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Einstein-Maxwell Equations on
Four-dimensional Lie Algebras

Caner Koca and Mehdi Lejmi

Abstract. We classify up to automorphisms all left-invariant non-Einstein solutions to the Einstein—
Maxwell equations on four-dimensional Lie algebras.

1 Introduction

A Riemannian 4-manifold (M, g) is called Einstein if the trace-free Ricci tensor is
identically zero, that is, Ricy := Ric—$g = 0. From the viewpoint of general relativ-
ity, these are the Riemannian solutions of Einstein’s field equations in vacuum. One
can also consider the same equations in the presence of an electro-magnetic field F.
In physics, F can be thought as a differential 2-form, which is closed and co-closed:
dF =0and d  F = 0, where * is the Hodge star operator (in particular, the manifold
is assumed to be oriented in order to define ). In this setting, the metric g and the
2-form F must satisfy the coupled system
RiCO = —[F o F](),
dF =0,
dxF=0,

known as the Einstein—-Maxwell equations. Here [F o F]y = FiSF; - iFstFS‘gij is the
trace-free part of the composition of F with itself, where F is thought as an endomor-
phism of the tangent bundle after raising an index. This term (up to a constant) is
what physicists call the stress-energy-tensor of the electro-magnetic field.

Although the Einstein-Maxwell equations can be considered in any dimension
n > 4, the four-dimensional case has a privileged status, because in this dimension, the
equations imply that the solutions must have constant-scalar-curvature [12,18]. Also,
in dimension four, if (g, F) is a solution of the Einstein-Maxwell equations and g is
not Einstein, then F is determined uniquely up to a constant: F := ¢cF* + %F ~, where
F* = 1(F £ +F) are the self-dual and the anti-self-dual parts of F [14]. Therefore, the
Einstein-Maxwell equations can actually be thought of as having one unknown: the
metric. We say that a metric is an Einstein-Maxwell metric if there is a 2-form F so
that (g, F) is a solution of Einstein-Maxwell equations.

The Einstein-Maxwell equations also have some remarkable ties to Kahler geom-
etry. First, any Kéhler metric with constant-scalar-curvature (cscK for short) is an
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Einstein—-Maxwell metric. Indeed, as LeBrun [12] observed, for a cscK metric, the
2-form F canbe chosenas F = %w+po, where w is the Kéhler form and pg := Rico(J -, -)
is the trace-free Ricci form of the metric. Second, more generally, a constant-scalar-
curvature metric in a conformal class of a Kahler metric is Einstein—-Maxwell if the
conformal factor is a holomorphy potential [1,13]. These observations lead to many
examples of Einstein-Maxwell metrics. Any cscK metric on a complex surface is a so-
lution. Recently, some conformally Kahler solutions have been discovered on Hirze-
bruch surfaces and more generally on so-called minimal ruled surfaces fibered over
Riemann surfaces of any genus [2,9,12-14]. We also refer the reader to [5-7,10,11,17]
for more about obstructions to the existence of Einstein-Maxwell metrics.

In this paper, in pursuit of finding new examples, we look into four-dimen-
sional Lie algebras. The four-dimensional Lie algebras were already classified by
Mubarakzyanov [15] (a list can be found in [16]), and the (automorphism-reduced)
form of left-invariant metrics on these algebras was computed by Karki in his thesis
[8], where he also determined all left-invariant Einstein metrics on four-dimensional
Lie algebras up to automorphisms of the Lie algebra. Here we find the left-invariant
non-Einstein solutions to the Einstein-Maxwell equations (up to automorphisms).

Theorem 1.1  'The following are the four-dimensional Lie algebras admitting left-
invariant non-Einstein solutions to the Einstein-Maxwell equations.

(i) 2A,:[er,ex] = ey and[es, eq] = e4.
(11) Az ® 2A1.’ [el, 62] = e3.
(iii) .AZ:g: [e1, e4] = ae, [e2, es] = —e3, and [e3, e4] = ey with a # 0.

_1
(iv) Ay [enes]=er, [enes] = Ley, [er,es] = €2 and [e3,e4] = —Les.

Here we use the same notation for Lie algebras as in [16]. These solutions turn

out to be Kihler with the fixed orientation e' A e? A e> A e* except on A;’%, which ad-
mits a solution metric that cannot be (left-invariant) Kahler with the fixed orientation
(however, it is Kihler for the reverse orientation). That solution is actually a non-
Kéhler almost-Kahler metric (so the almost-complex structure ] is non-integrable)
with J-invariant Ricci tensor [4]. Indeed, a non-Kahler almost-Kéihler metric with
J-invariant Ricci tensor of constant scalar curvature is a solution to the Einstein—
Maxwell equations, because the Ricci form is closed in that case [3]; hence the same
argument applies for cscK metrics.

We also remark that 24, is the only algebra which admits an left-invariant Einstein
metric and also a non-Einstein solution to the Einstein-Maxwell equations. Further-
more, we remark that the corresponding Lie groups to all these Lie algebras admit no
compact quotient.

