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Einstein–Maxwell Equations on
Four-dimensional Lie Algebras

Caner Koca andMehdi Lejmi

Abstract. We classify up to automorphisms all le�-invariant non-Einstein solutions to the Einstein–
Maxwell equations on four-dimensional Lie algebras.

1 Introduction

A Riemannian 4-manifold (M , g) is called Einstein if the trace-free Ricci tensor is
identically zero, that is, Ric0 ∶= Ric− s

4 g = 0. From the viewpoint of general relativ-
ity, these are the Riemannian solutions of Einstein’s ûeld equations in vacuum. One
can also consider the same equations in the presence of an electro-magnetic ûeld F.
In physics, F can be thought as a diòerential 2-form, which is closed and co-closed:
dF = 0 and d ⋆ F = 0, where ⋆ is theHodge star operator (in particular, themanifold
is assumed to be oriented in order to deûne ⋆). In this setting, the metric g and the
2-form F must satisfy the coupled system

Ric0 = −[F ○ F]0 ,
dF = 0,

d ⋆ F = 0,
known as the Einstein–Maxwell equations. Here [F ○ F]0 = Fi sF s

j − 1
4FstF st g i j is the

trace-free part of the composition of F with itself, where F is thought as an endomor-
phism of the tangent bundle a�er raising an index. his term (up to a constant) is
what physicists call the stress-energy-tensor of the electro-magnetic ûeld.
Although the Einstein–Maxwell equations can be considered in any dimension

n ≥ 4, the four-dimensional casehas aprivileged status, because in thisdimension, the
equations imply that the solutions must have constant-scalar-curvature [12, 18]. Also,
in dimension four, if (g , F) is a solution of the Einstein–Maxwell equations and g is
not Einstein, then F is determined uniquely up to a constant: F ∶= cF+ + 1

c F
−, where

F± = 1
2 (F ± ⋆F) are the self-dual and the anti-self-dual parts of F [14]. herefore, the

Einstein–Maxwell equations can actually be thought of as having one unknown: the
metric. We say that a metric is an Einstein-Maxwell metric if there is a 2-form F so
that (g , F) is a solution of Einstein–Maxwell equations.

he Einstein–Maxwell equations also have some remarkable ties to Kähler geom-
etry. First, any Kähler metric with constant-scalar-curvature (cscK for short) is an
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Einstein–Maxwell metric. Indeed, as LeBrun [12] observed, for a cscK metric, the
2-form F canbe chosen as F = 1

2ω+ρ0,whereω is theKähler form and ρ0 ∶=Ric0(J ⋅ , ⋅)
is the trace-free Ricci form of the metric. Second, more generally, a constant-scalar-
curvature metric in a conformal class of a Kähler metric is Einstein–Maxwell if the
conformal factor is a holomorphy potential [1, 13]. hese observations lead to many
examples of Einstein–Maxwell metrics. Any cscKmetric on a complex surface is a so-
lution. Recently, some conformally Kähler solutions have been discovered on Hirze-
bruch surfaces and more generally on so-called minimal ruled surfaces ûbered over
Riemann surfaces of any genus [2,9, 12–14]. We also refer the reader to [5–7, 10, 11, 17]
for more about obstructions to the existence of Einstein–Maxwell metrics.

In this paper, in pursuit of ûnding new examples, we look into four-dimen-
sional Lie algebras. he four-dimensional Lie algebras were already classiûed by
Mubarakzyanov [15] (a list can be found in [16]), and the (automorphism-reduced)
form of le�-invariant metrics on these algebras was computed by Karki in his thesis
[8], where he also determined all le�-invariant Einstein metrics on four-dimensional
Lie algebras up to automorphisms of the Lie algebra. Here we ûnd the le�-invariant
non-Einstein solutions to the Einstein–Maxwell equations (up to automorphisms).

heorem 1.1 he following are the four-dimensional Lie algebras admitting le�-
invariant non-Einstein solutions to the Einstein–Maxwell equations.

(i) 2A2: [e1 , e2] = e2 and [e3 , e4] = e4.
(ii) A2 ⊕ 2A1: [e1 , e2] = e2.
(iii) Aa ,0

4,6 : [e1 , e4] = ae1, [e2 , e4] = −e3, and [e3 , e4] = e2 with a ≠ 0.

(iv) A
− 1

2
4,9: [e2 , e3] = e1, [e1 , e4] = 1

2 e1, [e2 , e4] = e2, and [e3 , e4] = − 1
2 e3.

Here we use the same notation for Lie algebras as in [16]. hese solutions turn
out to be Kähler with the ûxed orientation e1 ∧ e2 ∧ e3 ∧ e4 except onA

− 1
2

4,9, which ad-
mits a solutionmetric that cannot be (le�-invariant) Kählerwith the ûxed orientation
(however, it is Kähler for the reverse orientation). hat solution is actually a non-
Kähler almost-Kähler metric (so the almost-complex structure J is non-integrable)
with J-invariant Ricci tensor [4]. Indeed, a non-Kähler almost-Kähler metric with
J-invariant Ricci tensor of constant scalar curvature is a solution to the Einstein–
Maxwell equations, because the Ricci form is closed in that case [3]; hence the same
argument applies for cscK metrics.

We also remark that 2A2 is the only algebrawhich admits an le�-invariant Einstein
metric and also a non-Einstein solution to the Einstein–Maxwell equations. Further-
more, we remark that the corresponding Lie groups to all these Lie algebras admit no
compact quotient.

