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Abstract

In this paper we consider an infinite horizon, continuous time model of economic
growth. We prove two theorems; one on the existence of optimal paths of capital
accumulation and the other on the dependence of the set of optimal paths on the
initial capital stock (sensitivity analysis). In the existence result the underlying
technology set is nonconvex and only its “investment” slices are convex. The proof
is direct, without any use of necessary conditions. In the sensitivity analysis, the
technology set is convex and so we have that the value function is concave. Then
having that, we show that the set of optimal paths is an upper semicontinuous
multifunction of the initial capital stock.

1. Introduction

In this paper, we consider a problem of capital accumulation with infinite hori-
zon and we prove the existence of strongly optimal paths and determine their
dependence on the initial capital stock.

Mathematical economists seem to have been the first to include systemati-
cally an infinite time horizon in their modelling of dynamical economic systems.
Quoting Arrow and Kurz [1], we can say the following concerning the infinite
time span: “The infinite horizon is an idealisation of the fundamental point that
the consequences of investment are very long lived; any short horizon requires
some methods of evaluating end-of-period capital stocks, and the only proper
evaluation is their value in use in the subsequent future”.
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The first to consider dynamical economic systems observed on an unbounded
time interval, was Ramsey [14]. In his seminal work, Ramsey was able to derive
optimality conditions for his economic model, which allowed for positive discount.

More sophisticated models were then studied by Mirrelees [12], Haurie [9] and
Cass and Shell [6].

The model considered here is a general continuous time model of economic
growth with infinite horizon and changing technology, similar to the model of
Cass and Shell [6).

We establish the existence of optimal capital accumulation paths, without
consideration of the necessary conditions for infinite horizon problems, existing
in the literature (see for example Benveniste and Sheinkman [4] and Haurie [9}).
Instead we use a direct approach that follows the fundamental works of Cesari
[7] and Rockafellar [15].

Our existence theorem extends previous ones obtained by Gaines and Peterson
(8] and Takekuma [17]. In both papers, the assumptions on the data of the
problem are more restrictive and the mathematical techniques used are different.
In (8], Gaines and Peterson use ideas from degree theory while Takekuma [17]
uses some nice features of the Mackey topology on the space LY of essentially
bounded functions on Ry = [0,00) with values in R", i.e. LP = {f: Ry —
R™ measurable such that ||f|lcc < o0}, where ||flloc = Iinf{M € R;: A(t €
Ri: || f(t)|| = M) = 0} (here A(-) denotes the Lebesgue measure on R, ).

Here using techniques from the theory of multifunctions, as well as a recent
powerful semicontinuity result of Balder [3], we are able to avoid all the extra
restrictive hypotheses that the above two works have, and establish the existence
of optimal paths, through a more direct and shorter procedure.

Our second result examines the relation between the optimal path and the
initial capital stock and extends Theorem 4.2 of Takekuma [17]. This kind of
analysis on the relation between the optimal path and some parameter(s) of the
problem, is usually called “Sensitivity Analysis” and was initiated by the work
of Brock ([5).

Note that in both (8] and [17], the underlying technology set was assumed
to be constant, while in this work we allow it to be time dependent. The first
study that considered an optimal economic growth model with time changing
technology, was that by Mirrelees [12].

2. Preliminaries
Our state space will be R™ and the planning horizon will be R, = [0, 00).

For any elements z,z € R™, their inner product will be denoted by (z,z). The
Euclidean norm of any z € R™ is denoted by ||z i.e. ||z]| = (z, z)'/2.
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Throughout this paper we shall be using the following notations. Let m >
1: Pyy(R™) = {A € R™: nonempty, closed, (convex)} and Py()(R™) = {A C
R™: nonempty, compact, (convex)}.

Let X,Y be two Hausdorff topological spaces. A multifunction (correspon-
dence) F(-) from X into Y, is a set-valued function of X into Y s.t. F(z) # @
for all z € X. We say that F(-) is upper semicontinuous (u.s.c.),if foral CCY
closed, the set F~(C) = {z € X: F(z) N C # &} is closed in X.

In the sequel, all measure theoretic concepts that we will use (such as “measur-
able”, “integrable” and “almost everywhere”, abbreviated by a.e.), are defined
in the sense of Lebesgue (see Ash [2]).