2 Left-invariant Non-Einstein Solutions to the Einstein—-Maxwell
Equations

We present in this section the list of all four-dimensional Lie algebras admitting non-
Einstein solutions to the Einstein-Maxwell equations. We give an explicit description
of the solutions up to automorphisms of the Lie algebra. In order to do so, we went
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over the list of four-dimensional Lie algebras in [16] and their (automorphism-
reduced) left-invariant Riemannian metrics (as in [8]) and then used a Maple pro-
gram to determine solutions of the Einstein-Maxwell equations.

2.1 The Lie Algebra 24,

The structure equations of the Lie algebra 24, are [e}, e2] = e, and [e3,e4] = ey,
where {e; } is a basis of 24,. This Lie algebra is not unimodular, so it does not admit
a compact quotient. Up to automorphisms of the Lie algebra (and scaling), a left-
invariant metric g is given by

1 0 ay adp

_ 0 1 as a4
8= ay ds dads 0
ay a4 0 1

where a; are constants satisfying the conditions as — a3 — a? > 0 and

(a3 - 1)aj - 2a1a,a3a4 + (a3 — as)a; — azas — a3 + as > 0.

Suppose that F = ¥4 a;je' is a 2-form where a;; are constants and {e'} is the
dual basis of {e; } and e’/ = e’ Ae’. Noting that de’ = —e’[e;, e, ], the condition dF = 0
implies that aj4 = a,3 = a4 = 0. Suppose that the orientation is e!*** = e' Ae* re’ Ae?.
Then we have

1
12
*F=——— (aqa1a1; — axa3ap + axag; + asq) e
g

det

1 13
—F— (azasalz — —azas3d;3 — 1131134) €

\/detg

1 14
+ — (a2a4a13 + ajap + 614034) e

\/detg
1
\/detg

1 2 24
+ — a,ags + aszay;p —azdszqg —ayz) e
detg

1

’ \/detg

Then d x F = 0 implies the system of equations

23
(asasan — asasaiz + a1ass) e

34
(04611034 —asaaszs +dsayy — 6136113) e

axasaz + arap + agdzs =0,
asasap — asazaps + aydsg = 0,
2 =0
ajgayz +asdp —dzdazg —ap =0,
which have the following non-trivial solutions, i.e., F # 0.

Solution1: a;=a4=0,a3=(ayas4 + asz)/ap, withaj, #0. Then [F o F]o(es, e4) =0.
On the other hand, the trace-free Ricci tensor Ricy(e3, e4) = —ayasai,/2det g. Thus
ay = 0. Then [F o F]y(ey, e5) = 0, while Ricy(e;, e3) = —af;/2det g. Hence, aj3 = 0.
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We obtain then the solution to the Einstein-Maxwell equations given by the metric
(2.1) g:el®el+e2®ez+ase3®e3+e4®e4,
and F = appe'? + azse>* such that

2
B 1+aj,

(2.2) as #1.

- 2
1+ ag,

Actually, when as = 1in (2.1), the metric g is then Einstein. In fact, the trace-free
Ricci tensor of g is given by

1-a 1-a as—1 as —1
Ricoz(2 5)el®el+(2 5)62®62+( 52 )63®e3+(§ )e4®e4.
as as das

Moreover, we have
1 asq 1
F* = 7(:&7 + alz) e + 5(i\/agalz +azg)et.

2\ e

Furthermore, the metric g is Kahler with respect to the Kahler form
w = e+ \/ase™,

with the trace-free Ricci form given by

1—05 05—1
po = T4 G570 54
as \Vas

Using the relation (2.2), we then have
1 1

~w=—"_F*, - (2 .
ey ()

Solution 2: ay; = 0,a; = 0,a4 = 0,a;3 = —aass. Then [F o Flo(ey,e2) = [Fo Flop
(e3,e4) = 0 implies that a, = a3 = 0 and we again get the solution (2.1) (with aj, = 0).

H . — _ 2 _ 2 2
Solution 3: a; = —a4(13a; + ass)/an, as = (a3 + axasq — azaz)/an, as = (a3,+ag
+2a13a34a; — ajyas)/al,. Then [F o F]y = 0; so any Einstein-Maxwell metric must
be Einstein.

2.2 The Lie Algebra A, ® 24,

The structure equation is [e;, e2] = e,. This Lie algebra is not unimodular, so it does
not admit a compact quotient. Moreover, it does not admit any left-invariant Einstein
metric [8]. Up to automorphisms of the Lie algebra (and scaling), a left-invariant
metric g is given by

1 0 0 O

_ 0 1 a, ap
$710 a1 o)

0 aj 0 1

with the conditions 1 - a? > 0 and 1 — a? — a3 > 0. The condition dF = 0 implies that
az3 = dy4 = 0. The condition d » F = 0 implies the following non-trivial solutions.
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Solutionl: a3 = aidi,dis = a; = 0. To get a solution to the Einstein—-Maxwell
equations we need a; = 0, and so a solution is given by

g:el®el+ez®ez+ e’ +et®et
and F = ajpe'? + azse>* such that
(2.3) a3, —ap =1
Moreover, we have
F* = %(alz +as,)e? + %(ialz +aszq)e.
Furthermore, the metric g is Kahler with respect to the Kahler form

w = 612 + 634,

1

with the trace-free Ricci form given by py = —1e'> + 2 ¢, Using the relation (2.3), we

then have
1 1
o= —
2 (012 + a34)

Solution 2: ay, = %, aps = “'a“zl" , with a, # 0. Maple shows that there is no solution

to the Einstein-Maxwell equations.

