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Sarcopenic obesity is characterised by the double burden of diminished skeletal muscle mass
and the presence of excess adiposity. From a mechanistic perspective, both obesity and sar-
copenia are associated with sub-acute, chronic pro-inflammatory states that impede meta-
bolic processes, disrupting adipose and skeletal functionality, which may potentiate
disease. Recent evidence suggests that there is an important cross-talk between metabolism
and inflammation, which has shifted focus upon metabolic-inflammation as a key emerging
biological interaction. Dietary intake, physical activity and nutritional status are important
environmental factors that may modulate metabolic-inflammation. This paradigm will be
discussed within the context of sarcopenic obesity risk. There is a paucity of data in relation
to the nature and the extent to which nutritional status affects metabolic-inflammation in
sarcopenic obesity. Research suggests that there may be scope for the modulation of sarco-
penic obesity with alterations in diet. The potential impact of increasing protein consump-
tion and reconfiguration of dietary fat composition in human dietary interventions are
evaluated. This review will explore emerging data with respect to if and how different dietary
components may modulate metabolic-inflammation, particularly with respect to adiposity,
within the context of sarcopenic obesity.

Adipose: Obesity: Sarcopenia: Lipotoxicity: Inflammation

Sarcopenic obesity is an important health challenge,
characterised by the double burden of diminished skel-
etal muscle mass concurrent with excess adiposity(1,2).
Population ageing, coupled with the ever-rising obesity
incidence has led to significant proportion of adults
who display excess adiposity combined with reduced
skeletal muscle mass(3,4). Currently, overweight and obes-
ity affects 50 % of the European population, accounting
for about 80 % of type 2 diabetes (T2D) cases(5).
Obesity is typified by increased lipid accumulation in adi-
pose tissue, with peripheral ectopic fat deposition in the
liver and skeletal muscle(6,7). Sarcopenia is associated
with the progressive loss of muscle mass and strength,

typically coupled with ageing(8). It is estimated that the
prevalence of sarcopenia ranges from 1 to 29% in
community-dwelling individuals over the age of 50
years(9). The risk of adverse outcomes associated with
sarcopenia, including falls, physical disability and frailty,
can be greatly perpetuated by coincident obesity(10–12).
Indeed, sarcopenic obesity has additional comorbidities
also associated with obesity, namely CVD, T2D(2,13), as
well as all-cause mortality(11,14).

Sarcopenic obesity is characterised by the double bur-
den of diminished skeletal muscle mass and excess adi-
posity(2). This review is specifically intended to focus on
the interaction between inflammation and metabolism,
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specifically focusing on the impact of adiposity in sarco-
penic obesity. Despite a wealth of literature on both
obesity and sarcopenia, there is substantial heterogeneity
in the diagnostic criteria used to define sarcopenic
obesity(15–19). Nevertheless, more recent efforts have
sought to establish potential synergism between the
causal factors and mechanisms underlying the two
coincident conditions(16,20–24).

Fig. 1 illustrates our conceptual model of the potential
impact of different lifestyle determinants on risk of sarco-
penic obesity, wherein there has been a surge in research
investigating whether co-regulatory link(s) exist between
reduced muscle mass and obesity, v. a coincidental asso-
ciation(16,20,24,25). Ageing is typically characterised by
increased adiposity and reduced physical activity(2,26,27).
In addition to ageing, suboptimal dietary patterns and
physical inactivity play a role(28). From the nutritional
perspective, inadequate dietary protein intake coupled
with excess dietary energy intake, rich in SFA, are two
potential factors in sarcopenic obesity(28–33).