Let f: Ry — R™ be a measurable function. We define the following norm of

FO Nl =[S Nf ()l ds.

Also we say that two measurable functions fi, fo: R, — R™ are equiva-
lent, if and only if fi(t) = f2(t) a.e. The space of all equivalence classes
of measurable functions f: Ry — R"™ such that ||f||l; < oo is denoted by
LY(R,,R™) = LL(R4). It is well known that L} with the || - ||;-norm is a
Banach space (see Ash [2]).

Similarly, on a measurable function g: Ry — R"™ we can define another norm
by |lglleo = inf{M > 0: A(t € Ry.: ||g(t)|| > M) = 0}.

Here A(-) denotes the Lebesgue measure on R. The space of all equivalence
classes of measurable functions g: Ry — R™ such that ||g|lcc < 00 is denoted
by L*°(R4,R™) = LP(R4+). This space with the || - ||oo-norm is a Banach
space. Recall (see Ash [2]), that {fn}n>1 € LL(R+) is said to converge weakly
to f(-) € LL(R4+) (denoted by f, = f in LL(Ry)), if for all ¢ € LP(Ry),
f0°°(f,,(s), g(s8))ds — f:°(f(s),g(.s)) ds as n — oo. The weak topology is weaker
than the norm (strong) topology on L.(R4). When on L} (R4 ) we consider the
weak topology, we write L1 (R4 ).

Also by Cp,(R4) we denote the space of continuous functions from R, into R".
This is not a Banach space, since Ry is not compact. On C,(Ry) we consider
the topology of uniform convergence on compact subsets of R4 (also known to
mathematicians as “compact-open topology”). So {fn}n>1 € Cn(R4) converges
to f € Cr(R+) in this topology if and only if f,(t) — f(t) uniformly on compact
subsets of R, that is, if b € R, and for any function g: Ry — R™, g|s(-) is the
restriction of g(-) on [0, ], then || fn|s — flsllcc — 0 as n — oo for all b > 0 (recall
that a continuous function is measurable and bounded on a compact set).

A subset K C LL(Ry) is said to be “uniformly integrable” if

limyay—o [, I /(¢)|| d¢ = O uniformly in f € K. From the Dunford-Pettis cri-
terion (see for example [2] and [7]), we know that this notion is closely related
to weak sequential compactness in L1(Ry). Namely the weak closure of K is

weakly sequentially compact if and only if K is uniformly integrable. Note that
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if for every f € K, || f(t)]| < p(t) a.e. with ©(-) € L}, then clearly K is uniformly
integrable.

A function z: Ry — R" is said to be absolutely continuous, if given € > 0,
there exists 6(¢) > 0 such that 3 p_, [|z(t) — z(tx)|| < € for all finite systems
of nonoverlapping intervals (tx,t}), k = 1,...,n with > p_,(tk —tx) < 6. A
classical theorem of Lebesgue says that in this case z(-) exists almost everywhere,
for every b > 0, z(-) € L4([0,b)) (such a function is called “locally integrable”
i.e. #(-) € LL (R4, R)) and for every t € T, z(t) = z(0) + f; £(s) ds.

Now that we have introduced the basic mathematical notions that we will
need in the sequel, we can proceed to the description of the model. We assume
that there are n kinds of capital goods. So the state space in our model will
be R™. The production technology is time varying (a more natural assumption
than the one made in [8] and [17], where the technology set was constant for
the whole infinite time horizon). So we can model it as a multifunction F(-),
from the planning horizon into the nonempty subsets of R x R". If (z,2) €
F(t) C R™ x R", then this means that if at time instant ¢ the available capital
stock is z, then level z of investment is feasible. So we see that the technology
constraint multifunction consists of all pairs of capital stocks and investment
levels that are feasible at each time instant ¢t € Ry. Let F;(0) = proj, F(0) be
the projection on the first factor of the technology set at time ¢t = 0, that is,
F1(0) = {z € R": (z,2) € F(0) for some 2 € R"}. Roughly speaking, F;(0)
consists of all possible initial capital stocks. An absolutely continuous function
z: Ry — R™ is a path of capital accumulation and #(t) represents the level of
investment at each time instant. If zo € F;(0), then a capital accumulation path
is called “feasible and starting at zo” if and only if (z(t),£(t)) € F(t) a.e. and
2(0) = Zo.

