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Viscous fingering instabilities, common in confined environments such as porous media
or Hele-Shaw cells, surprisingly also occur in unconfined, non-porous settings as revealed
by recent experiments. These novel instabilities involve free-surface flows of dissimilar
viscosity. We demonstrate that such a free-surface flow, involving a thin film of viscous
fluid spreading over a substrate that is prewetted with a fluid of higher viscosity, is
susceptible to a similar type of novel viscous fingering instability. Such flows are relevant
to a range of geophysical, industrial and physiological applications from the small scales
of thin-film coating applications and nasal drug delivery to the large scales of lava flows.
In developing a theoretical framework, we assume that the intruding layer and the liquid
film over which it flows are both long and thin, the effects of inertia and surface tension
are negligible, and both layers are driven by gravity and resisted by viscous shear stress so
that the principles of lubrication theory hold. We investigate the stability of axisymmetric
similarity solutions, describing the base flow, by examining the growth of small-amplitude
non-axisymmetric perturbations. We characterise regions of instability across parameter
space and find that these instabilities emerge above a critical viscosity ratio. That is, a fluid
of low viscosity intruding into another fluid of sufficiently high viscosity is susceptible
to instability, akin to traditional viscous fingering in a porous medium. We identify the
mechanism of instability, compare with other frontal instabilities and demonstrate that
high enough density differences suppress the instability completely.

Key words: thin films, fingering instability, gravity currents

1. Introduction
Viscous fingering instabilities involve complex, finger-like patterning that emerges when
a less viscous fluid invades a more viscous fluid in a porous medium or Hele-Shaw
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Non-porous viscous fingering

(free-surface flows when the top plate is removed)

Saffman–Taylor

viscous fingering

(in a Hele-Shaw cell)

(a) (b) (c) (d)

Fluid 1 Fluid 2
Fluid 1

Fluid 2
Fluid 1 Fluid 2 Fluid 1 Fluid 2

Figure 1. Vertical cross-section of base flows susceptible to (a) classical viscous fingering instabilities (flows
in a Hele-Shaw cell or other porous medium) and (b–d) non-porous viscous fingering (free-surface flows).
Fluid 1 is less viscous than fluid 2.

cell (Saffman & Taylor 1958; Homsy 1987). What has not been known until recently
is that a similar type of viscous fingering instability also occurs in unconfined settings
that do not involve porous media or Hele-Shaw cells. In particular, the interaction of the
free-surface flows of two fluids of dissimilar viscosity manifests similar instabilities in
various configurations depicted in figure 1(b–d). These configurations differ topologically
from flows susceptible to classical viscous fingering instabilities, depicted in figure 1(a),
through the lack of an upper rigid boundary, which brings with it the need to depart from
the use of Darcy’s law for flow in porous media and the need to determine the upper
free surface as part of the flow. Efforts to suppress this class of instabilities of free-surface
flows while maintaining basal lubrication on the large scale led to the design of a structured
substrate – a large-scale analogue of superhydrophobic substrates – which has been shown
to give rise to a Navier-type slip macroscopically (Yan & Kowal 2024).

The first examined configuration (figure 1b) of flows susceptible to the novel instability
involves the free-surface flow of a thin film of viscous fluid spreading beneath another
viscous fluid, as seen in the experiments of Kowal & Worster (2015, 2019a,b) and Kumar
et al. (2021). Such a flow becomes unstable to a novel cross-flow fingering instability when
the intruding fluid is less viscous. Another configuration (figure 1c), leading to similar
instabilities, is one in which the intruding fluid fully displaces another viscous fluid (Kowal
2021). The final configuration (figure 1d) is one in which the intruding fluid spreads above
a pre-existing thin film of viscous fluid, as seen in the experiments of Dauck (2020), which
focused on the limit in which the two layers are of equal density. We examine flows in the
final configuration in the present paper, completing the family of flows susceptible to the
novel frontal instability.

Such free-surface flows are relevant to a range of phenomena involving the interaction of
fluids of different viscosity. An example includes the nasal delivery of drugs and vaccines,
which commonly results in what is referred to as nasal dripping in the medical community
(Masiuk, Kadakia & Wang 2016). Nasal dripping, or fingering, observed in this context
results from the interaction of a low-viscosity drug solution or vaccine with a more
viscous mucus. Such fingering is more pronounced the higher the viscosity ratio between
the mucus and drug solution or vaccine, as observed in experiments involving synthetic
mucus and the drug Avicel (Masiuk et al. 2016). Other examples include the interaction
between liquid sulphide and silicate melt in a partially solidified (or mostly unsolidified)
magmatic system or, more generally, the interaction of lava flows of different viscosity
following cooling (Fink & Griffiths 1990, 1998; Balmforth & Craster 2000). Mention has
also been made of a link to the flow of ice sheets over less viscous subglacial till, as
explored theoretically and experimentally (Kumar et al. 2021; Gyllenberg & Sayag 2022).

The new class of instabilities of such free-surface flows have been termed non-porous
viscous fingering instabilities, to reflect that they are not associated with porous media
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and that the mechanism of instability is similar to that of traditional viscous fingering
instabilities, despite the lack of confinement (Kowal 2021). Such instabilities can be
thought of as an ultrasoft analogue of fingering in soft/deformable porous media. The latter
type of instability is partially suppressed by the elastic deformation of the porous medium
or Hele-Shaw cell (Pihler-Puzovic et al. 2012, 2013). A simple representation of such a
deformable porous medium involves a horizontal Hele-Shaw cell in which its upper wall
is replaced by an elastic sheet that is free to deform when a less viscous fluid is injected
(Pihler-Puzovic et al. 2013, 2013). Such instabilities are increasingly suppressed as the
thickness of the sheet decreases. In this work, we remove the elastic sheet completely,
falling into the realm of free-surface flows, rather than porous-media flows. Alternatively,
we remove the upper wall of a rigid horizontal Hele-Shaw cell depicted in figure 1(a).
As a result, Darcy’s law no longer applies.

