q (xW.+i,

a generalization of the shifted Pareto distribution. If the prototype failure
function is Gumbel, we get exponential tails for large x in (3.13), while if the
underlying failures are Weibull, we get the "more dangerous" algebraic tails.
Posterior-to-the-data, predictive density is of the same form, but with
updated parameters.

The cumulative hazard function of the mixed distribution is:

(3.15) R (x I Co, Qo) = - In P° (x I Co, Qo) = Co In [1 + {Q (x) / <?„)].

One can show that this mixing tends to decrease the rate of failure; in
fact, the mixed population may have approximately constant or decreasing
hazard rate, even with increasing q (x).

Life testing applications are covered in more detail in JEWELL (1977), and
the problem of model identification of the form of Q is also considered. We
turn now to applications of these ideas in risk theory.

4. RENEWAL PROCESSES

In one model of the collective risk process, claims are assumed to follow a
renewal process. If, during an exposure interval T, C events (accidents, claims,
equipment failures, etc.) are observed, this means there are C complete interval

c

samples {xi}, and the final interval-in-progress, T — 2 x%. If all intervals

are sampled from (3.1) with fixed 6, the parameter updating becomes:

(4.1) c o ^ C o + C; Qo<-Qo + XQ(Xi) + Q (T - Z xt).
i - l < - l

Note that not only the random number of events in (0, T], but also the
actual lengths of the intervals provide information in the general case.

An important special case in risk processes occurs when Q [x) = x, leading
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to exponentially-distributed intervals, and a Poisson counting process, for
each 6. However, here

(4.2) Qo +- Qo + 2 xt + (T - S Xi) = Qo + T,

so we conclude that the Poisson process is special in that only the number of
events in (o, T], not the epochs of events, provides predictive information!

5. INDIVIDUAL LEARNING ABOUT REMAINING LIFE

We turn now to the interesting question of whether or not a Bayesian can
learn about his own remaining lifetime distribution function (rldf). For a
mixed population with average tail distribution Pc,

(5.1) Pr{x>T + u\x>T} = ~^-{f~ = Pc
T(u)

represents the fraction of those individual components alive (operating) at
age T which will survive until age T+ u.

However, for a single life component with known parameter 6, the appro-
priate rldf is:

Pc{T+u\Q)
(5.2) Pr{x>T + u\x>T;Q} = pe{T{Q) =P°T(u\Q).

If we have to estimate this single life behavior as averaged over the popu-
lation (i.e., without Bayesian learning), we get the prior expected rldf:

Pe(T+u I 9)(5.3) * { * • , ( . 1 5 » - J
which is clearly not identical with (5.1).

Now let us adopt the Bayesian point of view, and estimate the remaining
life of a single individual who has lived to age T; since he is still alive, we
have the single datum D = {x > T}, which must update the parameter density
to:

P« (T I Q)p(Q) P<> (T I Q)p(Q)

(5.4) P (0 I D) = IFK> V
J P C ( T

So the Bayesian-updated rldf will be

[ Pc (T+u\Q)p(Q)
(5-5) ESlD {P°T (u I 0)} = J p e ( ^ F" dQ,

which is exactly the same as the population rldf in (5.1)! Stated another way,
a single life (or component) cannot, on the average, gather any additional
information about his remaining lifetime distribution by the mere passage
of time, other than that given for the population as a whole—even though
he can learn about his parameter! A surprising, but satisfying result.

https://doi.org/10.1017/S0515036100006486 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006486


BAYESIANS LEARN WHILE WAITING 169

6. COHORT LEARNING ABOUT REMAINING LIFE

This does not mean, however, that several incomplete samples cannot provide
information about other lifetimes with the same 6, nor that a group of lives
with the same 0 cannot learn from the passage of time. Consider a cohort of
N lives with the same parameter which are put "on test" at the same epoch.
From Section 2, with Ti=T for all i, we see that the data D = {x% < T
{ieS); 5} changes (5.5) to:

(6.1) Ei\D {P° (u | 0)} = J P c ( r + u | 0)

where learning would clearly take place.

