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ON THE FLOW OF AVALANCHING SNOW

By M. HEIMGARTNER

(Eidgendssisches Institut fiir Schnee- und Lawinenforschung, 7260 Weissfluhjoch/Davos,
Switzerland)

ABsTRACT. Variation of flow depth of a flowing avalanche caused by a change in the slope angle is
examined using Bernoulli’s energy equation, used in hydraulics to determine a non-uniform steady flow.
This equation is modified for a material with internal friction and a strongly curved track. The calculated
flow depths are compared with those obtained by tests with a snow slide. In the flow model dry and turbulent
friction are taken into account. Friction coefficients are estimated comparing calculated and measured flow
depths. It appears that in wet snow they differ from those of dry snow. Finally, this model is used to calculate
the runout distance of a natural avalanche,

REsumE. Sur le mouvem:nt d’une avalanche coulante. La variation en épaisseur d’une avalanche coulante
causce par un changement de pente est examinée au moyen de ’équation de Bernoulli qui est connue en
hydraulique pour déterminer un écoulement stationnaire non uniforme. Cette équation est adaptée A des
matériaux possédant un frottement interne et & une trajectoire fortement courbée. Les épaisseurs ainsi
caleulées sont comparées a celles qui ont été obtenues par des essais sur une glissoire de neige. Dans le modéle
d’écoulement un frottement indépendant de la vitesse et un frottement turbulent sont pris en compte. Les
coefficients de frottement sont estimés par comparaison des épaisseurs calculées et mesurées. 11 apparait
qu’ils différent dans une neige mouillée de ceux d’une neige séche. Pour finir ce modéle est utilisé pour
calculer la distance d’arrét d’une avalanche naturelle.

ZUSAMMENFASSUNG. Jur Bewegung von Fliesslawinen. Mit der in der Hydraulik iiblichen Energicgleichung
von Bernoulli fiir stationir ungleichférmige Abfliisse, welche fiir ein Material mit innerer Reibung und stark
gekrimmte Bahnkurven umgeformt wurde, wird die Fliesshéheninderung einer Fliesslawine nach einem
Gefillsbruch untersucht und mit Messungen auf einer Schneegleitbahn verglichen. Das Abflussmodell
beriicksichtigt trockene und turbulente Reibung, deren Koeffizienten aus Vergleich der gemessenen mit der
gerechneten Fliesshohe abgeschitzt werden. Es zeigt sich, dass diese Koeffizienten fiir trockenen und nassen
Schnee verschieden sind. Abschliessend wird mit diesem Modell die Auslaufstrecke einer natiirlichen Lawine
machgerechnet.

1. GENERALITIES AND ASSUMPTIONS

In this paper the motion of flowing avalanches is calculated using some methods of technical
hydraulics. Avalanching snow behaves differently from water, hence, the equations des-
cribing the flow model have to be adapted to the properties of snow. In doing so one has to
consider the restrictions made by Salm (1968):

(1) The material is ideal elasto-plastic, similar to a dry sand.
(2) The flow is bi-dimensional and steady, but non-uniform. This non-uniformity is
caused by a change in the slope angle.

Furthermore, we assume the friction forces 7 along the avalanche track to depend upon
velocity v like 7 = ag°-l-a,v?, where the a; are constants. The viscosity term a,2', is neglected
(Salm, 1966). These limitations allow us to describe a flowing avalanche by the Bernoulli
equation of non-viscous discharge.

2. Basic EQUATIONS
2.1. Velocity distribution in a curved channel

In a curved channel the velocity is not constant over the flow depth ¢, but changes with
increasing z (Fig. 1), as shown by Franke (1971):

R,
v:vom. (1)
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Fig. 1. Velocity distribution in curved channels.

R, is the constant radius of curvature at the flow surface and v, the surface velocity. The
positive and negative signs are set for decreasing and increasing slope angles respectively.
Equation (1) is only valid with a positive denominator. v, may be obtained from the con-
tinuity equation

t ]

R
9: vdz=fz:o 2 _dz,

B R+ 2z
o
where @ means the constant flow rate and B the flow width. Hence it follows that
- Q
o = s Ryt ’ (2)
o 110 Ro
and the velocity #; at the depth z = ¢
Vg = Q R 3 (3)
BR In E

when R = R 4t

2.2. Friction forces on the surface of the avalanche track

As suggested by Salm (1968), the shearing stress 75, between the avalanching snow and
the stationary underground is considered to depend linearly upon the normal stress o, acting
on the sliding plane, and also upon the square velocity 22, the roughness of the avalanche

track £—2, and the mean gravity of the moved snow y, in accordance with the equation of
Chézy for turbulent flow. Thus we assume

Tzz = poz+yrk?, (4)
where p is a dry-friction coefficient.
If the avalanche track is bent with an actual radius of curvature R, o; is set to

6y = Ly (cos ¢+;Ttg> 5 (5)

where ¢ is the slope angle and g is the acceleration due to gravity.