Non-porous viscous fingering instabilities bring similarities to thermoviscous fingering
of free-surface flows, in which the viscosity contrast required for onset of instability is
driven thermally (Hindmarsh 2004, 2009; Algwauish & Naire 2023). We also find it
worthwhile to note the difference between non-porous viscous fingering instabilities and
fingering of a driven spreading film (Huppert 1982a; Troian et al. 1989). Although both
of these involve frontal instabilities of free-surface flows, the former requires a viscosity
difference between two fluids and the latter does not, as it involves a single fluid only. The
latter instability is, importantly, one in which surface tension is key. As such, non-porous
viscous fingering is more closely comparable to viscous fingering in porous media, despite
no presence of a porous medium itself.

Viscous fingering in porous media, including Hele-Shaw cells, received considerable
attention throughout the last few decades following the seminal work of Saffman &
Taylor (1958). This stemmed mainly from its broad range of applications, ranging from
enhanced oil recovery (Orr & Taber 1984) to coating applications (Taylor 1963) and carbon
sequestration (Cinar, Riaz & Tchelepi 2009). Similar instabilities are also frequently
observed in nature, such as in crystal growth (Mullins & Sekerka 1964), the spreading
of bacterial colonies (Ben-Jacob 1997), the dynamics of fractures (Hull 1999) and the
instability of flame fronts (Ben-Jacob et al. 1992).

Interest has since emerged in the ability to either enhance or suppress these instabilities,
and to manipulate the patterns that emerge, as desired, for industrial applications. Such
control mechanisms have been found to depend upon a number of physical factors,
including the injection rate of the less viscous fluid (Li et al. 2009; Dias & Miranda 2010),
the miscibility of the two fluids involved (Perkins, Johnston & Hoffman 1965) and their
rheology (Kondic, Shelley & Palffy-Muhoray 1998; Fast et al. 2001). Other effects that
enhance or suppress these instabilities include changes in the viscosity ratio of the two
fluids (Bischofberger, Ramachandran & Nagel 2014) and introducing particles (Luo, Chen
& Lee 2018), for instance. Alterations in the geometry of the porous medium also influence
the fingering patterns, when the alterations are both static (Nase, Derks & Lindner 2011;
Al-Housseiny, Tsai & Stone 2012) and dynamic (Juel 2012; Zheng, Kim & Stone 2015;
Morrow, Moroney & McCue 2019; Vaquero-Stainer et al. 2019).

There are a number of similarities between traditional viscous fingering instabilities
in porous media and the recently discovered non-porous viscous fingering instabilities.
Stability analyses (in the configuration of figure 1b) indicate that the latter instabilities e-
merge when the jump in hydrostatic pressure gradient across the intrusion front is negative
(Kowal & Worster 2019a,b; Kowal 2021). This is similar to, yet contrasts with, traditional
viscous fingering instabilities in porous media (figure 1a), which are instead driven by a
jump in dynamic pressure gradient (Homsy 1987). Both types of instabilities occur when
the intruding viscous fluid is less viscous than the layer into which it intrudes, as has been
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seen in experiments in which the injected fluid intrudes from below (Kowal & Worster
2015, 2019a,figure 1b) and from above (Dauck 2020, figure 1d). The latter experiments in-
volved fluids of equal density. However, it has been found that non-zero density differences
between the two layers of viscous fluid can suppress these instabilities when the injected
fluid intrudes from below (Kowal & Worster 2019b, figure 1b). A similar observation has
been found when the fluids are non-Newtonian (Leung & Kowal 2022b, figure 1b).

In this work, we demonstrate similar suppression when the intruding fluid is supplied
from above, as depicted in figure 1(d). In particular, we examine the formation of
viscous fingering instabilities that emerge when a viscous gravity current intrudes radially
outwards over another thin film of viscous fluid, where the two fluids are of unequal
densities and viscosities. By conducting a linear stability analysis using the axisymmetric
similarity solutions of the companion paper Yang, Mottram & Kowal (2024) as the
base flow, we characterise the parameter space over which these instabilities occur. We
also compare these instabilities with related fingering instabilities that emerge when the
injected fluid intrudes from below. To formulate the problem, we build directly upon the
framework of Dauck et al. (2019) and Yang et al. (2024) by allowing for variations in
the azimuthal direction. We also refer to the experiments of Dauck (2020), where similar
frontal instabilities emerge. The linear stability analysis of Dauck (2020), focusing on
the limit in which the two layers are of equal density, also confirms these instabilities
but did not reveal a most unstable wavenumber, much like the equal-density stability
calculations of Kowal & Worster (2019b) when the less viscous fluid intrudes from below
and growth rates increase with the wavenumber indefinitely. Interestingly, no instabilities
were observed in related experiments of Lister & Kerr (1989), involving a thin film of
viscous fluid intruding at a fluid interface, save for small-scale frontal patterning attributed
to contamination of the fluid surface by dust. We find through our stability calculations that
the parameter regime in which the latter experiments were performed corresponds to stable
configurations. Other relevant works include single-layer (Smith 1969; Huppert 1982a,b)
and two-layer (Kowal & Worster 2015; Dauck et al. 2019; Shah, Pegler & Minchew 2021)
flows over horizontal and inclined substrates, and non-Newtonian analogues (Hewitt 2013;
Gyllenberg & Sayag 2022; Hinton 2022; Christy & Hinton 2023), to name a few.

We begin with a theoretical development in § 2, in which the geometry of the problem,
the assumptions and the governing equations are laid out. We investigate the stability
of the flow to small non-axisymmetric disturbances by performing a linear stability
analysis in § 3, in which we also derive asymptotic solutions for perturbations around
a stress singularity at the injection front. We solve the resulting perturbation equations
numerically, characterise the instability across parameter space and further discuss our
results in § 4. We finalise with concluding remarks in § 5.

2. Theoretical development
As depicted in figure 2, we consider the flow of two thin films of incompressible,
Newtonian viscous fluids of constant viscosities μu and μl and constant densities ρu and
ρl in an axisymmetric geometry. The subscripts u and l correspond to quantities involving
the upper and lower layers, respectively. The subscript l also describes quantities ahead of
the intrusion front. We assume that the effects of inertia and surface tension are negligible
and that both fluid layers are long and thin, and are resisted dominantly by vertical shear
stresses within the limits of lubrication theory.