2 Left-invariant Non-Einstein Solutions to the Einstein–Maxwell
Equations

We present in this section the list of all four-dimensional Lie algebras admitting non-
Einstein solutions to the Einstein–Maxwell equations. We give an explicit description
of the solutions up to automorphisms of the Lie algebra. In order to do so, we went
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over the list of four-dimensional Lie algebras in [16] and their (automorphism-
reduced) le�-invariant Riemannian metrics (as in [8]) and then used a Maple pro-
gram to determine solutions of the Einstein–Maxwell equations.

2.1 The Lie Algebra 2A2

he structure equations of the Lie algebra 2A2 are [e1 , e2] = e2 and [e3 , e4] = e4,
where {e i} is a basis of 2A2. his Lie algebra is not unimodular, so it does not admit
a compact quotient. Up to automorphisms of the Lie algebra (and scaling), a le�-
invariant metric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 a1 a2
0 1 a3 a4
a1 a3 a5 0
a2 a4 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where a i are constants satisfying the conditions a5 − a2
3 − a2

1 > 0 and

(a2
4 − 1)a2

1 − 2a1a2a3a4 + (a2
3 − a5)a2

2 − a2
4a5 − a2

3 + a5 > 0.

Suppose that F = ∑1≤i< j≤4 a i je i j is a 2-form where a i j are constants and {e i} is the
dual basis of {e i} and e i j = e i∧e j . Noting that de i = −e i[e j , ek], the condition dF = 0
implies that a14 = a23 = a24 = 0. Suppose that the orientation is e1234 = e1∧e2∧e3∧e4.
hen we have

⋆F = 1√
det g

(a4a1a12 − a2a3a12 + a2a13 + a34) e12

− 1√
det g

(a2a5a12 − −a2a3a13 − a3a34) e13

+ 1√
det g

(a2a4a13 + a1a12 + a4a34) e14

− 1√
det g

(a4a5a12 − a4a3a13 + a1a34) e23

+ 1√
det g

(a2
4a13 + a3a12 − a2a34 − a13) e24

+ 1√
det g

(a4a1a34 − a3a2a34 + a5a12 − a3a13) e34 .

hen d ⋆ F = 0 implies the system of equations

a2a4a13 + a1a12 + a4a34 = 0,
a4a5a12 − a4a3a13 + a1a34 = 0,

a2
4a13 + a3a12 − a2a34 − a13 = 0,

which have the following non-trivial solutions, i.e., F ≠ 0.
Solution 1: a1 = a4 = 0, a3 = (a2a34 + a13)/a12,with a12 ≠ 0.hen [F ○ F]0(e3 , e4)= 0.
On the other hand, the trace-free Ricci tensor Ric0(e3 , e4) = −a2a5a2

12/2det g . hus
a2 = 0. hen [F ○ F]0(e1 , e3) = 0, while Ric0(e1 , e3) = −a2

13/2det g. Hence, a13 = 0.
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We obtain then the solution to the Einstein–Maxwell equations given by themetric

(2.1) g = e1 ⊗ e1 + e2 ⊗ e2 + a5 e3 ⊗ e3 + e4 ⊗ e4 ,

and F = a12e12 + a34e34 such that

(2.2) a5 =
1 + a2

34

1 + a2
12
≠ 1.

Actually, when a5 = 1 in (2.1), the metric g is then Einstein. In fact, the trace-free
Ricci tensor of g is given by

Ric0 = (1 − a5
2a5

) e1 ⊗ e1 + (1 − a5
2a5

) e2 ⊗ e2 + (a5 − 1
2

) e3 ⊗ e3 + (a5 − 1
2a5

) e4 ⊗ e4 .

Moreover, we have

F± = 1
2
(± a34√

a5
+ a12) e12 +

1
2
(±√a5a12 + a34)e34 .

Furthermore, themetric g is Kähler with respect to the Kähler form

ω = e12 +√
a5e34 ,

with the trace-free Ricci form given by

ρ0 =
1 − a5
a5

e12 + a5 − 1√
a5
e34 .

Using the relation (2.2), we then have

1
2
ω = 1

( a34√
a5
+ a12)

F+ , ρ0 = ( a34√
a5

+ a12)F− .

Solution 2: a12 = 0, a1 = 0, a4 = 0, a13 = −a2a34 . hen [F ○ F]0(e1 , e2) = [F ○ F]0
(e3 , e4) = 0 implies that a2 = a3 = 0 andwe again get the solution (2.1) (with a12 = 0).

Solution 3: a1 = −a4(13a2 + a34)/a12, a3 = (a13 + a2a34 − a13a2
4)/a12, a5 = (a2

34+a2
13

+ 2a13a34a2 − a2
13a2

4)/a2
12 . hen [F ○ F]0 ≡ 0; so any Einstein–Maxwell metric must

be Einstein.

2.2 The Lie Algebra A2 ⊕ 2A1

he structure equation is [e1 , e2] = e2. his Lie algebra is not unimodular, so it does
not admit a compact quotient. Moreover, it does not admit any le�-invariant Einstein
metric [8]. Up to automorphisms of the Lie algebra (and scaling), a le�-invariant
metric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 a1 a2
0 a1 1 0
0 a2 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions 1 − a2
1 > 0 and 1 − a2

1 − a2
2 > 0. he condition dF = 0 implies that

a23 = a24 = 0. he condition d ⋆ F = 0 implies the following non-trivial solutions.
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Solution 1: a13 = a1a12 , a14 = a2 = 0. To get a solution to the Einstein–Maxwell
equations we need a1 = 0, and so a solution is given by

g = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4

and F = a12e12 + a34e34 such that

(2.3) a2
34 − a2

12 = 1.

Moreover, we have

F± = 1
2
(a12 ± a34)e12 +

1
2
(±a12 + a34)e34 .