From the mechanistic perspective, both obesity and
sarcopenia are associated with a sub-acute, chronic
pro-inflammatory state that probably impedes metabolic
processes, disrupting both adipose and skeletal function-
ality(24,34–36). The conceptual model in Fig. 1 purports
that sub-acute chronic inflammation may interact with
excess dietary and/or endogenous SFA, and that inad-
equate protein intake may augment the risk of sarcopenic
obesity. Indeed, we speculate that two important and
concurrent molecular processes may be at play, namely
insulin resistance (IR) and anabolic resistance (AR),
both of which are possibly largely impacted by inflam-
mation(34–38). IR is defined as sub-optimal insulin-
stimulated glucose uptake into metabolic tissues, includ-
ing skeletal muscle and adipose tissue(39,40).
Obesity-related inflammation is a key factor contributing
to IR (for review, see(41)). AR is defined as the blunted
response of skeletal muscle protein synthesis (MPS) to
anabolic stimuli such as protein intake(42) and muscle
contraction(43). A number of factors may contribute to
AR including impaired protein digestion and absorption,
sub-optimal muscle amino acid sensing and dysregulated
cell signalling in myotubes in response to anabolic hor-
mones (insulin and insulin-like growth factor-1)(44–48).
In sarcopenic obesity, increased adiposity with IR likely
coincides with age-related AR(24,49). Thus together IR
and AR may act synergistically to develop a state of
metabolic frailty, that can culminate in a triad of T2D,
sarcopenia and sarcopenic obesity(49).

Insulin resistance v. anabolic resistance: two sides of the
same coin?

Considering the metabolic and molecular processes asso-
ciated with sarcopenic obesity, it is plausible that IR and
AR are two inter-related co-existing processes in sarcope-
nic obesity(50). As illustrated in Fig. 1, AR and IR co-exist
but have separate effects on skeletal muscle, resulting in
sarcopenia(51) and T2D, respectively. When AR and IR
exist simultaneously, they may evoke the development of

sarcopenic obesity. Obesity not only causes IR, but also
within the context of sarcopenic obesity, it likely also pro-
motes musculoskeletal AR(52–54), ultimately contributing
to muscle atrophy with increased adiposity(55). Thus, in
sarcopenic obesity, IR and AR may represent two sides
of the same coin wherein the occurrence of both muscle
atrophy with AR, and IR in adipose and skeletal muscle,
leads to sarcopenic obesity.

Muscle homoeostasis is maintained primarily through
a balance between the processes of MPS and muscle pro-
tein breakdown (MPB). Anabolic stimulus such as exer-
cise or nutrition triggers skeletal muscle by activating the
complex mTORC1(56). Active mTORC1 results in the
phosphorylation of substrates 4EBP1 and P70S6K1,
enhancing translation of mRNA to protein(57), a critical
step in MPS that is interrupted in AR and sarcopenia.
Simultaneously, MPB-related pathways are supressed(58)

by mTORC1 and Akt. In addition to Akt activation of
mTORC1, Akt controls the forkhead box O (FOXO)
family of transcription factors including FOXO1 and
FOXO3a(59). Stimulation of Akt by anabolic stimuli
inhibits FOXO, resulting in the deactivation of transcrip-
tional E3 ubiquitin ligases, MuRF-1 and MAFbx.
Without Akt activation, these ligases are involved in ubi-
quitination and proteasomal degradation of different
substrates(60).

This imbalance between MPS and MPB, in favour of
MPB, is a key contributor to loss of skeletal muscle
mass(61). When comparing the elderly population to
their younger counterpart, postprandial MPS rates are
reduced, specially to small amino acid doses(42), as well
as to a bout of resistance exercise(62). This decreased
MPS rate is linked to reduced mTORC1 downstream
phosphorylation of P70S6K1 and 4EBP1 targets(63).
The molecular signatures of ageing and physical inactiv-
ity in skeletal muscle level are similar(64) and are also
often concomitant (i.e. overall older people are more sed-
entary than younger people)(65). While bouts of exercise
induce hypertrophy, muscle disuse (with the sum effect
of ageing via AR) induce atrophy(65–68). Furthermore,
the muscle of obese individuals also experiences an atte-
nuated anabolic response to protein ingestion and muscle
contraction, in comparison with their healthy counter-
part (for review, see(69)). This state of AR may reflect
inertia towards insulin, insulin-like growth factor-1, sub-
acute inflammation and/or musculoskeletal lipid infiltra-
tion(69), which we will explore in more detail later.
Interestingly from the muscle atrophy or MPB perspec-
tive, MuRF-1 and atrogin-1 are actively transcribed in
models of atrophy, metabolic stress and inflammatory
conditions(60) including (but not restricted to) fast-
ing(70,71), bed rest(72), T2D(70), cachexia(70,73,74) and age-
ing(75–77). Essentially, we do not have full clarity in
relation to the molecular processes that control AR.
Indeed, AR does not explain sarcopenia in T2D, despite
reduced mTOR pathway activity compared with healthy
controls(78). Thus, greater understanding in relation to if
or how we can regulate the molecular processes and
inter-relationship between AR and IR may be fundamen-
tal to understanding the extent to which we can attenuate
age- and obesity-related sarcopenia.
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Obesity and adipose tissue inflammation