We note that the use of the lubrication approximation reflects an idealised scenario in
which only vertical shear stress appears, and we aim to determine whether or not this
suffices to explain the emergence of instability. Strictly speaking, the approximations of
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r

r = rN (θ, t)

H (r, θ, t)

h (r, θ, t) μl , ρl

μu, ρu

z
θ

Figure 2. Schematic of a thin film of viscous fluid spreading over a lubricated substrate in an axisymmetric
geometry. Schematic adapted from Yang et al. (2024).

lubrication theory break down at the nose, where there is a frontal stress singularity, thus
warranting the need for the solution of the full Stokes equations near the nose. We do
not attempt this in this paper. We note that the experiments of Dauck (2020), performed
in a similar configuration to the present paper, and their close agreement to theoretical
predictions (which make use of lubrication theory) for their propagation and shape (Dauck
et al. 2019; Dauck 2020), give credence to the use of lubrication theory at least as a first
attempt upon which higher-order corrections can be made in the future. Another similar
example is the experiments and stability analysis of Kowal & Worster (2019b), which
similarly made use of the lubrication approximation, albeit in a different configuration (in
that the less viscous fluid intrudes from below rather than from above).

The two fluids are supplied at constant fluxes Q̂u and Q̂l at the origin and spread radially
outwards over a horizontal, rigid substrate, which is prewetted by the lower-layer fluid to an
initial, uniform depth h∞. While the two fluids spread radially outwards, we allow for non-
axisymmetric variations in the flow. The upper current extends to the intrusion front r =
rN (θ, t), which splits the domain into two regions: a two-layer region 0 < r < rN , involv-
ing both viscous fluids, and a single-layer region r > rN , involving a single viscous fluid
of the same material properties as the underlying layer of the two-layer region. The thick-
nesses of the upper and lower layers are denoted by H(r, θ, t) and h(r, θ, t), respectively.

Applying the standard lubrication approximation (see Yang et al. (2024)for details of the
derivation in the axisymmetric case) results in the following mass conservation equations:

∂ H

∂t
+ ∇ · qu = 0, (2.1)

∂h

∂t
+ ∇ · ql = 0, (2.2)

within the two layers, where the depth-integrated fluxes of upper- and lower-layer fluid are
given by

qu =
⎧⎨
⎩−ρug

3μl

[(
MH3 + 3

2
Hh2 + 3H2h

)
(∇H + ∇h) + 3

2
DHh2∇h

]
(0 < r < rN ),

0 (r ≥ rN ),

(2.3)

ql =

⎧⎪⎨
⎪⎩

−ρug

3μl

[(
3
2

Hh2 + h3
)

(∇H + ∇h) +Dh3∇h

]
(0 < r < rN ),

−ρug

3μl
(D + 1)h3∇h (r ≥ rN ),

(2.4)
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in terms of the dimensionless parameters

M= μl

μu
and D = ρl − ρu

ρu
, (2.5)

which denote the viscosity ratio and relative density difference, respectively. In general,
the quantities described here may vary in θ . Here, g refers to the gravitational acceleration.

At the origin, r = 0, we assume that the upper and lower layers are supplied at a constant
flux Q̂l , Q̂u , respectively, so that

lim
r→0

2πrqu · er = Q̂u, (2.6)

lim
r→0

2πrql · er = Q̂l , (2.7)

where er is the radial unit basis vector.
The thickness and the normal flux of the lower layer are continuous across the intrusion

front r = rN (θ, t), so that

[h]+− = 0 at r = rN , (2.8)

[ql · n]+− = 0 at r = rN , (2.9)
where n is the outward unit normal vector to the intrusion front. In addition, the normal
component of the upper-layer flux vanishes at the front, so that

qu · n = 0 at r = rN . (2.10)

The front evolves kinematically, so that

ṙN = lim
r→r−

N

H−1qu · ∇(r − rN ) = lim
r→r−

N

[
qu · er

H
− qu · eθ

HrN

∂rN

∂θ

]
. (2.11)

Here, eθ is the azimuthal unit basis vector. In the far field, we assume that the thickness is
uniform so that

lim
r→∞ h = h∞. (2.12)

These governing equations, boundary conditions, matching conditions, and the evolution
equation for the front fully specify the moving boundary problem considered in this paper.

3. Non-axisymmetric disturbances
We investigate the evolution of non-axisymmetric disturbances of the base flow by
expanding about the zeroth-order axisymmetric similarity solutions of Yang et al. (2024).
To do so, we change the independent variables (r, θ, t) to (ξ, ϑ, τ ) and non-dimensionalise
the system by applying the following transformations

(ξ, ξN (ϑ, τ )) =
(

3μl

ρugh3∞t

)1/2

(r, rN (θ, t)), ϑ = θ, τ = log(t/t0), (3.1)

(F(ξ, ϑ, τ ), f (ξ, ϑ, τ )) = h−1∞ (H(r, θ, t), h(r, θ, t)) , (3.2)

(
φu(ξ, ϑ, τ ), φl(ξ, ϑ, τ )

)=
(

3μl t

ρugh5∞

)1/2 (
qu(r, θ, t), ql(r, θ, t)

)
, (3.3)

where t0 = 3μl/(ρugh∞). We also rescale the two input source fluxes at the origin so that

Qu = Q̂u/Q̂ and Ql = Q̂l/Q̂, (3.4)
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where

Q̂= 2πh4∞
ρug

3μl
(3.5)

is a dimensional measure of the lower-layer flux associated with a depth of h∞.
Alternatively, the parameter Q̂ can be interpreted as the flux required to attain a thickness
of h∞ near the source.