F*, po=(an+as)F .

2.3 The Lie Algebra AZ;g

The structure equations are [e;,e4] = ae, [ez, e4] = —e3, and [e3, e4] = e, with
a # 0. This Lie algebra does not admit a compact quotient and does not admit any
left-invariant Einstein metric [16]. Up to automorphisms of the Lie algebra, a left-
invariant metric g is given by

1 a; ap 0
|l 1 0 0
8= aj 0 as 0|’

0 0 0 1

with the conditions a3 — aza? — a3 > 0 and 1 — a} > 0. The condition dF = 0 implies
that aj = a;3 = 0. Then the condition d » F = 0 implies

2
ajasy — axa1azy + dadyy — azg =0,

2
azaayy — d102034 + aydzq — azdzg = 0.

Then we distinguish two cases.

Casel: a = 0,a3s = 0,a24 = ajais. To get a solution to the Einstein—-Maxwell
equations, we need a; = 0, a3 = 1, and a3; — a7, = a*. Then the Einstein-Maxwell
metric is

g=e'®e'+e’@e’+ el +et et
and F = ajse™ + ay3e? such that

(2.4) a§3 - af4 =a?,
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with a # 0. If a = 0, then g is Einstein. In addition, we have
1 1
F+ = 5(014 + 1123)614 + 5(1114 + (123)623

_ 1 1
F~ = 5(&114 - a23)612 + 5(—(114 + a23)e34

Furthermore, the metric g is Kahler with respect to the Kahler form
w=e"+e?,

with the trace-free Ricci form given by py = —% ™ + “72634. Using the relation (2.4),

2
we then have )

- (‘114 + 6123)

Case2: a,+0,ay = %‘* and ay4 = ‘”T“;“ Maple shows that there is no non-Einstein
solution to the Einstein-Maxwell equations.

1 _
Ew ", po=(ag+axy)F .

2.4 The Lie Algebra A}

1
The structure equations of the Lie algebra A, § are

[62,63] = €], [61, 64] = %El, [62, 64] = €3, [63, 64] = —%63.

This Lie algebra does not admit a compact quotient and does not admit any left-

invariant Einstein metric [16]. Up to automorphisms of the Lie algebra, a left-invariant

metric g is given by
a 0 0 O
0 1 a; das
0 aj 1 ay
0 as a4 1

>

with the conditions a; > 0,1- a3 > 0,1 - aj + 2a,asay — a3 — a3 > 0. The condition

dF =0 implies that a;; = 0 and a4 = %a23. Then we have two cases.

Casel: If we suppose that a,as # a4, then the condition d « F = 0 implies that

4ay1a,a34a3 — 44102305 — 4ayaxa, + adays + 4ajar; — a
a3 =
aas — ay ’

Qs34 = Az034 — A2343.

Maple shows that there is no solution to the Einstein-Maxwell equations.

Case 2:  If we suppose that ay = a,as, then there are two solutions to d x F = 0.
Solutionl: a3 = 0 and asz4 = azazs. To get a solution to the Einstein—-Maxwell
equations, we need a; = 1and a, = a3 = 0 Then the Einstein-Maxwell metric is
g=e'®e +e’@e’+e’ ®e’ +et @e?, with F = ajze® + ayse®® such that

3
(2.5) aly = a3 = .

It turns out that the metric g is non-Kahler almost-Kahler with the orientation e'?**.

Indeed, g is compatible with the closed 2-form w = e"*—¢** inducing a non-integrable
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almost-complex structure J defined by Je; = e; and Je, = —es. Moreover, its Ricci
tensor is J-invariant. Indeed, its trace-free Ricci form is given by pg = 2™ + 2¢*%.
We then have

1 1
F'= 5(013 - a24)e13 + 5(024 - 1113)624>

_ 1 1
F~ = 5(013 + a24)el3 + E(a24 + a13)e24.

Furthermore, using the relation (2.5), we have

! 2( +ay) F* & F
~w==-(az+a , =—F".
2 3 1 2 po 2(&13 + a24)

If we reverse the orientation to be —e'?*4, then

1 1
F* = E(aw +ayq)e” + 5(5124 +ap)e*,

_ 1 1
F = 5(013 - a24)e13 + 5(6124 - 013)624.

Furthermore, the metric g is Kahler with respect to the Kéhler form w = ej3 + ez,
with the trace-free Ricci form given by py = 3¢'* — 2?4, So using the relation (2.5),

T4 4
we then have . .
*60:71‘—“*-, 0=(a13+a24)F_.
2 (6113 +L124) p

2
Solution 2:  as4 = Arar4 — A3dr3, d; = 4(1%%) (with a3 # +1). Maple shows that there

is no solution to the Einstein-Maxwell equations.

3 Non-existence of Einstein-Maxwell Metrics

In this section, we will explain briefly why all the other Lie algebras do not admit any
non-Einstein Einstein-Maxwell metrics.