For the proportional-hazard family,

(6.2) P% (u I 0) = ,

If the prior at T = o is gamma with hyperparameters Co and Qo, the pos-
terior-to-data density of 0 at T is gamma with hyperparameters Co+C and
Qo+ (N — C)Q(T) + 2 Q (xi), giving finally the special cohort-experienced
remaining-lifetime distribution function:

(6-3)
f Qo + (N - C) Q (T) + S Q (x^ "|Co+c

El\D {PCT (** I S)} = [QO + {N_1_C)Q (T) ^ S g (^) + Q (fTu)\ •

It is easy to see how learning vanishes when N = l and C = o.

7. LIFE CONTINGENCIES AND RESERVES

To apply the results above, consider that we are determining the net single
premium for a continuous life annuity of $ l/year, at force of interest S, for
an individual aged x. Given 0, this would be (we omit the usual overbar
notation):

(7.1) ax (6) = J e~«» P% (u\Q)du = J e-su-\_Q(x+u)-Q(x)\ ^u.

Let us suppose that the prior on 0 is gamma with hyperparameters Cx, Qx

at the moment of underwriting (age x). The population-average annuity fair
premium is then:

(7.2) ax{Clt QJ = Qi1 f es~u \QX + Qx{u)]~Cldu,

where

(7.3) Qx(u) = Q(x + u) - Q(x)

is the prototype cumulative failure function for the remaining life, begin-
ning at age x.

Now, suppose we have insured a cohort of N lives aged x, all of whom
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have the same parameter, and let us follow the cohort for t additional years.
During this time the data provided by the C expirations at additional ages
{ti}, together with the fact that N — C lives are still in existence at age x +1,
would update the hyperparameters to:

(7.4) Cz = C1+ C; Q2 (t) = Q1+ (N-C) Qx (t) + S Qx (h).
ies

Although it is too late to change the premium, this additional knowledge
could be useful in adaptive modification of the reserves on the N-C outstanding
policies; for a single-premium annuity of $ l/year still outstanding at age
x +1, the correct adaptive reserve would be:

(7-5) tV{ax) = ax+t(C2,Q2(t)).

We remind the reader that C2 and Q2 (t) will be random outcomes, depending
upon actual cohort experience during ages (x, x+t]. Only when there is a
single incomplete life under observation (C2 = C1;Q2(t)=Q1+Qx(t)) will no
learning take place, and the reserves will follow the classic result for an average
member of the mixed population:

f Pi (t + u)
(7-6) ax+t = J e-*" ~ ^ ^ - du = ax+t (Cv Q1 + Qx (t)).

A similar development could be given in terms of the net single premium
for a life assurance of $ 1, at force of interest 8, payable at the instant of
death of an individual now aged x,

(7.7) AX(Q) = $e-svpx(u\d)du.

The appropriate formulae follow from the previous results by the universal
relation Ax= 1 — §ax.

It is of interest to follow through the actual stochastic behavior of a "learn-
ing reserve" of the type (7.5). First of all, we note that adaptive annuity
reserves do not decrease as quickly as the corresponding ax+t, for small t and
C = o, which can be seen from:

dax+t (Ca, & (0)
j t = ^x+t (C2, Q2 {t))-\

(7-") + I—~r\—7i\— {(iv-oid j+nCj .y . (())
L Y2 if) J

_ (N-C-i)ax+t(Cz+i;Q2(t))}

as compared with the well-known classical result

dax+t \C2q{x+t)
[7-9) J. ~ OaX+t A -T
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The term in square brackets is, of course, the failure rate at x +1 for the
mixed population in the proportional-hazard family, i.e., the derivative of
(3.15). When the first and subsequent deaths occur, there is an instantaneous
drop in (7.5), since C2 increases by unity, but Q2 (t) is continuous. In general,
if fewer (more) lives than expected terminate during (x, x +1], the reserves
on the remaining lives are larger (smaller) than usual, since this indicates that
the value of 0 is smaller (larger) than average for this cohort. A complementary
effect occurs for life assurance learning reserves.