We are also given a function u: By x B® x R® — R, which at each point
(t,z,z) € Ry x R™ x R™ gives us the maximum utility level that the economy can
achieve at time ¢ when capital stock is z and investment level is y. While in both
[8] and [17], it is assumed that the utility function is jointly continuous in all three
variables, here we will allow it to be measurable in ¢ and upper semicontinuous
in (z,z). Our hypotheses are more easily verifiable in concrete problems and
broaden significantly the applicability of our model. Some growth hypotheses
that we will eventually impose on both F(-) and u(-,-,-), are considerably less
restrictive than the corresponding hypotheses in [8] and [17].

Our goal is to find a feasible path of capital accumulation, starting from a capi-
tal stock zp € F3(0), that minimises the time-aggregate utility
f0°° u(t,z(t), z(t)) dt. Such a path will be called “optimal”. In mathematical
terms we must solve the following variational problem:

/oo u(t, z(t), z(t)) dt — sup
0
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subject to : (z(t), z(t)) € F(¢t) a.e.,

z(t) > 0 (i.e. z(t) € R}), 2(0) = zo € Fi1(0). )

3. Existence of optimal paths

In this section we shall establish the existence of optimal capital accumulation
paths starting from a capital stock zo € F}(0). For this we will need the following
hypotheses concerning the data of our variational problem (*).

H(u): u: Ry x R™ x R* — Ris a function s.t.
) (t,z,2) — u(t,z, z) is measurable,
(2) (z,2) — u(t,z,2) is us.c.,
) z — u(t,z, 2) is concave,
)

{ut(-,Zn(-); £n(-)) }n>1 is uniformly integrable.

Recall that if f: Ry — R is measurable, f* = max(f,0) (i.e. f* is the posi-
tive part of f(-)). Hypotheses H(u)(1) and (2) improve the standard assumption
in the literature (see (8] and [17]), where u(-, -, -) is jointly continuous in all three
variables. Hypothesis H(u)(3) is a standard property of utility functions. Fi-
nally hypothesis H(u)(4) has to do with the fact that our planning horizon is
infinite.

H(F): F: Ry — Pg(R" x R™) is a multifunction s.t.

(1) F(:)is us.c.

(2) there exists N(:) € L*°(R4) s.t. for any technological process (z(¢), z(t))
€ F(t) a.e. with ||z(t)]| < N(t) on A C R4, we have (z(t),2(t)) <0 on
A.

(3) for every (t,z) € Ry x R™,G(t,z) = {z € R™: (z,2) € F(t)} is convex
or empty and when it is nonempty we have |G(t,z)| = sup{||z]: z €
G(t,z)} < (¢, ||z]|) a.e. with (¢,7) — ©(t,r) measurable, nondecreasing
in r and for any b(-) € LPo(-,b(:)) € L.

The thing that we must emphasise about this set of hypotheses is the non-
convexity of the technology set. We only require the cross sections G(¢,z) to
be convex (hypothesis H(F)(3)), allowing this way for increasing returns in pro-
duction, which according to Cass and Shell [6] is an important case of economic
dynamics. The growth condition on |G(¢, z)| simply says that the level of invest-
ment is limited by the availability of capital. Finally hypothesis H(F)(2) says
that when capital exists in sufficiently large quantities, the loss due to deprecia-
tion exceeds production.

Also in order for our variational problem (*) to have content, we make the
following hypothesis.
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H,(zo): There exists a feasible path z(-) starting at zo s.t. f; u(t, 2(t), 2(t)) dt
is finite.
We have the following existence result for the capital accumulation problem

(*)-

THEOREM 1. If hypotheses H(u), H(F) and Hu(zo) hold, then problem (*)
admits an optimal capital accumulation path.

PROOF. Let Fy(t) = proj, F(t), where proj, (-) denotes the projection on the first
factor of F(t) C R™ x R™. Since by hypothesis H(F)(1)F(-) is u.s.c., Theorem
7.3.11 of Klein and Thompson [10] tells us that Fi(-) is u.s.c. Let GrF; denote
the graph of Fy(') i.e. GrFy = {(t,z) € Ry x R": z € Fy(t)}. Since Fy(') is
u.s.c., we know that GrF is closed in Ry x R".