3.1 The Lie Algebra A,

The structure of the Lie algebra is
[62, 64] =€ [63, 64] = €.

Up to automorphisms of the Lie algebra, a metric g is given by

1 0 0 O
I O
g_Oal 020’
0 0 0 1

with the condition that a; — a? > 0. A form F satisfies dF = 0 if
F = 014614 + tl23€23 + 024624 + 034834.
Then the condition d » F = 0 implies that ass = a;4,4 and a;a34 = a,a,4. Since a; # 0,

2
we get dsa (1—2—‘2) = 0;hence as4 = a4 = 0. We deduce thata solutiontodF = d*F =0
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is given by F = ajse' + ay3e?>. Now the tensor [F o F] satisfies [F o F]o (e}, e2) = 0,
while the trace free part of the Ricci tensor satisfies Rico(ey, e) = —% a:az‘ Hence

1
a; = 0 and so there is no solution to the Einstein-Maxwell equations.

3.2 The Lie Algebra A},

The structure of the Lie algebra is given by
[e.es] = per,  [e2ses] = €2, [es,ea] =er+es,
with p # 0. Up to automorphisms of the Lie algebra, a metric g is given by

1&1 a20

a1 0 0
8= a 0 as o’
0 0 0 1

with the conditions a3 — aza? — a3 > 0 and a3 > 0. The equation dF = 0 implies
a3 =0, ap(p+1) =0,and aj, + a;z(p + 1) = 0. We suppose first that p # —1. Then
we get app = ap3 = 0. The condition d * F = 0 implies that

2
a3q — Aya14 + Aza1024 — a7 aze = 0,

2
aza1a14 — 102034 + dyd24 — A3dy4 = 0,
—a3a1az4 + azay — azaz4 = 0.

Since az > 0, from the third equation we get a14 = a1a24 + %
second equation, we get that a,4 = 0, because a3 — asa? — a3 > 0. Then it is easy to
deduce that az4 = a14 = 0. We conclude that under the hypothesis p # -1, there is no
non trivial F satisfying dF = d « F = 0.

Now we suppose that p = —1. Then dF = 0 implies that a3 = a;; = 0. From
d * F =0, it follows that

azs. Replacing it in the

2
azq — Aza14 + dya1azg — ayass =0,  —azaydsy + azayy — axass = 0.

We get ays = ayazq + 2—:%4 from the second equation. Replacing it in the first we
obtain that az4 = 0. A solution F of dF = d = F = 0 is of the form
F= 313613 + 6116124614 + 024624,
and then using Maple, it turns out that there are no solutions to the Einstein-Maxwell
equations.
3.3 The Lie Algebra A, 5

The structure of the Lie algebra is
[61, 64] =€ [63, 64] = é€2.
Up to automorphisms of the Lie algebra, a metric g is given by

1(11 aZO

a1 0 0
8= a, 0 as 0Of
0 0 0 1
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with the conditions that a3 — aza? — a3 > 0 and a3 > 0. The equation dF = 0 implies
that a1, = a;3 = 0. From d * F = 0, it follows that
2 2
—ayd3y4 + axaiazy — axa +as, =0, dszdydiy — a1a2d34 + a5a24 — azdag = 0.

We deduce then that as4 = a,a14, d24 = a1a14 and then Maple shows that there are no
solutions to the Einstein-Maxwell equations.

3.4 The Lie Algebra A, 4

The structure of the Lie algebra is
ler,es] = e, [ex,es] =er+er, [eseq] =er+es.

Up to automorphisms of the Lie algebra, a metric g is given by

1 0 0 O

_ 0 a, dap 0
&= 0 a; das 0
0 0 0 1

with the conditions that a;a; — a3 > 0 and a; > 0. Now dF = 0 implies that a;, = a;3 =
a3 = 0. From d = F = 0, it follows that

2
a1a34 — Azd24 =0, axdss —aszdyy =0, a14(a1a3 - az) =0.
Hence a4 = a4 = az4 = 0 and thus there is no non trivial solution F.

3.5 The Lie Algebra A

The structure of the Lie algebra is
lei,es] =1, [ex,e4] = aes, [e3,e4] = bes,

with ab # 0, -1 < a < b < 1. Up to automorphisms of the Lie algebra, a metric g is

given by
1 a ap 0
_|la 1 as 0
&= a as 1 0}
0 0 0 1

with the conditions that
1-aj - a3 —as+2a1a,a3 >0, 1-ai>0,(1-a3)(1-a3)>0.
Now dF = 0 implies the following solutions depending on a and b.

Casel: a + -1,b # -1,and a # —b. In this case, we have a1, = a3 = a3 = 0. The
condition d x F = 0 implies that

2
ayaszs — azaydg — a1dzdyg + drdiy + azdsg — azg = 0,
2
—a102034 — 2030414 + A5024 + A1014 + A3a34 — d24 = 0,
2
—a3a1d34 + 3414 — 302024 + A1d24 + A2a34 — d1g = 0.

It turns out that there is no non trivial solution F.
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Case2: a#+ -1b+ —1,and a = —b. In this case, we have a;, = a;3 = 0. The condition
d = F = 0 implies that
2
ajas4 — azaiayg — A14x0z4 + dra14 + a3az, — azs = 0,
2
—a1a3034 — 4203014 + Ay 024 + d1d1g + A3a34 — d24 = 0.