White adipose tissue is a multifaceted organ which not
only plays an important role in energy homoeostasis,
but also acts as an endocrine organ, secreting paracrine
factors to influence the activities of surrounding cells
and subsequently regulate other metabolic organs. The
contribution of obese adipose tissue in the generation
of a chronic, sub-acute pro-inflammatory state is well-
documented(6,41,79), therefore we provide a brief synopsis
of key cellular and molecular alterations. In response to
excess energy intake, pre-adipocytes and mature adipo-
cytes increase in size (hypertrophy) and number (hyper-
plasia)(80,81) to augment the storage capacity of excess
dietary energy in the form of TAG(7,82). As obesity devel-
ops, white adipose tissue can become progressively dys-
functional(83). First, adipose can lose the ability to
effectively store excess dietary and endogenous lipids(84).
When TAG is not effectively stored in adipose, NEFA
can spill over, increasing circulating lipid concentrations
and causing inappropriate lipid deposition in peripheral
metabolic tissues(85,86), which has detrimental conse-
quences on metabolic and skeletal health. Secondly, the
adipose tissue-derived pro-inflammatory milieu can

have detrimental effects on pre-adipocyte and adipocyte
biology, which also contribute to adipose dysfunction(79).
Pro-inflammatory cytokines such as IL-1β inhibit adipo-
genesis, or the ability of pre-adipocytes to mature into
functional TAG-enriched adipocytes(87). Thus, less func-
tional adipocytes are present to carry the TAG load,
leading to the typical hypertrophic adipose phenotype,
greater potential for NEFA and TAG spill over and per-
ipheral lipotoxicity(88).

With increasing obesity, the stroma vascular fraction
between adipocytes becomes infiltrated with a range of
immune cells, including adipose tissue macrophages
(ATM), T-cells, mast and dendritic cells(79). Enhanced
immune cell infiltration, with the associated
pro-inflammatory milieu, has been implicated in the pro-
gression of whole-body glucose intolerance, IR and
T2D(89). Immune cells, particularly macrophages, dis-
play great ‘plasticity’ wherein the nature of the cellular
phenotype can switch between pro- and anti-
inflammatory states, which largely reflect their biological
environment(90). In obese adipose tissue, the majority of
ATM display an M1 or ‘classically activated’
pro-inflammatory phenotype(90–92). These M1 ATM
largely replace the M2 ATM or ‘alternatively activated’

Fig. 1. (Colour online) Lifestyle determinants of sarcopenic obesity: impacting insulin
resistance v. anabolic resistance.
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macrophages which are present in lean adipose tissue
and display an anti-inflammatory or pro-resolving
secretome(93). M1 ATM secrete a range of pro-inflamma-
tory mediators including TNFα, IL-1β, IL-6, IL-8
CCR2, CCR5, MCP-1, MIP-1α, resistin and nitric
oxide(89–91,94). Obese and dysfunctional adipose tissue
also display ‘crown-like structures’ wherein necrotic adi-
pocytes become surrounded by ATM and other immune
cells(95) and release a range of damage-associated
molecular proteins(96) which are recognised by nod-like
receptor proteins(97). Nod-like receptor protein-3 activa-
tion then results in the maturation and activation of
IL-1β, further contributing to adipose inflammation(98).
It is probable that a range of adipose-derived signals,
including lipids, lipid derivatives, cytokines and/or adi-
pokines, adversely impact skeletal muscle metabolism
and inflammation(99), all of which are potentially rele-
vant within the context of sarcopenic obesity.