Let G: GrF; — Pi(R"™) be defined by G(t,z) = {z € R": (z,2) € F(t)}.

From hypothesis H(F)(3), we know that G(-,-) has convex values (i.e. for
every (t,z) € Ry X R", G(t,z) € Pix.(R")). Our claim is that G(-,-) is an u.s.c.
multifunction on GrFy. So let C C R™ be nonempty, closed. We need to
show that G~ (C) = {(t,z) € GrFy: G(t,z) N C # O} is closed. To this end,
let {(tn,2n)} € G~(C) and assume that (tn,z,) — (t,z) in GrFy. Let z, €
G(tn,zn) N C. Then 2, € C and (zy,2n) € F(tn). So {(Zn,2n)}n>1 € F(To),
where To = {(tn,t)}n>1. But since F(-) is u.s.c. and compact valued, it maps
compact sets into compact sets (see Klein and Thompson [10], Theorem 7.4.2).
So F(Tp) € Px(R™ x R™). Hence {(Zn, 2n)}n>1 is relatively compact in R™ x R"
and so by passing to a subsequence if necessary, we may assume that z,, — = and
2n > 2> (2,2) €EF(t)=>2€Gt,z)and z€ C=22€G(t,z)NC = (t,z) €
G~ (C) = G(-,") is u.s.c. as claimed. Applying Theorem 2.1 of Ma [11], we get
G: Ry x R — Pi(R™) an us.c. extension of G(-,). Let L be the graph of
G(.,-). Since G(-,-) is us.c., L is a closed subset of Ry x R™ x R"™. Let q: Ry x
R"x R™ — R = RU{—0o0} be defined by ¢(t, z, 2) = u(t, z, 2) +6L(¢t, z, z), where
6.(-,,+) is the indicator function of the set L (i.e. 8.(¢,z,2) =0if (¢,z,2) € L
and —oo otherwise). It is clear from this definition that (¢,z,2) — q¢(t,z,2)
is measurable, (z,2) — g¢(t,z,z) is upper semicontinuous and because of the
convexity of G (¢, z), z — q(t,z, z) is concave. In terms of ¢(-, -, ), our variational
problem (*) takes the following unconstrained form:

[ ]
| att,z(0,5(0)) dt — sup
0 .\/
over all z: Ry — R™ absolutely continuous, )
I(O) = To-

Roughly speaking, what we did above is to impose an infinite penalty when
the technological constraints are violated.
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Let m be the value of our variational problem. Because of hypothesis Hy (o),
m > —oo. Let S = {(zn,Zn)}n>1 be a maximising sequence. From hypothesis
H(F)(2), for every z(-) € S we have that if ||z(t)]| > N(t) a.e., then (z(t), (t))

<0a.e.

= 2 (a2 = 3 2P S0 ae.

= |lz(t)I* < llzol|®

= |lz()| < l|zoll
Thus finally, we can write that ||z(t)|| < max(N(2),[lzoll) = N(t) a.e., and
N(-) € LY. Also from hypothesis H(F)(3), we have that ||Z(t)|| < ©(t,N(t))
a.e. and p(-, N(:)) € LY. Now consider the set Wy C Cn(R,) defined by

Wi = {y(~) € Cn(Ry): y(t) =xo+/ f(s)ds,t € Ry,
0
IS ©(s, N(s)) a.e.} )

A straightforward application of the Arzela-Ascoli theorem tells us that W;
is compact in C,(R4+) with the topology of uniform convergence on compact
sets in R, (compact-open topologx). Also let W, C L1(R4) be defined by
W ={f € Ly(R4): [f(s)l|l < p(s,N(s)) ae.}.

From the Dunford-Pettis compactness criterion we get that W, is weakly
sequentially compact in LL(R;). Now note that S C W; x Ws. So by passing
to a subsequence if necessary, we may assume that z, — z in C,(R4) and
in > z=1in LL(Ry).