Then the non trivial solution is d,4 = aja14 and as4 = a,a;4. Hence,

F= a14el4 + a23e23 + a1a14624 + a2a14e34.

Maple shows that there is no solution to the Einstein-Maxwell equations.

Case3: a+-1,b=-1anda # —b. In this case, aj» = a3 = 0. Then d  F = 0 implies
a4 = a1a24, d3z4 = dzda, and it turns out that there is no solution of the Einstein—
Maxwell equations.

Case4: a=-1,b+ -1,and a # —b. In this case, a;3 = a3 = 0. Thend * F = 0
implies a4 = aa34, d2sa = dzas, and it turns out that there is no solution of the
Einstein-Maxwell equations.

Case5: a=-1,b=-1. SodF = 0 implies a,3 = 0. The condition d x F = 0 implies
a1y = (—a3a1a34 — a3a2a24 + a1d24 + a2a34) /(1 - a3 ), and it turns out that there is no
solution of the Einstein-Maxwell equations.

Case 6: a =-1,b = 1. The condition dF = 0 implies a;3 = 0. The conditiond x F = 0
implies ayq = (—aja,as4 — ayaszay + ajay + azaszy)/(1 — a3), and it turns out that
there is no solution of the Einstein-Maxwell equations.

Case7: a=1,b=-1, Then dF = 0 implies aj, = 0. The condition d x F = 0 implies
azq = (—a3a;1a14 — A2a1024 + aya14 + azaz)/(1- a}), and it turns out that there is no
solution of the Einstein-Maxwell equations.

3.6 The Lie Algebra AZ)’?

The structure of the Lie algebra is
[e1,ea] = aer, [er,ea] =bes—es, [es,eq] =er + bes,

with a # 0, b > 0. Up to automorphisms of the Lie algebra, a metric g is given by

1 a ap 0
|a 1 0 0
8= aj 0 as 0|’

0 0 0 1

with the conditions that a3 — asa? — a3 > 0, 1 - a} > 0. The condition dF = 0
implies that aj;(a + b) = a3, a13(a + b) = —ap,, and bays = 0. This implies that
ary = a3 = 0 = ay3 = 0. The condition d » F = 0 implies that

2
aya34 — 201024 + Ar014 — A34 = 0,  A3a1a24 — dzdig + d2a34 = 0,
2
azajay — d102034 + A5dz4 — azdzg = 0.

Then there is no non-trivial solution F.
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3.7 The Lie Algebra A, ;
The structure of the Lie algebra is
[es,e3] =€, [eneq] =2e1, [er,eq] =€r, [e3,e4]=es+es.
Up to automorphisms of the Lie algebra, a metric g is given by

ay adp; dads 0

_ a2 aa 0 0
§5la; 0 1 of
0 0 0 1

with the conditions that a; > 0, a4 > 0, aja4 — a3 — a3a, > 0. The condition dF = 0
implies that aj; = a;3 =0, a3 = %a14. Then d » F = 0 implies that
2 =0
a4a1034 — A3a4014 — 43034 T Azddzg = U,
2
03034 — A3024 + A1d24 — a2a14 = 0,

1 —
—A403034 + A4d1g — d2a24 — 71014 = 0.

Then there are two possible solutions.

Solution1: a, = ay = 0, asy = azas/ay, and a4 = ai/4(a; — a?). Then the tensor
[F o F]p = 0, and so any Einstein-Maxwell metric is Einstein.

. _ _ _ 2 2 2
Solution2: a; = ayajs/azs, as = ayassfay, and a4 = ay(ai, + 4a3,)/4(-aza3, +

a14a24), With ay4 # 0 and —a,a3, + a4 # 0; otherwise we are in the first case. We
again get [F o F], = 0.

3.8 The Lie Algebra A,
The structure of the Lie algebra is

[e2.e3] =€, [ea,es] = €2, [es,e4] = —es.

Up to automorphisms of the Lie algebra, a metric g is given by

a 0 0 O
0 1 a; das
g 0 ap 1 ay ’

0 as a4 1

with the conditions that a; > 0,1-a3 > 0,1-a? +2a,asa, — a3 —a? > 0. The condition
dF = 0 implies that a;; = a;3 = a14 = 0. However, there is no non trivial solution to
the equation d x F = 0.

3.9 The Lie Algebra A},
The structure of the Lie algebra is

[ez,es] =€, [eea] =(b+1)er, [ex,es] =er, [e3,e4] = bes,
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with the conditions -1 < b <land b # —%. Up to automorphisms of the Lie algebra,
a metric g is given by

a 0 0 O

0 1 a; das

0 aj 1 ay i

0 as a4 1

with the conditions a; > 0,1— a3 > 0, 1 — af + 2a,asas — a3 — a3 > 0. From the
condition dF = 0, we get aj; = 0, a13 = 0, ajg = (1+b)days. Then d » F = 0 implies that
a%a34 +d202304 — 434

as = > A4 = A2034 + 433044,
azs

2 2 2 2, 2.2 2 2 2
a1a3034 — 103305 + A3453 + didy; — did3y — 33
2 2
a3;(1-a3)