Adipose tissue, adipokines and lipids: putative crosstalk
with muscle metabolism

Fig. 2 illustrates a range of potential adipose-derived
agents that may interrupt skeletal health with age and
increasing adiposity. In sarcopenic obesity, it is well estab-
lished that low protein intake and physical inactivity
adversely affects skeletal health(28,30–32,45,64). In terms of
adipose-derived signals, key processes include inflamma-
tion, lipid infiltration, lipotoxicity and impaired reactive
oxygen stress responses(90,100,101). This review will mainly
focus on the first two in order to align with the remit of
our review, pertaining to the role of adiposity, inflamma-
tion and metabolism in sarcopenic obesity. Nevertheless,
we fully acknowledge that cellular stress responses and
inefficient nutrient sensing are equally important molecu-
lar processes. The pro-inflammatory cytokines, IL-1β and
TNFα, secreted from obese ATM impact both adipose
metabolism and inflammation. Chronic stimulation of
pro-inflammatory signalling pathways, particularly
MAPK, JNK and NF-κB(102), impedes insulin signalling,
adipogenesis and adipocyte lipid storage, and augments
adipocyte lipolysis, all of which reduce adipocyte capacity
to store and manage excessive energy intake as an inert
lipid depot(103–107). This leads to lipid spill over from adi-
pose to peripheral organs.

Research demonstrates that lipid mediators, particu-
larly those derived from SFA, are potent inflammatory
agonists, via several potential mechanisms. SFA stimu-
late the pro-inflammatory responses via Toll-like
receptor- and nod-like receptor protein-3-mediated path-
ways, which promote downstream NF-κB signalling to
induce cytokine production (e.g. IL-1β, TNFα, IL-6
and MCP-1). These cytokines act in a paracrine manner
to further recruit ATM into the stroma vascular fraction
of adipose tissue and contribute to systemic low-grade
inflammation wherein they may interrupt skeletal metab-
olism. Indeed, adults with sarcopenic obesity display ele-
vated circulating concentrations of IL-6, TNFα and the
acute phase protein C-reactive protein (CRP)(37).

The extent to which ATM-derived cytokines and/or
adipocytokines have direct adverse metabolic effects on
skeletal muscle in vivo is not fully deciphered.
Age-related low-level chronic inflammation (sometimes
termed inflammaging), characterised by elevated
plasma/serum pro-inflammatory cytokine concentrations
is often attributed to adipose tissue, which in turn may
interrupt MPS (i.e. blunted via enhanced IR and AR)
and MPB (i.e. via protein degradation promotion) ultim-
ately leading to muscle protein catabolism(108–110).
Inflammaging is typified by persistently high levels of cir-
culating pro-inflammatory cytokines (e.g. TNFα, IL-6
and IL-1) and acute phase proteins (e.g. CRP)(111–114);
while in the absence of obesity, sarcopenia in human sub-
jects is characterised by higher CRP levels only(35).
Overall, higher levels of these pro-inflammatory markers
are associated with lower muscle mass and strength in
older participants(115–119). However, there is not full clar-
ity in relation to whether the pro-inflammatory pheno-
type is coincidental or causal with respect to the impact
of adipose-derived inflammation on skeletal health.