The transformation (3.1)–(3.3) into similarity space transforms the base flow (the
similarity solutions of Yang et al. (2024)) into a steady solution, which is key to allow
a straightforward stability analysis to be performed. This can be seen by examining the
transformed system of partial differential equations

∂ F

∂τ
− 1

2
∂ F

∂ξ
ξ + 1

ξ

∂(ξφur )

∂ξ
+ 1

ξ

∂φuθ

∂ϑ
= 0, (3.6)

∂ f

∂τ
− 1

2
∂ f

∂ξ
ξ + 1

ξ

∂(ξφlr )

∂ξ
+ 1

ξ

∂φlθ

∂ϑ
= 0, (3.7)

describing mass conservation within the two layers of viscous fluid, the coefficients of
which are independent of the transformed time variable τ . Here, the radial and azimuthal
components of the depth-integrated fluxes of the two layers of fluid are given by

(φur , φlr ) = (φu · er , φl · er ), (3.8)
(φuθ , φlθ ) = (φu · eθ , φl · eθ ), (3.9)

where

φu =
⎧⎨
⎩−

[(
MF3 + 3

2
F f 2 + 3F2 f

)
(∇F + ∇ f ) + 3

2
DF f 2∇ f

]
(0 < ξ < ξN )

0 (ξ ≥ ξN ),

(3.10)

φl =

⎧⎪⎨
⎪⎩

−
[(

3
2

F f 2 + f 3
)

(∇F + ∇ f ) +D f 3∇ f

]
(0 < ξ < ξN )

−(D + 1) f 3∇ f (ξ ≥ ξN ),

(3.11)

for the upper and lower layers, respectively. The operator ∇ is now the gradient operator
in the two-dimensional polar coordinate system spanned by (ξ, ϑ).

As for the boundary conditions, the source flux boundary conditions reduce to

ξφur →Qu, ξφlr →Ql (ξ → 0), (3.12)

while the matching conditions at the intrusion front, describing continuity of lower-layer
thickness, continuity of lower-layer flux and the zero-flux condition for the upper layer, are
given by

[ f ]+− = 0, [φl · n]+− = 0, φu · n = 0 (ξ = ξN ), (3.13)

respectively, where the normal vector at the intrusion front becomes

n =
(

er − 1
ξN

∂ξN

∂ϑ
eθ

)(
1 +

(
1
ξN

∂ξN

∂ϑ

)2
)−1/2

. (3.14)

These are supplemented by the kinematic condition, which reduces to
er · φu

F
− 1

ξN

∂ξN

∂ϑ

eθ · φu

F
→ ∂ξN

∂τ
+ 1

2
ξN (ξ → ξ−

N ), (3.15)
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and the far-field condition,

f → 1 (ξ → ∞), (3.16)

reflecting the choice to scale vertical lengths with respect to the dimensional far-field
thickness.

These governing equations are a set of nonlinear partial differential equations describing
the flow of general disturbances to the axisymmetric base flow. In a later section, we will
focus on small-amplitude disturbances and linearise these equations about the base flow.
However, the singular structure of the intrusion front raises problems with formulating the
small-amplitude equations and boundary conditions consistently. To avoid these issues,
we first investigate the structure of the singularity at the intrusion front in the following
section, and then use it to make an informed coordinate transformation that will allow for
a consistent set of small-amplitude equations and boundary conditions to be formulated.

3.1. Frontal singularity and asymptotic solution
Similar to the behaviour of the unperturbed, axisymmetric flow (the basic state considered
in Yang et al. (2024)), there is a frontal singularity inherent to the perturbed flow. We
generalise the asymptotic analysis of Yang et al. (2024)for the unperturbed flow near
the intrusion front to include variations in the azimuthal direction and find a generalised
asymptotic solution near the front of the form

F(ξ, ϑ, τ ) ∼ A1(ϑ, τ )

(
1 − ξ

ξN

) 1
2 + A2(ϑ, τ )

(
1 − ξ

ξN

)
+ . . . ,

f (ξ, ϑ, τ ) ∼ a0(ϑ, τ ) + a1(ϑ, τ )

(
1 − ξ

ξN

) 1
2 + a2(ϑ, τ )

(
1 − ξ

ξN

)
+ . . . .

(3.17)

reflecting a square-root singularity, in contrast to the cube-root frontal singularity of a
single-layer viscous gravity current (Huppert 1982b). Here, the relationships between the
coefficients a0, a1, a2, A1 and A2 are given by

a1 = − A1

D + 1
, (3.18)

A2 = −4A2
1

9a0

(
M− 3

D + 1

)
, (3.19)

a2 = 1
9(D + 1)a2

0

[
3ξN

(
ξN + 2

∂ξN

∂τ

)
+ A2

1a0

(
4M− 9 − 3

D + 1

)]
. (3.20)

As the base flow involves a singularity at the intrusion front, singular terms appear
also in the equations governing the perturbations. This prevents one from formulating
consistent linearised boundary conditions at the front. A similar problem occurs when
linearising about the Barenblatt–Pattle similarity solution and various methods have been
introduced to handle it, including the use of the method of strained coordinates (Grundy
& McLaughlin 1982) and a transformation of the dependent variable (Mathunjwa &
Hogg 2006). Instead, we follow an approach similar to that of Kowal & Worster (2019b)
by simply mapping the two-layer region to a fixed interval [0, 1] via the coordinate
transformation

Λ = ξ/ξN . (3.21)

Such a coordinate transformation eliminates the need to perturb the position of the singular
point, which is now fixed at Λ = 1, for the corresponding boundary conditions. We
summarise the equations and boundary conditions for the small-amplitude perturbations
1013 A32-8
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in terms of Λ in the following section. However, to aid numerical integration, we further
transform the independent variable nonlinearly by defining

Λ̂ = 1 − (1 − Λ)1/2 (3.22)

in the two-layer region and Λ̂ = Λ in the single-layer region. The transformation (3.22)
is motivated by our asymptotic solution (3.17), which identifies a square-root singularity
near the front. Under the transformation (3.22), the thicknesses of the two layers are instead
linear near the intrusion front, and hence their gradients no longer diverge. In essence, the
frontal singularity is now a removable singularity, which is simpler to handle numerically.

3.2. Small-amplitude perturbations
We wish to examine the evolution of small pertubations to the base, axisymmetric flow,
and in order to do so, we linearise the transformed problem by defining

X (ξ, ϑ, τ ) ≡ X (Λ, Θ, T ) = X0(Λ) + ε X̃1(Λ, Θ, T ) + . . . (3.23)

for variables X = f, F, φur , φuθ , φlr , φlθ , φl , φu , where ε is an arbitrary small number,
Θ = ϑ , T = τ and

χ = χ0 + εχ̃1(Θ, T ) + . . . (3.24)

for variables χ = ξN , a0, a1, a2, A1, A2, n. We note that the governing equations and
boundary conditions describing the evolution of the basic state (involving variables with
the subscript 0) are outlined in Yang et al. (2024), which we do not repeat here, for brevity.