(a3 # 0, otherwise F is trivial) Maple shows then that there is no solution to the

Einstein-Maxwell equations.

b=

>

3.10 The Lie Algebra A4

The structure of the Lie algebra is

[€2>€3] =é [62, 64] = —e3, [63, 64] = €2,
Up to automorphisms of the Lie algebra, a metric g is given by
aq 0 0 O
_ 0 aj 0 as
%10 0 1 ay|
0 as a4 1
with the conditions that a; > 0, a, > 0, a, — azaj — a3 > 0. Now dF = 0 implies
2 2
that aj, = aj3 = a;4 = 0. Then d » F = 0 implies that a, = w, dyy = Ap3a4,
34

27
as = %3:1), (as4 # 0, otherwise F is trivial). But then the determinant of g is 0.

3.11 The Lie Algebra Af

The structure of the Lie algebra is
[32, 33] =€, [61, 64] = 2ae, [62) 64] =aep —e3, [33, 64] =ey taes,

with a > 0. Up to automorphisms of the Lie algebra, a metric g is given by

aq 0 0 O

_ 0 aj 0 as
710 0 1 a

0 as a4 1
with the conditions that a, > 0, a; > 0, a, — a,a3 — a? > 0. The condition dF = 0
implies that a;; = a3 = 0 and a4 = 2aa,3;. Moreover, the condition d x F = 0

4a2q?
2 7 24 = G304, G314 = —“%2“3. Then [F o F]y = 0 and hence any

a—azai-a

implies a; =
Einstein—Maxwell metric is Einstein.
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3.12 The Lie Algebra A4,
The structure of the Lie algebra is

[e,es]=e, [exes]=e€r, [enea] =—er, [e2,e4]=cer.

Up to automorphisms of the Lie algebra, a metric g is given by

1 0 0 O
_ 0 ay dy as
&= 0 a) 1 ay ’

0 as dg ds

with the conditions that a; > 0, a; — a3 > 0, ajas — aya? — aZas + 2a,aza, — a3 > 0.
Then dF = 0 implies that aj, = 0, a13 = a4, d14 = —az3. The conditiond » F = 0
implies the following different solutions.

Solution1: a; = a3 = azg4 = as = 0and a5 =
Einstein—Maxwell metric is Einstein.

2
a;:rl. Then [F o F]y = 0 and so any

2 2 2
. - +aj+
Solution2: azs = 0, dzs = —“37“123, as = “2—73, as = W Then we have
[FoF]p=0.
Solution 3:  Suppose that a4 # 0, az3 # —azsa4, aze * az3a4, dp3 # 0. Then
a23(a23a4 - a24) ﬂ3ﬂ24(ll46124 + 6123)
ay = — 5 azq = > ay = 0)
024(6124“4 + 6123) az304 — 024

3 2 3 2 2 2 2 2 2 3 2
B a5,0304 + Ay30, + 42305405 — A305,0, — 2a23a24a4 +a54a4 +az3ayy,

as =
023024(02304 - 1124)

Then [F o F], = 0.
Solution 4:  If we suppose that a,4 = 0 then we are in the case of Solution 2.
Solution 5:  If we suppose that a,; = 0, then we are in the case of Solution L.

Solution 6:  If we suppose that a,4 = dp3a4, then one of the following hold.
2 2

1) ay=a4=0,a34 = —“37“123 and as = %la* Then [F o F], = 0.

(2) a, # 0and then

(a?a2 - aya3 +a? +a?)ay arsas(—a2*al + aja2 - a3 + ay)
as = 2 > 34 =~ 2 >
az(ayaj +1) a(aaj +1)

3 6 22 4 4.4 3 4 2 4
ajay —2ayasa, — ayay +2aya, +3a1a5a,

2,22 4.2, 32 2.2 4, 2.2 2
—ajajay —2a5a; +aja; +2a1a5a; — a, + a3ag + aa;

az(aya? +1)?

as =

Then [F o F]p = 0.

Solution 7:  If we suppose that a3 = —a4a,4, then one of the following hold.
1+a3

1) a, =0,a3 = 0,a5 = Then [F o F]o(e;, e3) = 0 implies that a; = 0 and

ay :
there will be no solution to the Einstein-Maxwell equations.
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(2) Ifa, 0, then

o (@103 + aya3 — a3 + a))ay _ays(asai +aj+ a3 +aj)
5=

> >

2 2
ax(ai + ar) ax(aj +ay)

4.4 2 4 6, 2,22 4.2 2 4
—ayay +3a1a3ay + aya, + ajaya; —2a,a; — 2a5a,

+2aja3a + 2aa; — a3 — asal + aya’ + aa?

as =
> a3(a3 +a)?