The putative impact of such inflammatory insults may
contribute to AR by blunting MPS. For instance, chronic
CRP elevation is inversely related to lean muscle mass in
older women(119). However, it needs to be noted the CRP
is an acute phase protein, secreted predominantly by the
liver, although indicative of systemic inflammation.
Mechanistically, humanmyotubes exposed toCRP resulted
in reduced size and decreased MPS rates, as well as
increased activation ofAMPKand inhibition ofAkt signal-
ling, thus reducingmTORC1activity(119). Additionally, evi-
dence from human- and murine-derived cells as well as in
vitro studies show that the local expression of insulin-like
growth factor-1 is blunted by pro-inflammatory cytokines
TNFα and IL-1β, leading to impairment of glucose disposal
into the muscle and the resistance of mTORC1 activation
from IRS1 phosphorylation and its downstream cascade,
an example of the IR and AR synergistic effect(25,120–123).
NF-κB is activated by TNFα in rat andmouse skeletal mus-
cle cells to ultimately induce protein degradation(124–126),
but downstreamactivation ofNF-κBhas also been reported
fromexcessmuscle fatty acid infiltration (for review, see(25)).
As such, the impact of these cytokines may be both direct
and indirect via lipid derivatives including ceramides.
Indeed, Strle et al.(127) showed that ceramide, a SFA-derived
second messenger in TNFα and IL-1β signalling pathways,
was a key element in insulin-like growth factor-1 resistance
and thusAR in vitro. High TNFα concentrations also result
in the activation of the caspase cascade via reactive oxygen
species production and TNFR1 activation. TNFR1 activa-
tion increases cell apoptosis(25,128) leading to the release of
circulatory inflammatory peptides such as TNFα to con-
tinue the bluntedMPS loop as well as the increase in plasma
NEFA and thus intracellular fatty acids(25).

Whilst our review is focused on the potential impact of
adipose inflammation on IR and AR, it would be remiss
not to highlight that inflammatory insults may play a
role in skeletal degradation. Switching the focus to MPB
upon local inflammatory stimuli, by binding to TNFR1,
the role of TNFα-induced skeletal muscle loss in ageing
mice was pinpointed to the NF-κB-mediated activation of
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E3 ligases (MAFbx and MuRF-1) and p38MAPK. By vir-
tue of ubiquitination of MyHC proteins and induced mal-
function of skeletal muscle satellite cells, NF-κB
promoted protein degradation and impaired regener-
ation(25,129) (previous murine data supports these
findings(124–126,130)). TNFα acts in a positive feedback
loop to increase the transcription of additional TNFα, as
well as IL-1β and IL-6, which feed into chronic inflamma-
tion and reactive oxygen species production, leading to
NF-κB-mediated ubiquitination and protein degrad-
ation(25). Importantly however, existing human evidence
indicates MPB is not elevated in non-pathological

ageing(77), although there is some evidence that the
suppressive effect of insulin on MPB may be diminished
at moderate insulin concentrations (about 15 μIU/ml)
equivalent to those following a small, low glycaemic index
meal(131).

‘Lipid saturation’: lipid-derived adipose signals and
skeletal health

Hypertrophic obese adipose tissue tends to become
increasingly dysfunctional with increasing obesity,

Fig. 2. (Colour online) Adipose- and ageing-derived detriments to skeletal muscle: some of the
adipose-derived insults that interact with skeletal biology, lipid derivatives and adipose inflammatory mediators
as those mentioned, as well as reactive oxygen species (ROS), reactive nitrogen oxide species (RNOS) and
impaired nutrient sensing. CRP, C-reactive protein; MPS, muscle protein synthesis; MPB, muscle protein
breakdown; DAG, diacylglycerol; NLPR, nucleotide-binding oligomerisation domain, leucine rich repeat and
pyrin domain containing; TLR, Toll-like receptor.
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wherein excessive ‘lipid saturation’ of adipocytes leads to
significant spill-over into peripheral tissues(85,86), includ-
ing the skeletal muscle compartment(132). Lipotoxicity
refers not only to the aforementioned ‘spill-over’ but
also generation of lipid mediators, sphingolipids, TAG
and diacylglycerols, all of which may adversely impact
skeletal muscle biology(133,134). Intramyocellular lipid
accumulation, present as deposits of TAG, diacylglycer-
ols or sphingolipids, are a characteristic of lipotoxicity.
Elevated intramyocellular lipids are observed in obese,
IR and T2D subjects(135). Greater intramyocellular
lipid content is associated with greater content of cera-
mides. Ceramide’s potent lipotoxicity has been shown
to impede intracellular anabolic signalling and is impli-
cated in the progression of IR in skeletal muscle(136).
For example, an in vitro study showed that ceramide
treatment decreased small neutral amino acid transporter
mediated sarcolemmal translocation and amino acid
uptake in rat myotubes, leading to the suppression of
p70S6KT389 phosphorylation and MPS(137). It has been
widely shown in vitro that palmitate treatment of
C2C12 myoblasts results in ceramide accumulation(54),
IR, upregulation of pro-apoptotic genes(138,139), dimin-
ished protein synthesis, augmented FOXO3a and upre-
gulated eIF2a activation(54). Impeding ceramide
synthesis results in improvements in mTOR signalling
in vitro(140). Even though ceramide levels have been iden-
tified to be significantly higher in obese rats compared to
their lean counterparts(141), in human subjects there were
no identifiable differences between total ceramide levels
in older v. younger individuals(142). Although difference
existed for specific ceramides (C16:0, C18:0 and C20:0),
and C16:0 levels were negatively correlate with lower
leg lean mass in both healthy young and elderly
cohorts(142).