To examine the evolution of the perturbations, we search for normal mode solutions of
the form

X̃1(Λ, Θ, T ) = X1(Λ)eσT +ikΘ, (3.25)

χ̃1(Θ, T ) = χ1eσT +ikΘ, (3.26)

where σ is the growth rate of the perturbations and k is the azimuthal wavenumber. As the
transformed time variable T is logarithmic in the sense T = τ = log(t/t0), these normal
modes in fact represent algebraic growth/decay of perturbations in physical time t , since
eσT is proportional to tσ . We also note that owing to the transformation rN ∝ ξN t1/2, if
the growth rate satisfies −1/2 < σ < 0 then the perturbations to rN will appear to grow
even though the perturbations to ξN decay.

Substitution into (3.6)–(3.16) yields the following expressions for the perturbed fluxes:

φur1 = αu1 f1 + αu2 F1 + αu3 f ′
1 + αu4 F ′

1 + αu5ξN1, (3.27)
φlr1 = αl1 f1 + αl2 F1 + αl3 f ′

1 + αl4 F ′
1 + αl5ξN1, (3.28)

φuθ1 = ik(αu3Λ
−1 f1 + αu4Λ

−1 F1 + αu5ξN1), (3.29)

φlθ1 = ik(αl3Λ
−1 f1 + αl4Λ

−1 F1 + αl5ξN1), (3.30)

and the following perturbed governing equations

σ

(
F1 − ξN1

ξN0
ΛF ′

0

)
− 1

2
ΛF ′

1 − ξN1

ξ2
N0Λ

(Λφu0)
′ + 1

ξN0Λ
(Λφu1)

′ + ik

ξN0Λ
φuθ1 = 0,

(3.31)

σ

(
f1 − ξN1

ξN0
Λ f ′

0

)
− 1

2
Λ f ′

1 − ξN1

ξ2
N0Λ

(Λφl0)
′ + 1

ξN0Λ
(Λφl1)

′ + ik

ξN0Λ
φlθ1 = 0,

(3.32)
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reflecting mass conservation within the two layers, where the prime symbol represents the
derivative respect to Λ and αi j are functions of the basic state quantities, including f0, F0,
f ′
0 and F ′

0, as well as the parameters M and D and the unperturbed frontal position ξN0,
as given explicitly in Appendix B.

As for the boundary conditions for the perturbed system, note that the coordinate
transformation (3.21) eliminates the need to perturb the value of Λ at which the boundary
conditions are applied. The perturbations to the frontal position are instead embedded into
the governing equations, and through the appearance of additional terms in some boundary
conditions following the linearisation of the normal vector. In particular, we have

Λ(ξN1φur0 + ξN0φur1) → 0, Λ(ξN1φlr0 + ξN0φlr1) → 0 (Λ → 0), (3.33)

reflecting that both fluids are supplied at a constant flux at the origin, and so the perturbed
source fluxes vanish as we approach the origin. The frontal matching conditions for the
perturbations reduce to

[ f1]+− = 0, [φlr1]+− = 0, φur1 = 0 (Λ = 1), (3.34)

reflecting the fact that the perturbed lower-layer thickness and flux is continuous and the
perturbed upper-layer flux vanishes at the intrusion front. In simplifying these conditions,
we use that n0 = er and that n1 is proportional to the azimuthal basis vector while the
flux (for the base flow) is proportional to the radial basis vector, so that φu0 · n1 = 0 and
φl0 · n1 = 0. A linearisation of the kinematic condition yields the following boundary
condition for the perturbations:

φur1

F0
− F1φur0

F2
0

→
(

σ + 1
2

)
ξN1 (Λ → 1−), (3.35)

while the far-field condition requires that the perturbations vanish in the far field,

f1 → 0 (Λ → ∞). (3.36)

We note that this is a differential eigenvalue problem, with eigenfunctions (X1, χ1) and
eigenvalues σ . That is, the growth rates σ can be found numerically for each wavenumber
k, which we discuss in the following section.

3.3. Numerical method
We solve the perturbation equations in the variable Λ̂, as defined in (3.22), by shooting
backwards for ξN1 and Ql1|Λ̂=L from the far field at Λ̂ = L , where we define Qi1 = Λφir

for i = l, u and L > 1 is a constant that is sufficiently large that Λ̂ = L acts as a pseudo
infinity. To initiate the computations for the single-layer region, we start by specifying
values of ξN1 and Ql1|Λ̂=L and integrating the equations backwards from Λ̂ = L towards
the intrusion front Λ̂ = 1. Because the intrusion front is a singular point for the governing
equations of the two-layer region, we use the asymptotic solutions as matching conditions
for our numerical solutions. That is, we calculate the asymptotic solution at Λ̂ = 1 − δ

using the computed numerical solution of the single-layer region at Λ̂ = 1, where δ 
 1.
We integrate the perturbation equations for the two-layer region numerically, backwards
from Λ̂ = 1 − δ towards Λ̂ = Δ, where Δ 
 1.

By performing an asymptotic analysis for a single-layer viscous gravity current, we find
that the general solution for the perturbed dependent variables is of the form

X1 ∼ (c1Λ̂
−k + c2Λ̂

k)w(Λ̂) (3.37)
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as Λ̂ → 0, where w is a function that is at most logarithmically singular at the origin
and c1 and c2 are arbitrary constants. This reflects a singularity at the origin, which is
strongest for large wavenumbers k. For the purpose of resolving this singularity for all k
in our computations, we use the transformation

X1(Λ̂) ≡ 1
x

X̄1(x), (3.38)

where x = Λ̂k , within the two-layer region, and solve for X̄1 numerically as a function
of x .

As the problem is 2π-periodic in the azimuthal direction, only integer values of k are
permitted. However, we interpolate for intermediate values of k for illustrative purposes in
displaying the results.

Given a value of the wavenumber k, the system admits non-zero solutions for specific
growth rates, or eigenvalues, σ . To find such solutions, we designed an algorithm by
exploiting the linearity of the governing equations and boundary conditions. In particular,
for a given wavenumber and set of parameter values, we set a guess for the growth rate and
shoot backwards as described earlier. In doing so, we obtain two test solutions, denoted by
s1 and s2, where s1 is calculated by setting ξN1 = 1 and Ql1|Λ̂=L = 0 and s2 is calculated
by setting ξN1 = 0 and Ql1|Λ̂=L = 1. These two solutions are linearly independent and
satisfy the perturbation equations and boundary conditions except for perhaps the source
flux conditions at the origin. Owing to the linearity of the system, any linear combination
of the two solutions is also a solution.