If J(z,%) = f0°° q(t, z(t), £(t)) dt, without loss of generality we may assume
that for all n > 1, m - 1 < J(zn,%,) < m. Since m > —oo, we get that
q(t, zn(t), Zn(t)) > —oo a.e. and so q(t,zn(t), Zn(t)) = ul(t,za(t), Za(t)),n > 1.
Because of hypothesis H(u)(4), we can apply Theorem 2.1 of Balder 3], to get
that

[ o]

m = Tm / * w(t, za(t), a(t)) dt < / u(t, 2(t), 5(2)) dt.
0 0

Since z(-) is feasible, we have that m = fo°° u(t, z(t), £(t)) dt = z(-) is the desired
optimal path.

4. Sensitivity analysis

In this section we investigate the dependence of the optimal path of capital
accumulation on the initial capital stock.
We shall need the following set of hypotheses:

H(u),: H(u)(1),(2) and (4) remain the same, while H(u)(3) becomes (z,z) —

u(t, z,z).
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H(F) : The same as hypothesis H(F), with the addition that F(-) is convex
valued.

Hence the convexity of G(t,z) is automatically satisfied. Let K = F;(0)
= proj, F(0). Then K is a convex subset in R™ and so it is well known that its
relative interior rint K is nonempty.

H?: For every b € rint K, hypothesis Hy(b) holds.

Then according to Theorem 1, for every b € rint K, if the above hypotheses
hold, problem (*) has solutions. Let L: rint K — 2C~(R+)XLn(R+)\ {3} be the
multifunction that, to each initial capital stock b € rint K, assigns the optimal
“accumulation-investment paths” starting from b, that is,

L(b) = {(z(-),2(-)) = optimal pair for problem (%), with zo = b}.

THEOREM 2. If hypotheses H(u)1, H(F); and H} hold, then L(-) is u.s.c. from
rint K into Cn(R4) X LL(R4)w and has nonempty, convez, compact values in
this product space (recall that L} (R, ). denotes the space L1 (Ry) with the weak

topology).

PROOF. Let W{ C Cp(R4) be defined by
t
W= {x() € Cn(Ry): z(t) = b+/ f(s)ds,te Ry,bE K,
0

I£(3)ll € (3, N(s)) a.e.}.

Again by the Arzela-Ascoli theorem, since K = F;(0) is compact in R", we
deduce that W{ is compact for the topology of uniform convergence on compact
subsets of R..

Also let W3 be as in the proof of Theorem 1. We have seen that W, is weakly
sequentially compact in L} (R;). Hence W] xW; is a sequentially compact subset
of Cp(Ry) x LL(R4)y. Observe that L(-) has closed values in W] x W,. Thus
in order to prove the theorem, it suffices to show that GrL is closed in W{ x W,
with the relative Cp(R4) x L1(R4)w-topology. Let (bn,Zn,Zn) — (b,z,2) in
rint K x W{ x Wy, with b € rint K. It is clear that £ = z. Then if for each
n 2 1,v(b,) denotes the value of problem (*) for the initial capital stock b,, we
have J(zn,%,) = v(b,). From Theorem 2.1 of Balder [3], we have that

im J(zp, n) < J(z, ).

On the other hand, observe that v(-) is concave and finite on rint K. So
it is continuous there (see for example Rockafellar [16]). Thus v(b,) — v(b).
Furthermore from Theorem 3.1 of [13], we have that

(z(t), £(t)) € Tonvim(z, (t), 24 (t))n>1 S F(t) a-e., z(t) € R} and z(0) = b.
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(Here Iim(zn(t),%n(t)}n>1 is the set of all subsequential limits of {(zn(t),

£n(t)}n21)-

Thus z(-) is a feasible capital accumulation path starting at b. Since v(b) <
J(z,%), we conclude that v(b) = J(z,%) = (2,2} € GrL. Therefore GrL is
closed in W{ x W, with the relative C,,(R4+) X L. (R+)y-topology. Hence L(-) is
u.s.c. from rint K into Cp(R4) X L. (R4 )w and has nonempty, compact, convex
values in the above product space.

REMARKS. (1) If the optimal path is unique (this is the case if for example
z — u(t, z, z) is strictly concave), then Theorem 2 tells us that the single valued
map L(-) is continuous from rint K into Cp(R+) X LL(R4)w-

(2) For each t > 0, the map b — L;(b)(¢) = {z(t): z(-) = optimal path} is
u.s.c. from rint K into Py, € R"). In the case of uniqueness of the optimal path,
this map is continuous.
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