Furthermore, themetric g is Kähler with respect to the Kähler form

ω = e12 + e34 ,

with the trace-free Ricci form given by ρ0 = − 1
2 e

12 + 1
2 e

34. Using the relation (2.3),we
then have

1
2
ω = 1

(a12 + a34)
F+ , ρ0 = (a12 + a34) F− .

Solution 2: a12 = a14
a2
, a13 = a1a14

a2
, with a2 ≠ 0. Maple shows that there is no solution

to the Einstein–Maxwell equations.

2.3 The Lie Algebra Aa ,0
4,6

he structure equations are [e1 , e4] = ae1, [e2 , e4] = −e3, and [e3 , e4] = e2, with
a ≠ 0. his Lie algebra does not admit a compact quotient and does not admit any
le�-invariant Einstein metric [16]. Up to automorphisms of the Lie algebra, a le�-
invariant metric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 a1 a2 0
a1 1 0 0
a2 0 a3 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions a3 − a3a2
1 − a2

2 > 0 and 1 − a2
1 > 0. he condition dF = 0 implies

that a12 = a13 = 0. hen the condition d ⋆ F = 0 implies

a2
1 a34 − a2a1a24 + a2a14 − a34 = 0,

a3a1a14 − a1a2a34 + a2
2a24 − a3a24 = 0.

hen we distinguish two cases.
Case 1: a2 = 0, a34 = 0, a24 = a1a14. To get a solution to the Einstein–Maxwell
equations, we need a1 = 0, a3 = 1, and a2

23 − a2
14 = a2. hen the Einstein–Maxwell

metric is
g = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4 ,

and F = a14e14 + a23e23 such that

(2.4) a2
23 − a2

14 = a2 ,
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with a ≠ 0. If a = 0, then g is Einstein. In addition, we have

F+ = 1
2
(a14 + a23)e14 +

1
2
(a14 + a23)e23

F− = 1
2
(a14 − a23)e12 +

1
2
(−a14 + a23)e34 .

Furthermore, themetric g is Kähler with respect to the Kähler form

ω = e14 + e23 ,
with the trace-free Ricci form given by ρ0 = − a

2

2 e
14 + a2

2 e
34. Using the relation (2.4),

we then have
1
2
ω = 1

(a14 + a23)
F+ , ρ0 = (a14 + a23) F− .

Case 2: a2 ≠ 0, a14 = a34
a2
and a24 = a1a34

a2
. Maple shows that there is no non-Einstein

solution to the Einstein–Maxwell equations.

2.4 The Lie Algebra A
− 1

2
4,9

he structure equations of the Lie algebraA−
1
2

4,9 are

[e2 , e3] = e1 , [e1 , e4] =
1
2
e1 , [e2 , e4] = e2 , [e3 , e4] = −

1
2
e3 .

his Lie algebra does not admit a compact quotient and does not admit any le�-
invariantEinsteinmetric [16]. Up to automorphisms of theLie algebra, a le�-invariant
metric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 0
0 1 a2 a3
0 a2 1 a4
0 a3 a4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions a1 > 0, 1 − a2
2 > 0, 1 − a2

4 + 2a2a3a4 − a2
2 − a2

3 > 0. he condition
dF = 0 implies that a12 = 0 and a14 = 1

2 a23. hen we have two cases.
Case 1: If we suppose that a2a3 ≠ a4, then the condition d ⋆ F = 0 implies that

a13 =
4a1a2a24a3 − 4a1a23a2

3 − 4a1a24a4 + a2
2a23 + 4a1a23 − a23

a2a3 − a4
,

a34 = a2a24 − a23a3 .

Maple shows that there is no solution to the Einstein–Maxwell equations.

Case 2: If we suppose that a4 = a2a3, then there are two solutions to d ⋆ F = 0.
Solution 1: a23 = 0 and a34 = a2a24. To get a solution to the Einstein–Maxwell
equations, we need a1 = 1 and a2 = a3 = 0 hen the Einstein–Maxwell metric is
g = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4, with F = a13e13 + a24e24 such that

(2.5) a2
13 − a2

24 =
3
2
.

It turns out that themetric g is non-Kähler almost-Kähler with the orientation e1234 .
Indeed, g is compatiblewith the closed 2-formω = e13−e24 inducing a non-integrable
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almost-complex structure J deûned by Je1 = e3 and Je2 = −e4. Moreover, its Ricci
tensor is J-invariant. Indeed, its trace-free Ricci form is given by ρ0 = 3

4 e
13 + 3

4 e
24.

We then have

F+ = 1
2
(a13 − a24)e13 +

1
2
(a24 − a13)e24 ,

F− = 1
2
(a13 + a24)e13 +

1
2
(a24 + a13)e24 .

Furthermore, using the relation (2.5), we have
1
2
ω = 2

3
(a13 + a24) F+ , ρ0 =

3
2 (a13 + a24)

F− .

If we reverse the orientation to be −e1234, then

F+ = 1
2
(a13 + a24)e13 +

1
2
(a24 + a13)e24 ,

F− = 1
2
(a13 − a24)e13 +

1
2
(a24 − a13)e24 .

Furthermore, the metric g is Kähler with respect to the Kähler form ω = e13 + e24,
with the trace-free Ricci form given by ρ0 = 3

4 e
13 − 3

4 e
24. So using the relation (2.5),

we then have
1
2
ω = 1

(a13 + a24)
F+ , ρ0 = (a13 + a24)F− .

Solution 2: a34 = a2a24 − a3a23 , a1 = 1−a22
4(1−a23) (with a3 ≠ ±1). Maple shows that there

is no solution to the Einstein–Maxwell equations.