In order to quantify the departure from the source flux boundary conditions, we define
a residual matrix:

R =
[

Ql1,1 Ql1,2
Qu1,1 Qu1,2

]
, (3.39)

where the i th column measures the perturbed source flux at the origin corresponding
to the solution si and i = 1, 2. If the initial guess for the value of the growth rate σ is
correct, it is possible to obtain a linear combination of the two test solutions such that
the source flux conditions at the origin are satisfied, i.e. Ql1 = 0 and Qu1 = 0. This is
equivalent to det(R) = 0, and this particular linear combination is the desired solution
to the perturbation equations and all boundary conditions, including the zero source flux
boundary conditions. However, if the guessed value of the growth rate is incorrect, then
det(R) �= 0. That is, the growth rate is an admissible eigenvalue if and only if det(R) = 0.
We, therefore, wish to find values of the growth rate σ for which det(R) = 0 to within
a specified tolerance. In essence, this reduces to a one-dimensional root finding problem
for σ .

We note that in order to assess stability, it suffices to consider the eigensolution that
corresponds to the largest growth rate, as this gives rise to the most unstable mode. We
make sure that our computed solutions for σ are largest by manual inspection of plots of
the determinant of R against the growth rate for a range of test cases. We discuss results,
obtained via numerical continuation, in the following section.

4. Discussion
In this section, we discuss the onset of instability and relevant characteristics in terms
of the growth rates, interval of unstable wavenumbers and the critical wavenumber and
how these vary across parameter space. In particular, we map out the behaviour of small
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Figure 3. The unperturbed (solid) and perturbed (dashed and dotted) spatial profiles showing the shape of the
nose when k = 12, M= 200, D = 0.1, Qu = 1 and Ql = 0.2. The perturbed profile shown as a dashed (dotted)
curve corresponds to intrusions ahead of (behind) the nose of the base flow.

disturbances to the base flow in terms of four key dimensionless quantities: the viscosity
ratio M, the density difference D, the total source flux Qu +Ql and the flux ratio Ql/Qu .

The spatial structure of the perturbation in an unstable configuration is depicted in
figure 3 in comparison with the unperturbed base flow. When the intruding layer is
perturbed forwards (backwards), it thickens (thins) and protrudes downwards into (recedes
upwards from) the lower layer and the lower layer thins (thickens) near the nose. As
discussed further in § 4.2, finger growth requires sufficient protrusion of an intruding less
viscous fluid downwards into the more viscous underlying layer, rather than upwards into
the less viscous air.

4.1. Thresholds of instability across parameter space
We find that the flow is unstable only for sufficiently large values of the viscosity ratio M.
That is, the intruding layer of viscous fluid needs to be of sufficiently small viscosity for
the flow to become unstable. This criterion is similar to what is necessary for the onset
of Saffman–Taylor instabilities in porous media, which occur only when the viscosity
of the intruding fluid is lower than that of the ambient fluid (Saffman & Taylor 1958).
Sufficiently large viscosity ratios are also necessary for the onset of fingering instabilities
when the less viscous fluid intrudes from below a more viscous gravity current (Kowal
& Worster 2019a,b; Leung & Kowal 2022a,b), and when it displaces the more viscous
current completely (Kowal 2021). Illustrative values of the viscosity ratio necessary for
the onset of instability when the less viscous fluid intrudes from above a more viscous
gravity current, as examined in this work, can be seen in figure 4. In particular, figure 4
displays the dispersion relation for the growth rate σ as a function of the wavenumber k,
for illustrative parameter values and various values of the viscosity ratio M. The growth
rate is positive for a bounded interval of wavenumbers only when the viscosity ratio is
large enough. That is, the flow is unstable for a bounded interval of wavenumbers only
above a critical viscosity ratio. The interval of unstable wavenumbers is shown in figure 5
as a function of the viscosity ratio M, where it can be seen that the interval of unstable
wavenumbers expands as the viscosity ratio increases. The boundary between the stable
and unstable regions, shown in figure 5, depicts the neutral viscosity ratio, defined as the
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σ
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–1.0

Figure 4. The growth rate versus the wavenumber for various viscosity ratios M= 20, 30, 40, 50 when
D = 0.05, Qu = 1, Ql = 1.

115

12

14

16

18 Stable

k

Unstable

120 125 130 135 140
M

Figure 5. Neutral stability curve (solid) displaying the interval of unstable wavenumbers as a function of the
viscosity ratio, also showing the critical wavenumber kc (dashed), when D = 0.1,Qu = 1 and Ql = 1. The
flow is unstable (stable) for large (small) viscosity ratios.

value of the viscosity for which the growth rate is zero. The flow is unstable when the
viscosity ratio is above the neutral viscosity ratio. The critical wavenumber kc, defined
as the wavenumber for which the growth rate is maximal, gradually increases with the
wavenumber as depicted in figure 5.

We find that the instability is most profound for low values of the density difference
and that it is suppressed completely when the density difference is sufficiently large. This
is illustrated in figure 6, depicting an interval of wavenumbers for which the system is
unstable below a critical value of the density difference. This interval expands and the
critical wavenumber kc increases as the density difference decreases, as shown in figure 6.
Figure 6 also illustrates that the instability is suppressed completely above a critical value
of the density difference. This agrees with stability analyses of flows of thin films of
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Figure 6. Neutral stability curve (solid) displaying the interval of unstable wavenumbers as a function of the
density difference, also showing the critical wavenumber kc (dashed), when M= 120,Qu = 1 and Ql = 1.
The flow is unstable (stable) for small (large) density differences.
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Figure 7. Contour plot of the maximal growth rate σmax versus the viscosity ratio M and density difference
D, with the neutral stability curve (σmax = 0) displayed as a thick solid curve. The remaining parameter values
are Qu = 1 and Ql = 1. The flow is unstable for high-viscosity ratios and low-density differences.

viscous fluid intruding underneath another viscous fluid of various rheologies (Kowal &
Worster 2019b; Leung & Kowal 2022b).