Both high-fat diets(66) and increasing plasma NEFA
concentrations through lipid infusion(143) impair insulin
sensitivity, and emerging evidence indicates that lipid
overload may also induce AR(53,144,145). Obese rats dis-
play reduced activation of MPS, due to chronic lipotoxi-
city in skeletal muscle(146). Stephens et al.(53)

demonstrated that an acute lipid infusion in the presence
of physiological hyperinsulinaemia impaired the MPS
response to the ingestion of 20 g amino acids in young
men, in part via the suppression of p-4EBP1 signalling,
an effector downstream of mTORC1. Interestingly,
reversal of these attenuated anabolic effects was observed
with a bout of strenuous exercise(147), suggesting that
physical activity may offset lipid-induced AR in skeletal
muscle. There is accumulating evidence that obesity,
which represents another model of lipid overload, sup-
presses the stimulation of MPS rates following dietary
protein ingestion(144,145), combined feeding and resist-
ance exercise(148) in human subjects. A recent study was
the first to investigate the impact of high fat feeding on
MPS in human subjects(149). This study reported that,
in overweight and obese middle-aged men, neither the
acute consumption of a high fat meal nor 2 weeks of
overfeeding via a high-SFA diet had a detrimental effect
on the MPS response to dietary protein ingestion.
Surprisingly, when a dose of protein was consumed 4 h

after the acute ingestion of a high fat meal, more of the
amino acids from the consumed protein were incorpo-
rated into skeletal muscle. Notably, in this study the
high fat feeding interventions did not induce IR. This
suggests that IR may be necessary to produce lipid
overload-induced AR in human subjects. It will be inter-
esting for future studies to investigate whether longer-
term high fat feeding interventions that result in IR
also lead to the development of AR(149).

Dietary interventions relevant to sarcopenic obesity

The reduced responsiveness of MPS to protein feeding in
older adults specifically occurs with the ingestion of
low-to-moderate protein doses (i.e. 20 g protein/meal or
less)(42,150). This can be overcome by the consumption
of larger quantities of high quality protein (about
30–40 g/meal)(42). This indicates that older adults likely
require higher protein intakes than younger adults to pre-
serve skeletal muscle mass and potentially other aspects
of muscle health. As obesity appears to exacerbate
age-related AR to protein ingestion(145) and amino acid
infusion(151), a higher protein intake may be especially
important in obese older adults to prevent the develop-
ment and/or progression of sarcopenic obesity. In par-
ticular, during diet-induced weight loss, which typically
results in the loss of both fat-free mass (composed of
about 45 % skeletal muscle) and fat mass(152), higher pro-
tein intakes have been hypothesised to attenuate losses in
muscle mass(153).