3 Non-existence of Einstein–Maxwell Metrics

In this section, we will explain brie�y why all the other Lie algebras do not admit any
non-Einstein Einstein–Maxwell metrics.

3.1 The Lie Algebra A4,1

he structure of the Lie algebra is

[e2 , e4] = e1 , [e3 , e4] = e2 .
Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 a1 0
0 a1 a2 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the condition that a2 − a2
1 > 0. A form F satisûes dF = 0 if

F = a14e14 + a23e23 + a24e24 + a34e34 .

hen the condition d⋆F = 0 implies that a34 = a1a24 and a1a34 = a2a24 . Since a2 ≠ 0,
we get a34(1− a

2
1
a2
) = 0; hence a34 = a24 = 0.We deduce that a solution to dF = d⋆F = 0
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is given by F = a14e14 + a23e23 . Now the tensor [F ○ F]0 satisûes [F ○ F]0(e1 , e2) = 0,
while the trace free part of the Ricci tensor satisûes Ric0(e1 , e2) = − 1

2
a1

a2−a21 . Hence
a1 = 0 and so there is no solution to the Einstein–Maxwell equations.

3.2 The Lie Algebra A
p
4,2

he structure of the Lie algebra is given by

[e1 , e4] = pe1 , [e2 , e4] = e2 , [e3 , e4] = e2 + e3 ,
with p ≠ 0. Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 a1 a2 0
a1 1 0 0
a2 0 a3 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions a3 − a3a2
1 − a2

2 > 0 and a3 > 0. he equation dF = 0 implies
a23 = 0, a12(p + 1) = 0, and a12 + a13(p + 1) = 0. We suppose ûrst that p ≠ −1. hen
we get a12 = a13 = 0. he condition d ⋆ F = 0 implies that

a34 − a2a14 + a2a1a24 − a2
1 a34 = 0,

a3a1a14 − a1a2a34 + a2
2a24 − a3a24 = 0,

−a3a1a24 + a3a14 − a2a34 = 0.

Since a3 > 0, from the third equation we get a14 = a1a24 + a2
a3
a34. Replacing it in the

second equation, we get that a24 = 0, because a3 − a3a2
1 − a2

2 > 0. hen it is easy to
deduce that a34 = a14 = 0. We conclude that under the hypothesis p ≠ −1, there is no
non trivial F satisfying dF = d ⋆ F = 0.

Now we suppose that p = −1. hen dF = 0 implies that a23 = a12 = 0. From
d ⋆ F = 0, it follows that

a34 − a2a14 + a2a1a24 − a2
1 a34 = 0, −a3a1a24 + a3a14 − a2a34 = 0.

We get a14 = a1a24 + a2
a3
a34 from the second equation. Replacing it in the ûrst we

obtain that a34 = 0. A solution F of dF = d ⋆ F = 0 is of the form

F = a13e13 + a1a24e14 + a24e24 ,

and then usingMaple, it turns out that there are no solutions to the Einstein–Maxwell
equations.

3.3 The Lie Algebra A4,3

he structure of the Lie algebra is

[e1 , e4] = e1 , [e3 , e4] = e2 .
Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 a1 a2 0
a1 1 0 0
a2 0 a3 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
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with the conditions that a3 − a3a2
1 − a2

2 > 0 and a3 > 0. he equation dF = 0 implies
that a12 = a13 = 0. From d ⋆ F = 0, it follows that

−a2
1 a34 + a2a1a24 − a2a14 + a34 = 0, a3a1a14 − a1a2a34 + a2

2a24 − a3a24 = 0.

We deduce then that a34 = a2a14, a24 = a1a14 and then Maple shows that there are no
solutions to the Einstein–Maxwell equations.

3.4 The Lie Algebra A4,4

he structure of the Lie algebra is

[e1 , e4] = e1 , [e2 , e4] = e1 + e2 , [e3 , e4] = e2 + e3 .
Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 a1 a2 0
0 a2 a3 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions that a1a3−a2
2 > 0 and a1 > 0. Now dF = 0 implies that a12 = a13 =

a23 = 0. From d ⋆ F = 0, it follows that

a1a34 − a2a24 = 0, a2a34 − a3a24 = 0, a14(a1a3 − a2
2) = 0.

Hence a14 = a24 = a34 = 0 and thus there is no non trivial solution F.

3.5 The Lie Algebra Aa ,b
4,5

he structure of the Lie algebra is

[e1 , e4] = e1 , [e2 , e4] = ae2 , [e3 , e4] = be3 ,
with ab ≠ 0, −1 ≤ a ≤ b ≤ 1. Up to automorphisms of the Lie algebra, a metric g is
given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 a1 a2 0
a1 1 a3 0
a2 a3 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions that

1 − a2
1 − a2

2 − a2
3 + 2a1a2a3 > 0, 1 − a2

1 > 0, (1 − a2
2)(1 − a2

3) > 0.

Now dF = 0 implies the following solutions depending on a and b.
Case 1: a ≠ −1, b ≠ −1, and a ≠ −b. In this case, we have a12 = a13 = a23 = 0. he
condition d ⋆ F = 0 implies that

a2
1 a34 − a3a1a14 − a1a2a24 + a2a14 + a3a34 − a34 = 0,

−a1a2a34 − a2a3a14 + a2
2a24 + a1a14 + a3a34 − a24 = 0,

−a3a1a34 + a2
3a14 − a3a2a24 + a1a24 + a2a34 − a14 = 0.