We condense information in the (M,D)-parameter space further in a contour plot
of the maximal growth rate σmax versus the viscosity ratio and density difference,
depicted in figure 7. Maximal growth rates are largest for large viscosity ratios and small
density differences, with viscosity ratios of the order of 10 required for the onset of
instability when the density difference is small. This contrasts with instabilities formed
when a free-surface flow is penetrated from below by a less viscous fluid (Kowal &
Worster 2019a,b) and with classical Saffman–Taylor instabilities in a Hele-Shaw cell
(Saffman & Taylor 1958), for which the threshold of instability is of order unity in the
viscosity ratio. We discuss why this is to be expected on physical grounds in § 4.2.
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Figure 8. Neutral stability curve (solid) displaying the interval of unstable wavenumbers as a function of the
total source flux, also showing the critical wavenumber kc (dashed), when D = 0.1, M= 120 and Ql/Qu = 1.
The flow is unstable (stable) for large (small) source fluxes.

10
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Figure 9. Neutral stability curve (solid) displaying the neutral flux ratio Ql/Qu as a function of the
wavenumber, also showing the critical wavenumber kc (dashed), when D = 0.1, M= 120 and Ql +Qu = 1.
The flow is unstable for flux ratios above this neutral stability curve.

We find that the instability is suppressed completely for a sufficiently small total flux
Ql +Qu and sufficiently large flux ratio Ql/Qu , as depicted in figures 8 and 9. The
interval of unstable wavenumbers expands as the total source flux increases and the flux
ratio decreases. The critical wavenumber increases with the total source flux and remains
approximately constant with respect to the flux ratio. We can therefore expect to see an
increasing number of fingers when the total source flux increases, which is consistent with
recent experiments in which the intruding fluid is supplied from below (Kumar et al. 2021).

We condense information further in a contour plot of the maximal growth rate σmax
versus the total flux and flux ratio, shown in figure 10. As seen in figure 10, growth rates
are largest when the total flux is large and a sufficiently large total flux (of order unity) is
required for the onset of instability. Equivalently, the onset of instability requires the flux
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Figure 10. Contour plot of the maximal growth rate σmax versus the flux ratio Ql/Qu and total flux Ql +Qu ,
with the neutral stability curve (σmax = 0) displayed as a thick solid curve. The remaining parameter values are
M= 120 and D = 0.1. The flow is unstable when the total flux is large and flux ratio is small.

of the upper layer to be sufficiently large relative to that of the lower layer. This is in line
with the experiments of Lister & Kerr (1989), in which a low-viscosity fluid intrudes at the
interface between two other fluids and no instabilities were observed, save for small-scale
frontal patterning that the authors attribute to contamination of the fluid surface by dust.
These experiments were carried out for dimensionless fluxes in the range 8.7 × 10−6–
5.3 × 10−5, which is much less than the threshold (of order unity) required for instability.
The threshold is also consistent with the experiments of Dauck (2020), for which the
dimensionless flux reached up to approximately 160 and instabilities were observed.

The stability thresholds discussed in this section are summarised in the most condensed
contour plot shown in figure 11, displaying the critical total flux required for the onset
of instability in (D,M) space for various values of the flux ratio. Values of the critical
viscosity ratio and critical density difference required for the onset of instability can be
read off from figure 11. Alternatively, figure 11 can be interpreted as a plot of the critical
viscosity ratio versus the density difference for various values of the total flux and flux
ratio. The higher the total flux, the lower the viscosity ratio required for the onset of
instability, and the larger the interval of density differences for which instabilities appear.

4.2. Mechanism of instability and suppression
To understand the mechanism of instability physically, it is instructive to compare
with classical viscous fingering in porous-media/Hele-Shaw cells. The mechanisms of
instability are similar in that there is less flow resistance along the fingers of a less
viscous fluid than in the gaps between them filled with a more viscous fluid, thus
resulting in the fingers growing (when the intruding fluid is less viscous than the ambient).
However, in the free-surface case examined here, the intruding fluid is also advancing into
atmosphere (which is less viscous, so the viscosity contrast is stabilising), so finger growth
is reliant on the intruding fingers displacing the lubricating liquid ‘more’ than displacing
the atmosphere. In other words, finger growth requires the density difference D to be
sufficiently small (as seen in figure 6) and the upper-layer flux Qu to be sufficiently large
relative to the lower-layer flux Ql and relative to unity (as seen in figures 8–10) that the
fingers can sink down into rather than just riding on top of the lubricating layer.
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Figure 11. Contour plot of the critical total flux Ql +Qu required for the onset of instability in (D,M)

space when Ql/Qu = 0.4 (solid curves), 0.5 (dashed curves) and 0.6 (dotted curves).

In contrast, when the less viscous fluid intrudes beneath another thin film of viscous
fluid (the set-up of Kowal & Worster 2019a,b), it is not stabilised by its advance into a
less viscous atmosphere and so the instability thresholds are lower than reported here. In
particular, the critical viscosity ratio required for the onset of instability in the set-up of
Kowal & Worster (2019a,b) is of order unity when the intruding layer is supplied from
below, which is one to two orders of magnitude smaller than when the less viscous fluid
intrudes from above as in the current work. However, the general trends in the stability
thresholds are qualitatively similar as the parameters vary. For example, for both systems,
there is a critical density difference above which the instabilities are compressed, with
the interval of unstable wavenumbers widening as the density difference decreases. The
critical density difference is of order unity (versus one tenth) when the less viscous fluid
intrudes from below (versus above).

To explore the mechanism of suppression further, it is also instructive to focus
on contributions that are significant for large density differences. Non-zero density
differences between the two layers of viscous fluid give rise to additional buoyancy forces
within the lower layer near the front of the intruding fluid. These are associated with the
gravitational spreading of the underlying layer under its own weight, dragging the upper
layer along with it. As gradients of the lower-layer thickness are positive near the front
when the density difference is non-zero, the contributions to the flow velocity, arising from
the spreading of the lower layer under its own weight, are negative within the underlying
layer. This, in turn, induces an inwards contribution to the flow, seen most clearly in the
velocity profiles of figure 5 of Yang et al. (2024). That is, in what would have been an
unstable configuration, this contribution involves a more viscous fluid intruding (inwards)
into a less viscous fluid, which is stabilising.