Equations (4) and (5) do not depend upon the material, the only material term being y,
thus these equations are valid for plastic and elastic materials.

By inserting Equation (3) into Equation (5) we get

The importance of the second term within the brackets grows with decreasing radius of
curvature R.

https://doi.org/10.3189/50022143000029385 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000029385

ON THE FLOW OF AVALANCHING SNOW 359

2.3. Avalanching snow
In soil mechanics, soil yielding is often described by the Coulomb criterion for cohesive
materials
Tzz < T = Oz tan ¢+, %))
where 4, is the shear stress and o, the normal stress on a plane element. 7; stands for the
shear strength, ¢ for the angle of internal friction and ¢ for the cohesion of the considered
material. As shown by Terzaghi (Terzaghi and Jelinek, 1954), Equation (7) leads to

¢cos ¢ = [$(o:—02)>+ T222]}— (0,1 02) 8in ¢, (8)
in the case of plain strain. The directions of the stress symbols o and = are explained in
Figure 2.
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Fig. 2. Mohr-Coulomb hypothesis.

Equation (8) is perfectly compatible with general plasticity theory, as demonstrated by
Drucker and Prager (1951).
A dry sand is not cohesive (¢ = 0), and in this case Equation (8) becomes
(02—07)*+ 47222
(O'z‘|‘0'a;)z

In an elastic material o, is given by the confined three-dimensional stress state (Ziegler, 1962),

— sin® 4. (9)

v
— 6z, (10)

Cr —
] I

here v is Poisson’s ratio. Equation (g) is restricted to non-curved tracks.

As long as the stresses a;, 64, T4z, calculated from Equations (5), (10) and (4), do not fulfil
the yield criterion (Equation (g9)), the material remains elastic, but as soon as the left side
of Equation (9) equals the right-hand side, Equation (10) is invalidated and o is obtained
from Equation (g):

. 5 [1 ~+-sin? é:f:((l +sin? q[;)?-_cosz ¢+a2)4] , (11)

cos? ¢ cos? ¢ cos? ¢

Tz
where ¢ = 2 —
Gz
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The positive sign gives the maximum value o,,, corresponding to the passive stress state
of Rankine, and the negative sign the minimum value o, corresponding to Rankine’s active
stress state (Fig. 2).

3. BERNOULLI'S EQUATION

Flow depths of non-uniform steady flow are generally calculated stepwise using Bernoulli’s
equation
?
= _+ —er, 12
2 (12)
H denotes the energy head, p the pressure in flow direction x on the sliding plane, and w the
geometrical head.
A friction force 7 per unit volume, divided by y, is obtained from Equation (4):

T 74z poy U2

T m_em 2 (13)

T Awe Awecosis

from which we obtain

Au fpe, o2
Awe = cos i ( +tk3) (14)

Awe is the energy loss per length Aw.
When the pressure p at the slip plane is replaced by oz cos # (Salm, 1968), the equation
of non-uniform steady flow of avalanchmg snow becomes,

H = wﬁ- Jr— COs Yy = w;+ +— cos i+ Atve, (15)

using Equations (11) (plastic case) and (10) (elastic case). Here the index u refers to an upper
and the index [ to a lower cross-section of the avalanche track (Fig. 3).

Wi t Q = const.
— ~
=~
ol e i
Py : L 2
Oxu =5 vy
—'= 5-C0S = =L
Y Wy Sl il g
H ~ul
Pi_ Oxl
ix E — 08
l q”l& \\\1 . /‘Y v q“ |
th
Wu
Wi b | Ha
section u section | U He min
Fig. 3. Bernoulli’s equation modified for avalanches. Fig. 4. Specific energy versus flow depth.
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Plotting the specific energy H, against flow depth ¢ (Fig. 4), where
2
20F2
and F is a cross-section of the avalanche track, we obtain a minimum H, for a critical value
ter- If, in a given flow, ¢ > top, this flow is called “streaming™, if ¢ < tgr, it is “shooting”,
A streaming flow changes continuously to a shooting one, this happens inversely in a

“hydraulic jump”. Hydraulic jumps are calculated with the momentum theorem; in the
continuous changes Equation (15) may be used as follows.

Ox v? Gz
= — cos Y+ = —+— cos ¥, 16
™ o 2 g+ = i (16)

Calculate H at the first (known) point (Equation (15)).
Take next point: use geometry and an assumed value for ¢.
Calculate oy, o5 (elastic), and 7, (Equations (6), (10), and (4))-
Is the yielding function (Equation (g)) fulfilled ?

If yes then continue.

If no then go to step 6.
. Calculate 6, (Equation (11)).
Calculate Awe (Equation (14)).
Calculate H at the second point (Equation (15)).
Is Equation (15) fulfilled ?

If yes then take the next point.