Then [F o F]p = 0.
Solution 8: a, # 0 and

2.2 2 2 2 2
_ ayas a4 — a145,a3024 + Ayaz3Aa24 + A1045344 + A5023024 — 41023024

as

>

ar(ayat, + a3;)

2.2 2.2 2.3 2 3 2
_ ay1a5402304 — 45053024 — 45054 + 41053024 + 4304 — 453024

>

aszs =
ay(maz, + a3;)

20, 2 2 _ 3.4 2 22 3 3.3 222 2
ay(a1ay, + a53)as = ajdy,ay — 2047 a5a2305,04 + 20, a2305,04 — 47 45053054
22 2 2 2 3 2 3
+2a7a5305,0, — 2010505302404 + 2010502305404
4 4 42 2 4 4
= 83833 = 20,053054 — A0y,

32 2 2 3 2 3
a;a53a5, +2a7a5302404 — 20, 42305,04

+

2 4 2.2 2 2 4
a1a50,3 +4a105a5305,4 + A1050,,

+

+

4 2 2.3 2.2 2
A10,3a5 + 20505302404 — 20, a5305,

3 22 2 2 2
— 24105302404 — 505305, + A105305,.
Then [F o F]y = 0. Here a,3 # 0 and ay4 # 0, otherwise F vanishes.
3.13 The Lie Algebra A;; & A,

The structure of the Lie algebra is [e3,e4] = €. Up to automorphisms of the Lie
algebra, a metric g is given by

0
) 1
8= 0

coc o
o~ o o
— o oo

0

with the condition a; > 0. The condition dF = 0 implies a;; = 0 and thend x F = 0
implies as4 = 0. Maple then shows that there is no solution to the Einstein—-Maxwell
equation.

3.14 The Lie Algebra A;, ® A,
The structure of the Lie algebra is

[ebeS] = €1, [62)33] =e t+e.
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Up to automorphisms of the Lie algebra, a metric g is given by

a) 0 0 ap
o 1 0 a
£5lo o 1 of
a das 0 1
with the conditions a; > 0, a; — a3 — a;a3 > 0. The condition dF = 0 implies a;, =
a4 = az4 = 0. Then d = F = 0 has no non trivial solution.

3.15 The Lie Algebra A;; ® A;

The structure of the Lie algebra is
[61, 63] =€ [€2> 63] = €.
Up to automorphisms of the Lie algebra, a metric g is given by

1 a 0 a,
ay 1 0 as
0 01 0
a; as 0 1

with the conditions 1 - af > 0,1- af — a3 — a3 + 2a;azas > 0. The condition dF = 0
implies a;; = a14 = a4 = 0. Then the only solution to d  F = 0 is the trivial solution.

3.16 The Lie Algebra ‘A3,4 o A

The structure of the Lie algebra is
[eb 63] =€ [62> 63] = —ée.
Up to automorphisms of the Lie algebra, a metric g is given by

1 a 0 a,
la 1 0 as
€710 0 1 o)
ap as 0 1
with the conditions 1 - af > 0,1- af — a3 — a3 + 2a;a,as > 0. The condition dF = 0
implies a4 = a4 = 0. The condition d xF = 0 implies that a;3 = —a,a34, a3 = —azas4.
Then Maple shows that there is no solution to the Einstein-Maxwell equations.

3.17 The Lie Algebra A; s & A,

The structure of the Lie algebra is
[eses] = e, [er e3] = ae,
with 0 < |a| < 1. Up to automorphisms of the Lie algebra, a metric g is given by

1(110612

a1 1 0 as
£5lo o 1 of
ap as 0 1
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with the conditions 1 - af > 0,1- af — a3 — a3 + 2a;aza; > 0. The condition dF = 0
implies a1, = a4 = az4 = 0 Then the only solution to d x F = 0 is the trivial solution.

3.18 The Lie Algebra A; ¢ & A,
The structure of the Lie algebra is

[61,63] = —€, [€2>63] = €.

Up to automorphisms of the Lie algebra, a metric g is given by

1 0 0 o

_ 0 ap 0 as
510 o0 1 o)

ay as 0 1

with the conditions a, > 0, a, — a? — a,a? > 0. The condition dF = 0 implies a4 =
az4 = 0. The condition d x F = 0 implies the following solutions

Solution1: az = 0,a13 = —a1dsys, dz3 = 0. Then a; = 0,a, = 1, ay, = +az4 and hence
[F o F] = 0 and so any Einstein-Maxwell metric is Einstein.

41423

Solution2: az #+ 0,a13 = S, A3 = —‘;—2:. Then Maple shows that there is no solu-
tion to the Einstein—-Maxwell equations.

3.19 The Lie Algebra A;; ® A,
The structure of the Lie algebra is
[e1,e3] = ae1 — ez, [en, e3] = er + aey,

with a > 0. Up to automorphisms of the Lie algebra, a metric g is given by

1 0 0 ap

_ 0 ap 0 as
€510 0o 1 o

ay as 0 1

with the conditions a, > 0, a, — a3 — aai > 0. The condition dF = 0 implies that
ai = aig = azq = 0. Then the only solution to d * F = 0 is the trivial solution.

3.20 The Lie Algebra A; 5 @ A,
The structure of the Lie algebra is
[e1,e3] = —2e;, [e,ex]=e1, [ex,e3]=es.
Up to automorphisms of the Lie algebra, a metric g is given by

a 0 0 ay

_ 0 a, O as
&= 0 0 as dg ’

as as ag 1
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with the conditions a; > 0, a; > 0, a; > 0, a;(a,(as — a2) — asa?) — aiaza, > 0. The
condition dF = 0 implies that a4 = a4 = a3 = 0. Then the condition d x F = 0
implies that F is trivial.