It turns out that there is no non trivial solution F.
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Case 2: a ≠ −1 b ≠ −1, and a = −b. In this case, we have a12 = a13 = 0. he condition
d ⋆ F = 0 implies that

a2
1 a34 − a3a1a14 − a1a2a24 + a2a14 + a3a34 − a34 = 0,

−a1a2a34 − a2a3a14 + a2
2a24 + a1a14 + a3a34 − a24 = 0.

hen the non trivial solution is a24 = a1a14 and a34 = a2a14 . Hence,

F = a14e14 + a23e23 + a1a14e24 + a2a14e34 .

Maple shows that there is no solution to the Einstein–Maxwell equations.

Case 3: a ≠ −1, b = −1 and a ≠ −b. In this case, a12 = a23 = 0. hen d ⋆F = 0 implies
a14 = a1a24, a34 = a3a24 and it turns out that there is no solution of the Einstein–
Maxwell equations.

Case 4: a = −1, b ≠ −1, and a ≠ −b. In this case, a13 = a23 = 0. hen d ⋆ F = 0
implies a14 = a2a34, a24 = a3a34 and it turns out that there is no solution of the
Einstein–Maxwell equations.

Case 5: a = −1, b = −1. So dF = 0 implies a23 = 0. he condition d ⋆ F = 0 implies
a14 = (−a3a1a34 − a3a2a24 + a1a24 + a2a34)/(1− a2

3), and it turns out that there is no
solution of the Einstein–Maxwell equations.

Case 6: a = −1, b = 1. he condition dF = 0 implies a13 = 0. he condition d ⋆ F = 0
implies a24 = (−a1a2a34 − a2a3a14 + a1a14 + a3a34)/(1 − a2

2), and it turns out that
there is no solution of the Einstein–Maxwell equations.

Case 7: a = 1, b = −1,. hen dF = 0 implies a12 = 0. he condition d ⋆ F = 0 implies
a34 = (−a3a1a14 − a2a1a24 + a2a14 + a3a24)/(1− a2

1 ), and it turns out that there is no
solution of the Einstein–Maxwell equations.

3.6 The Lie Algebra Aa ,b
4,6

he structure of the Lie algebra is

[e1 , e4] = ae1 , [e2 , e4] = be2 − e3 , [e3 , e4] = e2 + be3 ,

with a ≠ 0, b > 0. Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 a1 a2 0
a1 1 0 0
a2 0 a3 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions that a3 − a3a2
1 − a2

2 > 0, 1 − a2
1 > 0. he condition dF = 0

implies that a12(a + b) = a13, a13(a + b) = −a12, and ba23 = 0. his implies that
a12 = a13 = 0 = a23 = 0. he condition d ⋆ F = 0 implies that

a2
1 a34 − a2a1a24 + a2a14 − a34 = 0, a3a1a24 − a3a14 + a2a34 = 0,

a3a1a14 − a1a2a34 + a2
2a24 − a3a24 = 0.

hen there is no non-trivial solution F.
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3.7 The Lie Algebra A4,7

he structure of the Lie algebra is

[e2 , e3] = e1 , [e1 , e4] = 2e1 , [e2 , e4] = e2 , [e3 , e4] = e2 + e3 .

Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 0
a2 a4 0 0
a3 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions that a1 > 0, a4 > 0, a1a4 − a2
2 − a2

3a4 > 0. he condition dF = 0
implies that a12 = a13 = 0, a23 = 1

2 a14. hen d ⋆ F = 0 implies that

a4a1a34 − a3a4a14 − a2
2a34 + a3a2a24 = 0,

a2a3a34 − a2
3a24 + a1a24 − a2a14 = 0,

−a4a3a34 + a4a14 − a2a24 − 1
4 a1a14 = 0.

hen there are two possible solutions.

Solution 1: a2 = a24 = 0, a34 = a3a14/a1, and a4 = a2
1 /4(a1 − a2

3). hen the tensor
[F ○ F]0 ≡ 0, and so any Einstein–Maxwell metric is Einstein.

Solution 2: a1 = a2a14/a24, a3 = a2a34/a24, and a4 = a2(a2
14 + 4a2

24)/4(−a2a2
34 +

a14a24), with a24 ≠ 0 and −a2a2
34 + a14a24 ≠ 0; otherwise we are in the ûrst case. We

again get [F ○ F]0 ≡ 0.

3.8 The Lie Algebra A4,8

he structure of the Lie algebra is

[e2 , e3] = e1 , [e2 , e4] = e2 , [e3 , e4] = −e3 .

Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 0
0 1 a2 a3
0 a2 1 a4
0 a3 a4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions that a1 > 0, 1−a2
2 > 0, 1−a2

4+2a2a3a4−a2
2−a2

3 > 0. he condition
dF = 0 implies that a12 = a13 = a14 = 0. However, there is no non trivial solution to
the equation d ⋆ F = 0.

3.9 The Lie Algebra Ab
4,9

he structure of the Lie algebra is

[e2 , e3] = e1 , [e1 , e4] = (b + 1)e1 , [e2 , e4] = e2 , [e3 , e4] = be3 ,
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with the conditions −1 < b ≤ 1 and b ≠ − 1
2 . Up to automorphisms of the Lie algebra,

ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 0
0 1 a2 a3
0 a2 1 a4
0 a3 a4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions a1 > 0, 1 − a2
2 > 0, 1 − a2

4 + 2a2a3a4 − a2
2 − a2

3 > 0. From the
condition dF = 0, we get a12 = 0, a13 = 0, a14 = (1+b)a23. hen d ⋆F = 0 implies that

a3 =
a2

2a34 + a2a23a4 − a34

a23
, a24 = a2a34 + a23a4 ,

b = a1a
2
2a2

34 − a1a2
23a2

4 + a2
2a2

23 + a1a2
23 − a1a2

34 − a2
23

a2
23(1 − a2

2)
,

(a23 ≠ 0, otherwise F is trivial) Maple shows then that there is no solution to the
Einstein–Maxwell equations.