If no then go to step 2.

-P-C;:N::—r

o o

4. EXPERIMENTS WITH THE TEST SLIDE

The same tests as those described by Salm (1968) were made, but with a modified snow
collector which could contain 25 m3 of snow. A steady flow was maintained for more than
0.7 s with this modification. Every experiment was filmed, this allowed a measurement of the
flow depths behind the deflection point,

TaBLE I. MEASURED AND CALCULATED FLOW DEPTHS FOR ty = 1.0m

Mean snow E t Fitted friction
Test temperature vy y measured  calculated coefficients px
& m/s N/m3 m m I k mifs
2/74 —3 10.2 3 492 1.09 1.09 0.32 29 0.25
5/74 —4 10.1 3414 1.05 1.09 0.32 29 0.25
6/74 —4 10.3 3 6oo 1.07 1.09 0.33 31 0.22
12/74 —5 9.5 2 531 1.09 1.12 0.33 28 0.4
7/74 —2 10.9 3 630 .15 1.10 0.27 33 0.14
14/75 +o0 10.6 4571 112 1.11 0.27 31 0.19
16/75 +o0 10.2 4 405 1.17 1.13 0.28 33 0.25

Table I compares some test data from the slide inclined at 45° with the results of a step-by-
step calculation using Equation (15). Two points 0 and 2 were calculated as shown in Figure
5, starting at the end of the acceleration part of the test slide and using measured values of
velocity and flow depth. The calculations were made with friction coefficients r and k as
parameters, other values were ¢ = 26° and v = 0.25. The calculated flow depths at point 2
are those which give the best fit with the measured values. The corresponding friction
coefficients are also shown.

We can divide these experiments up into two groups. The first 4 tests in Table I were
made at low snow and air temperatures, without snow melting. The slide is dry and the
friction is high. The remaining tests were carried out at temperatures near 0°C. The high
temperature means that a thin layer of melted snow covers the test slide; this reduces friction.
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[dead”snow
Fig. 5. Flow on test slide at Weissfluhjoch.

The values of p, were calculated using the known velocity v, for the acceleration part of the
slide (without turbulent friction k~2).

Plots of H, (Equation (16)), show a critical flow depth fer > 1.5 m. All tests began with
t, — 1.0m, Table I shows that in all cases {, < 1.20 m. Thus, we conclude that in these
tests a continuous flow-depth change in shooting flow occurred without hydraulic jumps;
this is confirmed by the cine film.

5. “‘SKILEHRERHALDE’’ AVALANCHE IN PARSENN AREA

The validity of our conclusions was tested with an artificially released avalanche near our
institute; this has been described by Frutiger (1975). Geometrical data for these calculations
were obtained by fitting a cubic parabola to the natural avalanche track (Fig. 6).

Friction parameters were set to u = 0.18 and k2 = 1 700 m/s?. @ was calculated with the
formula given by Salm (Salm, 1972).

A formula for the runout distance xy can be derived from Equation (15).

The velocity head 2,2/2¢ and the pressure head 6z cos iy [y disappear within the distance
Xr = wy[sin ¢y, due to friction Awe. Thus we write

Heu = Her!‘Awe: HEE = 0,

and

Uy Oxu P
—4—— cos Py = Awe—xr Sin Y.
28 Y
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Fig. 6. Track section of *“Skilehrerhalde” avalanche, 20 Fanuary 1974, Weissfluhjoch| Davos.
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Inserting Equation (14) we get

YUu*+ 2802y COS ‘/’u vm*Rom? Um? "
—— = xr |p | cos ¥+ 2R’ —l—tmkz—sm Y| - (17)

The steady-state equation of Bernoulli is not exactly valid for this case because velocity v is
time-dependent. For this reason we have to calculate with mean values.

The quantities labelled with index m denote such values in the runout process. Assuming
that the square of velocity decreases linearly along runout xy, as suggested by Voellmy (1955)
and Salm (1966), we get

vm® =, (18)

and
YU 42867y COS Py
Uuz Uﬂ,z .
2yg [,u (cos Ym -{—m)ﬁ—m—sm :,!:m]
The value in Table IT was calculated with this formula and agrees well with the measured
value of 224 m.

(19)

Xr =

TasLe II. OBSERVATIONS AND DERIVED DATA FROM THE ARTIFICIALLY-
RELEASED AVALANCHE

Q = 1244 mifs
Point t b Um o Tzz o H
m m m/s Pa Pa Pa m
1 0.74 122 13.8 1 boo 590 3 500 80.8
3 0.68 107 17.1 1 560 700 2 850 59.8

Runout distance x; = 210 m.
The values in Table II were obtained frem Equation (15), the influence
of the curved track is negligible.
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DISCUSSION

M. R. pE QuErvaN: How did you introduce the radius R = 4 m in the test slide?
M. HEIMGARTNER: It was the minimum value we could introduce with our device.
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