It should be mentioned that a gamma-mixed proportional-hazard model
should be used with care for human mortality. If, for example, the prototype
failure rate is assumed to follow Makeham's law, q (t) =A +Be*t, we find
that the mixed hazard rate (the derivative of (3.15)) is asymptotically constant,
due to the failure-rate-decreasing properties of mixing! One would have to
assume that, given 0, individuals follow a much stronger "wear-out" (say,
Gumbel), in order to obtain a population Makeham-type law. It is interesting to
speculate as to whether or not this occurs for closely-matched humans, where
6 would have to include health, genetic, and environmental effects.

8. DEFECTIVE DISTRIBUTIONS

Component and human lives are finite, with probability one; however,
defective distributions arise in a variety of other operational situations.
Consider, for example, the estimation of the time it takes for a number of
requests for bids, mailed survey responses, etc., to be returned. Some responses
are received rather quickly; in other cases, an answer is never received.

A reasonable model for this situation would add an unknown defect para-
meter, cf>, to the usual lifetime distribution, as follows:

( 8 . 1 ) P c (x I 0 , <f>) = </> + ( 1 - < f > ) P c ( x \ Q ) ; p ( x \ 0 , <f>) = ( i - < f > ) p ( x \ Q ) .

<f> is then the probability that the lifetime is "infinite".
Under the life testing scheme of Section 2, the likelihood of the date set D

becomes:

(8.2) p(D\Q,<f>)= ( T ) (1 -<l>)c n p (Xi 10) n [$+ (1 -<f>)P°{T} 10)].

Assuming all the intervals Tj have common value T, we find the posterior-
to-data density of 0 and <f> by a binomial expansion:

(8.3) K y (N~.C) ft (1-$)*-} n p (Xi I 0) P c ( r I Q)N~c~ip (0,,

where K is a normalizing constant to make §§ p (Q,(f> \ D) ddd<f> = 1. To illustrate
the calculations further, assume that the "honest" part of (8.1), P c (x | 0),
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is from the proportional-hazard family (3.1), with gamma prior on 0 (3.4). For
simplicity, assume <f> is, a priori, independent of 0, and has a beta prior density:

(8.4) p (<f>)=p (<f> I a0, bo)=B-i (a0, b0) r*-1 (I-®"*-1 (o<<f>< 1).

B(ao,bo) is the beta function, T (a0) T (b0) / T (ao+bo). After straight-
forward calculations with these special forms, we find the mixed beta-gamma:

(8.5) Y n , (D) p(<j>\ao + j,bo+N- j) p(Q\C0 + C,Q0+ TQTj (D)),

where

(8.6) TQTj(D)= S <?(*,) + (N-C-j)Q(T),
i£S

and the mixing probabilities are given by:

(8.7) nt(D) = K-B (ao + j , b0 +N-j) [<?0 + TQT}

where, again, K is a normalizing factor to make 2 II; = l. It is important to
note that, posterior-to-data, the estimates of 6 and <j> are dependent, unless
all of the observations are complete. For estimating the mean defect, we have

(8.8) E{4,\D} =

where we recognize the term in square brackets as the mean of <f>, given only
that we observe j defects out of N trials. For N = 1 and no failure:

which shows clearly how the mean defect increases from its original estimate
of aoj {ao + bo) towards (ao+ 1) / (ao+ bo+ 1) as T—.> 00 with no failure. Of
course, if the lifetime ever terminates, E {<f> | D} jumps to (bo+ 1) / (ao+ bo+ l).
Other mixing models are given in JEWELL (1977).
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