3.10 The Lie Algebra A4,10

he structure of the Lie algebra is

[e2 , e3] = e1 , [e2 , e4] = −e3 , [e3 , e4] = e2 ,
Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 0
0 a2 0 a3
0 0 1 a4
0 a3 a4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions that a1 > 0, a2 > 0, a2 − a2a2
4 − a2

3 > 0. Now dF = 0 implies
that a12 = a13 = a14 = 0. hen d ⋆ F = 0 implies that a2 = a223(1−a24)

a234
, a24 = a23a4,

a3 = a23(a24−1)
a34

, (a34 ≠ 0, otherwise F is trivial). But then the determinant of g is 0.

3.11 The Lie Algebra Aa
4,11

he structure of the Lie algebra is

[e2 , e3] = e1 , [e1 , e4] = 2ae1 , [e2 , e4] = ae2 − e3 , [e3 , e4] = e2 + ae3 ,
with a > 0. Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 0
0 a2 0 a3
0 0 1 a4
0 a3 a4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions that a1 > 0, a2 > 0, a2 − a2a2
4 − a2

3 > 0. he condition dF = 0
implies that a12 = a13 = 0 and a14 = 2aa23. Moreover, the condition d ⋆ F = 0
implies a1 = 4a22a

2

a2−a2a24−a23 , a24 = a23a4, a34 = − a23a3a2
. hen [F ○ F]0 ≡ 0 and hence any

Einstein–Maxwell metric is Einstein.
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3.12 The Lie Algebra A4,12

he structure of the Lie algebra is

[e1 , e3] = e1 , [e2 , e3] = e2 , [e1 , e4] = −e2 , [e2 , e4] = e1 .

Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 a1 a2 a3
0 a2 1 a4
0 a3 a4 a5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions that a1 > 0, a1 − a2
2 > 0, a1a5 − a1a2

4 − a2
2a5 + 2a2a3a4 − a2

3 > 0.
hen dF = 0 implies that a12 = 0, a13 = a24, a14 = −a23. he condition d ⋆ F = 0
implies the following diòerent solutions.

Solution 1: a2 = a23 = a34 = a4 = 0 and a5 = a23+1
a1

. hen [F ○ F]0 ≡ 0 and so any
Einstein–Maxwell metric is Einstein.

Solution 2: a24 = 0, a34 = − a3a23a1
, a4 = a2a3

a1
, a5 = −a1a22+a21+a23

a1
. hen we have

[F ○ F]0 ≡ 0.

Solution 3: Suppose that a24 ≠ 0, a23 ≠ −a24a4 , a24 ≠ a23a4 , a23 ≠ 0. hen

a1 = −
a23(a23a4 − a24)
a24(a24a4 + a23)

, a34 =
a3a24(a4a24 + a23)

a23a4 − a24
, a2 = 0,

a5 = −
a3

24a
2
3a4 + a3

23a
2
4 + a23a2

24a2
3 − a23a2

24a2
4 − 2a2

23a24a4 + a3
24a4 + a23a2

24

a23a24(a23a4 − a24)
.

hen [F ○ F]0 ≡ 0.

Solution 4: If we suppose that a24 = 0 then we are in the case of Solution 2.

Solution 5: If we suppose that a23 = 0, then we are in the case of Solution 1.

Solution 6: If we suppose that a24 = a23a4, then one of the following hold.
(1) a2 = a4 = 0, a34 = − a3a23a1

and a5 = a21+a23
a1

. hen [F ○ F]0 ≡ 0.
(2) a2 ≠ 0 and then

a3 =
(a2

1 a2
4 − a1a2

2 + a2
1 + a2

2)a4
a2(a1a2

4 + 1) , a34 = −
a23a4(−a22a2

4 + a1a2
4 − a2

2 + a1)
a2(a1a2

4 + 1) ,

a5 =

a3
1 a

6
4 − 2a2

1 a2
2a4

4 − a4
2a4

4 + 2a3
1 a

4
4 + 3a1a2

2a4
4

− a2
1 a2

2a2
4 − 2a4

2a2
4 + a3

1 a
2
4 + 2a1a2

2a2
4 − a4

2 + a2
2a2

4 + a1a2
2

a2
2(a1a2

4 + 1)2 .

hen [F ○ F]0 ≡ 0.

Solution 7: If we suppose that a23 = −a4a24, then one of the following hold.
(1) a2 = 0, a34 = 0, a5 = 1+a23

a1
. hen [F ○ F]0(e1 , e3) = 0 implies that a3 = 0 and

there will be no solution to the Einstein–Maxwell equations.
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(2) If a2 ≠ 0, then

a3 =
(a1a2

2 + a1a2
4 − a2

2 + a1)a4
a2(a2

4 + a1)
, a34 =

a24(a2
2a2

4 + a4
4 + a2

2 + a2
4)

a2(a2
4 + a1)

,

a5 =

−a4
2a4

4 + 3a1a2
2a4

4 + a1a6
4 + a2

1 a2
2a2

4 − 2a4
2a2

4 − 2a2
2a4

4

+ 2a1a2
2a2

4 + 2a1a4
4 − a4

2 − a2
2a2

4 + a1a2
2 + a1a2

4

a2
2(a2

4 + a1)2 .

hen [F ○ F]0 ≡ 0.