A number of studies have explored the role of higher
protein intakes (≥1 g/kg/d) in preserving muscle mass
and function during weight loss in obese older
adults(154–157), although studies in individuals with sarco-
penic obesity are lacking. The current literature indicates
that the preservation of muscle mass is not possible with
a dietary intervention alone(154,158). For example, Backx
et al. compared the effect of normal protein (0⋅9 g/kg/d)
and higher protein (1⋅7 g/kg/d) intakes during 12 weeks
of diet-induced weight loss in overweight/obese older
men and women. The normal protein and higher protein
diet groups exhibited similar reductions in lean mass and
leg strength, and equivalent improvements in 400 m
walking speed, following the weight loss intervention(154).
In another study, obese postmenopausal women con-
sumed a normal protein (0⋅8 g/kg/d) weight-loss diet or
the same diet in which part carbohydrate and fat content
were replaced with isoenergetic whey protein supple-
ments that provided an additional 0⋅4 g/kg/d. Although
protein supplementation during the weight loss blunted
the initial decline in thigh muscle volume after 5 %
weight loss, after 10 % weight loss there was no statistic-
ally significant difference in muscle mass loss in the two
groups(158). Notably however, the beneficial effect of
10 % weight loss on skeletal muscle insulin sensitivity
was eliminated in the women consuming the higher pro-
tein intake (1⋅2 g/kg/d), whereas the weight loss resulted
in a 25 % improvement in muscle insulin sensitivity in
women consuming the normal protein intake(159). This
implies that higher protein intakes during weight loss
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could blunt improvements in metabolic function.
Nevertheless, in both the higher and normal protein
groups, weight loss lowered fasting insulin concentration
(without a change in plasma glucose concentration) and
endogenous glucose production equivalently, indicating
that both groups may have improved hepatic insulin sen-
sitivity. Furthermore, the impact of the two levels of pro-
tein intake on plasma glucose homoeostasis remains
unknown. Importantly, no exercise intervention was
included during weight loss in this study. As the insulin
sensitising(160) and muscle-sparing(152) effects of exercise
are well established, it will be interesting for future stud-
ies to examine whether concomitant exercise can ablate
the lack of change in muscle insulin sensitivity associated
with higher protein intake.

Studies that have included exercise (particularly resist-
ance exercise training) as a co-intervention generally
show a greater effect of higher protein intake on lean
mass preservation(155,157,161). Resistance exercise sensitises
the muscle protein synthetic machinery to protein feeding
resulting in a greater proportion of the ingested amino
acids being incorporated into newly synthesised skeletal
muscle protein(162). Moreover, resistance exercise attenu-
ates the suppressive effects of energy restriction on the
MPS response to protein intake(163). Verreijen et al.(161)

reported that the consumption of a high whey protein,
leucine- and vitamin D-enriched supplement during 13
weeks of energy restriction (−2510 kJ/d) and resistance
training (3 d/week) preserved appendicular skeletal muscle
mass relative to an isoenergetic control supplement in
obese older adults, although both groups improved
strength and physical performance to a similar extent.
Whey protein is a high quality protein that results in
greater stimulation of MPS compared with other protein
sources at rest and following resistance exercise in older
adults(164,165). This effect of whey is likely attributed to
the faster digestion and absorption and the high content
of essential amino acids, particularly leucine, an essential
amino acid that acts as a key trigger for MPS(166,167). As
such, the muscle preserving effects of supplementation in
the intervention group are likely due to a combination
of the higher protein quantity and quality consumed dur-
ing the exercise and weight loss intervention.

Dietary fat quantity and quality can impact sub-acute
inflammation(168). In terms of dietary fat composition,
we have demonstrated in mice that diets rich in SFA
rather than MUFA induce both priming and nod-like
receptor protein-3-mediated activation of IL-1β inflam-
mation in equivalently obese adipose tissue(169), coinci-
dent with alterations in insulin secretion, and greater
risk of IR and T2D(170–172). As mentioned earlier,
IL-1β adversely affects skeletal MPS(121) and inhibits
insulin-induced glucose uptake in skeletal myoblasts(173).
Given the impact of dietary saturates on inflammation
and the dysfunction to skeletal health caused by IL-1β,
there is a putative negative effect of a diet rich in SFA
on skeletal muscle metabolism due to IL-1β production.
Given the reputed anti-inflammatory and/or pro-
resolving attributes of long chain (LC) n-3 PUFA, sev-
eral researchers have investigated the potential inter-
action between LC n-3 PUFA and protein intake on