3.21 The Lie Algebra ‘A3’9 o A,

The structure of the Lie algebra is
[61, 62] = €3, [62, 63] = e [€3>€1] =e€2.
Up to automorphisms of the Lie algebra, a metric g is given by

ap 0 0 ay
10 a 0 as
&= 0 0 as dg ’

as ds dg 1

with the conditions a; > 0, a, > 0, a3 > 0, a;(ax(a3 — a) — aza?) — a3asa, > 0. The
condition dF = 0 implies that a14 = a4 = a34 = 0. Then the only solutiontod x F = 0
is the trivial solution.

3.22 The Abelian Algebra

Any metric can be reduced to the flat euclidean metric.

4 Appendix

We reproduce below the essential part of Maple code used to solve the Einstein—
Maxwell equations. We take here for example the Lie algebra A5 ; & A,.

# To define the structure equations of the Lie algebra:

brac :=(x, y) — vector(n, [(x[3]*y[4]-x[4]1*y[3]),0,0,01);

# To define the metric:

G := Matrix([[a1, O, O, O], [0, 1, O, O], [0, O, 1, O], [0, O, O, 111)

# To define the coefficients of the Levi-Civita connection with respect to a metric G:

LeviCivita := (x, y, z) — (1/2)*evalm(innerprod(brac(x, y), G,
z)+innerprod(brac(z, x), G, y)-innerprod(brac(y, z), G, x));

# To define the Levi-Civita connection of two vectors with respect to a G-orthonormal basis {v[i]}:

LC := (x, y) — evalm(LeviCivita(x, y, evalm(v[1]))*v[1]+LeviCivita(x, y,
evalm(v[2]))*v[2]+LeviCivita(x, y, evalm(v[3]))*v[3]+LeviCivita(x, y,
evalm(v[4]))*v[4]);

# To define the Riemannian tensor of the metric G:

Rc := (x, y, z) - -evalm(simplify(LC(x, LC(y, z))-LC(y, LC(x, z))-LC(brac(x,
y), 2)));

RiemC := (x, y, 2z, w) — simplify(innerprod(Rc(x, y, z), G, w));

# To define the Ricci tensor, the Riemannian scalar R and the trace free part of the Ricci tensor Ricy of the
metric G:

Ricci := (x, y)— evalm(simplify(RiemC(x, evalm(v[1]), y, evalm(v[1]))+RiemC(x,
evalm(v[2]), y, evalm(v[2]))+RiemC(x, evalm(v[3]), y, evalm(v[3]))+RiemC(x,
evalm(v[4]), y, evalm(v[4]))));

R := evalm(simplify(Ricci(evalm(v[1]), evalm(v[1]))+Ricci(evalm(v[2]),
evalm(v[2]))+Ricci(evalm(v[3]), evalm(v[3]))+Ricci(evalm(v[4]), evalm(v[4]1))));
Rico := (x, y)—evalm(simplify(Ricci(x, y)-( i )*#R*innerprod(x, G, y)));

# To define the Hodge star of a 2-form:

DGsetup([x1, x2, x3, x41):

g := evalDG(al*(dxl &t dx1)+(dx2 &t dx2)+(dx3 &t dx3)+(dx4 &t dx4));
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HodgeStar (g, al3+(dxl &w dx3)+ald+*(dxl &w dx4)+a24(dx2 &w dx4)+a23*(dx2 &w
dx3)+a34*(dx3 &w dx4));

# To define the trace free part [F o F]o of a 2-form F:

K := Transpose(Multiply(F, MatrixInverse(G)));

FoF := simplify(Multiply(Transpose(K), F));

Tr(FoF) := innerprod(evalm(v[1]), FoF, evalm(v[1]))+innerprod(evalm(v[2]),
FoF, evalm(v[2]))+innerprod(evalm(v[3]), FoF,
evalm(v[3]))+innerprod(evalm(v[4]), FoF, evalm(v[4]));

[FoF]p := simplify(Fo F—(@)*G) ;

# To solve the Einstein-Maxwell equations:

solve(Rico(evalm(e[1]),evalm(e[1]))+[Fo F]o[1,1]=0,
Rico(evalm(e[1]),evalm(e[2]))+[Fo F]o[1,2]=0,
Rico(evalm(e[1]),evalm(e[3]))+[Fo F]o[1,3]=0,
Rico(evalm(e[1]),evalm(e[4]))+[Fo F]o[1,4]=0,
Rico(evalm(e[2]),evalm(e[2]))+[Fo F]y[2,2]=0,
Rico(evalm(e[2]),evalm(e[3]))+[Fo F]o[2,3]=0,
Rico(evalm(e[2]),evalm(e[4]))+[Fo F]o[2,4]=0,
Rico(evalm(e[3]),evalm(e[3]))+[Fo F]o[3,3]=0,
Rico(evalm(e[3]),evalm(e[4]))+[F o F]o[3,4]=0,

[F o F]

Rico(evalm(e[4]),evalm(e[4]))+[F o F]o[4,4]1=0,ai1, ai3, dis, a3, a24) ;
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