Solution 8: a2 ≠ 0 and

a3 =
a2
1 a2

24a4 − a1a2
2a23a24 + a2

1 a23a24 + a1a2
23a4 + a2

2a23a24 − a1a23a24

a2(a1a2
24 + a2

23)
,

a34 = −
a2
1 a2

24a23a4 − a2
2a2

23a24 − a2
2a3

24 + a1a2
23a24 + a3

23a4 − a2
23a24

a2(a1a2
24 + a2

23)
,

a2
2(a1a2

24 + a2
23)a5 = a3

1 a
4
24a

2
4 − 2a2

1 a
2
2a23a3

24a4 + 2a3
1 a23a3

24a4 − a2
1 a

2
2a

2
23a

2
24

+ 2a2
1 a

2
23a

2
24a

2
4 − 2a1a2

2a
3
23a24a4 + 2a1a2

2a23a3
24a4

− a4
2a

4
23 − 2a4

2a
2
23a

2
24 − a4

2a
4
24

+ a3
1 a

2
23a

2
24 + 2a2

1 a
3
23a24a4 − 2a2

1 a23a3
24a4

+ a1a2
2a

4
23 + 4a1a2

2a
2
23a

2
24 + a1a2

2a
4
24

+ a1a4
23a

2
4 + 2a2

2a
3
23a24a4 − 2a2

1 a
2
23a

2
24

− 2a1a3
23a24a4 − a2

2a
2
23a

2
24 + a1a2

23a
2
24 .

hen [F ○ F]0 ≡ 0. Here a23 ≠ 0 and a24 ≠ 0, otherwise F vanishes.

3.13 The Lie Algebra A3,1 ⊕A1

he structure of the Lie algebra is [e3 , e4] = e1. Up to automorphisms of the Lie
algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the condition a1 > 0. he condition dF = 0 implies a12 = 0 and then d ⋆ F = 0
implies a34 = 0. Maple then shows that there is no solution to the Einstein–Maxwell
equation.

3.14 The Lie Algebra A3,2 ⊕A1

he structure of the Lie algebra is

[e1 , e3] = e1 , [e2 , e3] = e1 + e2 .
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Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 a2
0 1 0 a3
0 0 1 0
a2 a3 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions a1 > 0, a1 − a2
2 − a1a2

3 > 0. he condition dF = 0 implies a12 =
a14 = a24 = 0. hen d ⋆ F = 0 has no non trivial solution.

3.15 The Lie Algebra A3,3 ⊕A1

he structure of the Lie algebra is

[e1 , e3] = e1 , [e2 , e3] = e2 .
Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 a1 0 a2
a1 1 0 a3
0 0 1 0
a2 a3 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions 1 − a2
1 > 0, 1 − a2

1 − a2
2 − a2

3 + 2a1a2a3 > 0. he condition dF = 0
implies a12 = a14 = a24 = 0. hen the only solution to d ⋆ F = 0 is the trivial solution.

3.16 The Lie Algebra A3,4 ⊕A1

he structure of the Lie algebra is

[e1 , e3] = e1 , [e2 , e3] = −e2 .
Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 a1 0 a2
a1 1 0 a3
0 0 1 0
a2 a3 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions 1 − a2
1 > 0, 1 − a2

1 − a2
2 − a2

3 + 2a1a2a3 > 0. he condition dF = 0
implies a14 = a24 = 0.he condition d⋆F = 0 implies that a13 = −a2a34 , a23 = −a3a34 .
hen Maple shows that there is no solution to the Einstein–Maxwell equations.

3.17 The Lie Algebra A3,5 ⊕A1

he structure of the Lie algebra is

[e1 , e3] = e1 , [e2 , e3] = ae2 ,
with 0 < ∣a∣ < 1. Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 a1 0 a2
a1 1 0 a3
0 0 1 0
a2 a3 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
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with the conditions 1 − a2
1 > 0, 1 − a2

1 − a2
2 − a2

3 + 2a1a2a3 > 0. he condition dF = 0
implies a12 = a14 = a24 = 0 hen the only solution to d ⋆ F = 0 is the trivial solution.

3.18 The Lie Algebra A3,6 ⊕A1

he structure of the Lie algebra is

[e1 , e3] = −e2 , [e2 , e3] = e1 .

Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 a1
0 a2 0 a3
0 0 1 0
a1 a3 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions a2 > 0, a2 − a2
3 − a2a2

1 > 0. he condition dF = 0 implies a14 =
a24 = 0. he condition d ⋆ F = 0 implies the following solutions
Solution 1: a3 = 0, a13 = −a1a34 , a23 = 0. hen a1 = 0, a2 = 1, a12 = ±a34 and hence
[F ○ F] ≡ 0 and so any Einstein–Maxwell metric is Einstein.

Solution 2: a3 ≠ 0, a13 = a1a23
a3

, a34 = − a23a3 . hen Maple shows that there is no solu-
tion to the Einstein–Maxwell equations.

3.19 The Lie Algebra A3,7 ⊕A1

he structure of the Lie algebra is

[e1 , e3] = ae1 − e2 , [e2 , e3] = e1 + ae2 ,

with a > 0. Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 a1
0 a2 0 a3
0 0 1 0
a1 a3 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions a2 > 0, a2 − a2
3 − a2a2

1 > 0. he condition dF = 0 implies that
a12 = a14 = a24 = 0. hen the only solution to d ⋆ F = 0 is the trivial solution.

3.20 The Lie Algebra A3,8 ⊕A1

he structure of the Lie algebra is

[e1 , e3] = −2e2 , [e1 , e2] = e1 , [e2 , e3] = e3 .

Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 a4
0 a2 0 a5
0 0 a3 a6
a4 a5 a6 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
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with the conditions a1 > 0, a2 > 0, a3 > 0, a1(a2(a3 − a2
6) − a3a2

5) − a2
4a3a2 > 0. he

condition dF = 0 implies that a14 = a24 = a34 = 0. hen the condition d ⋆ F = 0
implies that F is trivial.

3.21 The Lie Algebra A3,9 ⊕A1

he structure of the Lie algebra is

[e1 , e2] = e3 , [e2 , e3] = e1 , [e3 , e1] = e2 .
Up to automorphisms of the Lie algebra, ametric g is given by

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 a4
0 a2 0 a5
0 0 a3 a6
a4 a5 a6 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the conditions a1 > 0, a2 > 0, a3 > 0, a1(a2(a3 − a2
6) − a3a2

5) − a2
4a3a2 > 0. he

condition dF = 0 implies that a14 = a24 = a34 = 0. hen the only solution to d ⋆ F = 0
is the trivial solution.

3.22 The Abelian Algebra

Any metric can be reduced to the �at euclidean metric.

4 Appendix

We reproduce below the essential part of Maple code used to solve the Einstein–
Maxwell equations. We take here for example the Lie algebraA3,1 ⊕A1 .
# To deûne the structure equations of the Lie algebra:
brac :=(x, y) → vector(n, [(x[3]*y[4]-x[4]*y[3]),0,0,0]);
# To deûne themetric:
G := Matrix([[a1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
# To deûne the coeõcients of the Levi-Civita connection with respect to ametric G:
LeviCivita := (x, y, z) → (1/2)*evalm(innerprod(brac(x, y), G,
z)+innerprod(brac(z, x), G, y)-innerprod(brac(y, z), G, x));
# To deûne the Levi-Civita connection of two vectors with respect to a G-orthonormal basis {v[i]}:
LC := (x, y) → evalm(LeviCivita(x, y, evalm(v[1]))*v[1]+LeviCivita(x, y,
evalm(v[2]))*v[2]+LeviCivita(x, y, evalm(v[3]))*v[3]+LeviCivita(x, y,
evalm(v[4]))*v[4]);
# To deûne the Riemannian tensor of themetric G:
Rc := (x, y, z) → -evalm(simplify(LC(x, LC(y, z))-LC(y, LC(x, z))-LC(brac(x,
y), z)));
RiemC := (x, y, z, w) → simplify(innerprod(Rc(x, y, z), G, w));
# To deûne the Ricci tensor, the Riemannian scalar R and the trace free part of the Ricci tensor Ric0 of the
metric G:
Ricci := (x, y)→ evalm(simplify(RiemC(x, evalm(v[1]), y, evalm(v[1]))+RiemC(x,
evalm(v[2]), y, evalm(v[2]))+RiemC(x, evalm(v[3]), y, evalm(v[3]))+RiemC(x,
evalm(v[4]), y, evalm(v[4]))));
R := evalm(simplify(Ricci(evalm(v[1]), evalm(v[1]))+Ricci(evalm(v[2]),
evalm(v[2]))+Ricci(evalm(v[3]), evalm(v[3]))+Ricci(evalm(v[4]), evalm(v[4]))));
Rico := (x, y)→evalm(simplify(Ricci(x, y)-( 1

4 )*R*innerprod(x, G, y)));
# To deûne the Hodge star of a 2-form:
DGsetup([x1, x2, x3, x4]):
g := evalDG(a1*(dx1 &t dx1)+(dx2 &t dx2)+(dx3 &t dx3)+(dx4 &t dx4));
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HodgeStar(g, a13*(dx1 &w dx3)+a14*(dx1 &w dx4)+a24(dx2 &w dx4)+a23*(dx2 &w
dx3)+a34*(dx3 &w dx4));
# To deûne the trace free part [F ○ F]0 of a 2-form F:
K := Transpose(Multiply(F, MatrixInverse(G)));
F ○ F := simplify(Multiply(Transpose(K), F));
Tr(F ○ F) := innerprod(evalm(v[1]), F ○ F, evalm(v[1]))+innerprod(evalm(v[2]),
F ○ F, evalm(v[2]))+innerprod(evalm(v[3]), F ○ F,
evalm(v[3]))+innerprod(evalm(v[4]), F ○ F, evalm(v[4]));
[F ○ F]0 := simplify(F ○ F-(Tr(F○F)

4 )*G);
# To solve the Einstein–Maxwell equations:
solve(Rico(evalm(e[1]),evalm(e[1]))+[F ○ F]0[1,1]=0,
Rico(evalm(e[1]),evalm(e[2]))+[F ○ F]0[1,2]=0,
Rico(evalm(e[1]),evalm(e[3]))+[F ○ F]0[1,3]=0,
Rico(evalm(e[1]),evalm(e[4]))+[F ○ F]0[1,4]=0,
Rico(evalm(e[2]),evalm(e[2]))+[F ○ F]0[2,2]=0,
Rico(evalm(e[2]),evalm(e[3]))+[F ○ F]0[2,3]=0,
Rico(evalm(e[2]),evalm(e[4]))+[F ○ F]0[2,4]=0,
Rico(evalm(e[3]),evalm(e[3]))+[F ○ F]0[3,3]=0,
Rico(evalm(e[3]),evalm(e[4]))+[F ○ F]0[3,4]=0,
Rico(evalm(e[4]),evalm(e[4]))+[F ○ F]0[4,4]=0,a1 , a13 , a14 , a23 , a24);

Acknowledgements he authors are very thankful to LuigiVezzoni for his valuable
help.
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