skeletal health. In vitro, the combination of protein and
LC n-3 PUFA increased MPS and decreased
MPB(174,175). In vivo, Smith and colleagues(176,177)

demonstrated that LC n-3 PUFA supplementation for
8 weeks increased the mixed MPS response to insulin
and amino acid infusion in both healthy younger
adults(177) and older adults(176), which was at least partly
mediated via the mTOR-P70S6K1 signalling pathway.
Importantly, another study demonstrated that LC n-3
PUFA supplementation, for 6 months, resulted in clinic-
ally relevant gains in muscle mass and strength in older
adults(178). LC n-3 PUFA supplementation has also
been reported to enhance some of the strength and func-
tional adaptions to resistance exercise training in older
women(179,180). However, not all studies have reported
a favourable effect of LC n-3 PUFA supplementation
on muscle anabolism(180,181). For example, McGlory
et al.(181) observed no effect of LC n-3 PUFA supplemen-
tation for 8 weeks on myofibrillar protein synthesis in
response to the consumption of 30 g protein either
alone or following a bout of resistance exercise in
young men. It is possible that the beneficial effect of
LC n-3 PUFA supplementation on muscle anabolism is
more pronounced in older individuals experiencing low
grade inflammation and AR compared to younger indivi-
duals. Further research is required to explore the role of
LC n-3 PUFA supplementation, in conjunction with
amino acids, leucine and/or protein supplementation, in
the prevention and treatment of sarcopenic obesity.

Personalised responses v. non-response in sarcopenic
obesity

In human dietary interventions there is often consider-
able inter-individual variability in responses. In the obes-
ity, IR and T2D field, this paradigm is relatively well
accepted, wherein typically up to 40 % of subjects
respond to an intervention(172,182). This variability in
response may be due to different baseline phenotypes
such as hepatic v. skeletal IR(183), wherein different inter-
ventions may be appropriate(184). We and other groups
have looked at the impact of different gene–nutrient
interactions with respect to identifying the susceptibility
to the development of various disease traits(171,185,186).
There is some evidence in relation to the varied respon-
siveness of the adipokine adiponectin to SFA reduction
according to different polymorphisms(187). Other inflam-
matory genotypes/phenotypes may account for the mixed
responsiveness between studies determining the impact of
SFA and/or LC n-3 PUFA(188). This biological phenom-
enon goes beyond non-compliance. Indeed, we have pre-
viously identified that despite equivalent compliance
between adolescents, that not everyone responds to an
anti-inflammatory nutritional intervention(189), and that
response may be determined by baseline metabolic
phenotype(172). These studies highlight the potential for
personalised nutrition approaches to improve outcomes.
In the context of sarcopenia or sarcopenic obesity, to
date no studies have characterised the inter-individual
variability in responses to protein and/or other nutrient(s)
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supplementation interventions. It will be interesting to
understand if the paradigm of response heterogeneity,
which seems to be present in obesity and IR(171,189), is
also present in sarcopenic obesity.

Perspectives for the future

Sarcopenia, obesity and their combined state, sarcopenic
obesity, are major health concerns with the ever-growing
ageing population. Each of these co-morbidities
consequently have an impact on one another with their
mechanisms being intertwined and intricate.
Deciphering the cross talk between the adipose tissue
and the skeletal muscle will enable us to truly identify
the processes behind the onset of sarcopenic obesity
and will help detect ways to counteract the condition.
Treating the condition of sarcopenic obesity is complex
as diet-induced weight loss, aimed at reducing fat mass,
can accelerate muscle mass loss(154,190). The incorpor-
ation of exercise, ideally including both resistance and
aerobic exercise training, during weight loss is a potent
strategy to minimise weight loss-induced muscle mass
in older adults(191). In addition, dietary strategies such as
higher protein intake may further enhance muscle mass
retention. Further work is required to examine combined
exercise and nutrition interventions, specifically in indivi-
duals with sarcopenic obesity. Importantly, establishing
a clinical definition for sarcopenic obesity will enable
appropriate participant selection and comparison between
studies.
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