Similar buoyancy forces stabilise the flow of single-layer viscous gravity currents, where
a viscous fluid intrudes into air (less viscous) – a stable viscosity contrast (Mathunjwa
& Hogg 2006). Small perturbations to single-layer viscous gravity currents, which are
driven by buoyancy forces alone, have been found to decay and the flow has been found
to approach a similarity solution at late times (Mathunjwa & Hogg 2006; Ball & Huppert
2019). For two-layer flows, these buoyancy forces contribute to the flow only when the
densities of the two viscous fluids are unequal. When the density difference increases,
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so does the effect of these buoyancy forces, especially near the front, where they are
most profound as depicted in figure 5 of Yang et al. (2024). As the instability is a frontal
instability, the dynamics near the front, and particularly the effect of these buoyancy forces,
is what determines the onset of instability, and hence it is natural to expect these forces to
have a stabilising effect when the density difference is sufficiently large, as seen in figure 6.

5. Conclusions
In this work, we have demonstrated that a free-surface flow consisting of a thin film
of viscous fluid intruding over another layer of fluid of dissimilar viscosity and density
is prone to a new type fingering instability, termed the non-porous viscous fingering
instability. This type of instability is most closely related to Saffman–Taylor viscous
fingering in a porous medium or a Hele-Shaw cell, but this time without a porous medium
or Hele-Shaw cell present. The similarity between these two types of instability is that
a viscosity contrast between two fluids is needed for both instabilities to occur. The
difference between them is that the jump in pressure gradient driving the instabilities is
hydrostatic for the former and dynamic for the latter form of instability.

We also point out features distinguishing the non-porous viscous fingering instability
from other frontal instabilities, including the fingering of a driven spreading film and
thermoviscous fingering. We found that a free-surface flow of a low-viscosity fluid is more
prone to instability when intruding into a high-viscosity fluid from below (as in Kowal &
Worster 2019a,b) than from above (as in the present paper). Intuitively, this is because the
less viscous fluid also displaces the atmosphere (an even less viscous fluid) in the latter
scenario, which is stabilising.

We have also examined the stabilising influence of buoyancy forces, which form near
the nose of a thin film of viscous fluid as it intrudes into another viscous fluid of different
density and viscosity. These buoyancy forces are greatest near the front of the intruding
layer and feature as the only physical mechanism driving the flow of single-layer viscous
gravity currents, for example. Such buoyancy forces have been shown to be stabilising for
single-layer flows (Grundy & McLaughlin 1982; Mathunjwa & Hogg 2006) and for two-
phase flows, when the intruding layer is supplied from below (Kowal & Worster 2019a,b)
or when it completely displaces the ambient layer (Kowal 2021).

We found that a sufficiently large viscosity ratio is required in order for the instability to
occur, and that the instability is suppressed completely for large enough density differences
between the two layers. For large enough density differences, driving buoyancy forces
associated with the gravitational spreading of the lubricating layer under its own weight
become more pronounced, and stabilise the flow completely. For lower density differences,
for which the system is unstable, this mechanism provides for wavelength selection,
stabilising the flow for large wavenumbers in contrast to intermediate wavenumbers. This
indicates that the hydrodynamic interactions of the two layers of viscous fluid alone suffice
in stabilising the flow for large wavenumbers, giving rise to wavelength selection. This
contrasts with classical Saffman–Taylor viscous fingering, which is instead stabilised by
other mechanisms, such as the effects of surface tension or fluid mixing, for example. Such
effects, however, may further stabilise the flow considered in this work, likely leading to
smaller growth rates for large wavenumbers and smaller critical wavenumbers.

We also found evidence of the role of the source flux in the onset of these fingering
instabilities. In particular, the flow is unstable only when the source flux of the upper
layer is large enough relative to that of the lower layer, which is consistent with available
experimental observations when the intruding fluid is supplied from below, for various
rheologies, and from above.
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Our observations may shed light on the appearance and possible suppression
mechanisms of similar fingering instabilities found in nature and industry at various length
and time scales, modulo the influence of secondary effects such as surface tension, or fluid
mixing, for instance. Examples include drug-mucus interactions in nasal drug/vaccine
delivery, the manufacture of patterned substrates and the interaction of dissimilar lava
flows, for example.
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Appendix A. Asymptotic expansions near the intrusion front
Similar to the base flows of Yang et al. (2024), we find that the thicknesses of the two
layers can be expanded as

F(ξ, ϑ, τ ) ∼ A1(ϑ, τ )δ
1
2 + A2(ϑ, τ )δ + A3(ϑ, τ )δ

3
2 . . . ,

f (ξ, ϑ, τ ) ∼ a0(ϑ, τ ) + a1(ϑ, τ )δ
1
2 + a2(ϑ, τ )δ + a3(ϑ, τ )δ

3
2 . . . .

(A1)

near the intrusion front where δ = (1 − ξ/ξN ) 
 1.
For the governing equation (3.7) describing the lower layer, the leading-order

contribution is of O(δ−3/2) and yields the relationship

(D + 1)a1 + A1 = 0 (A2)

between A1 and a1. The leading-order contribution of the governing equation (3.6) for the
upper layer is of O(δ−1/2) and gives rise to

(D + 1)a2 + A2 + A2
1D

a0(D + 1)
− ξ2

N

3a2
0

− 2ξN

3a2
0

∂ξN

∂τ
+ O

(
∂

∂ϑ
× ∂

∂ϑ

)
= 0, (A3)

where O((∂/∂ϑ) × (∂/∂ϑ)) represent terms that contain products of two azimuthal
derivatives, which are zero for the base solution and negligible for small-amplitude
perturbations. This equation is identical to the equivalent equation for the base flow apart
from the addition of the term containing a derivative with respect to τ and the (negligible)
higher-order terms.

Going to the next order, the O(δ−1/2) contribution to (3.7) and the O(1) contribution to
(3.6) yield

(D + 1)a3 + A3 + γ1 + O

(
∂

∂ϑ
× ∂

∂ϑ

)
= 0, (A4)

(D + 1)a3 + A3 + γ2 + O

(
∂

∂ϑ
× ∂

∂ϑ

)
= 0, (A5)

respectively, where

γ1 = − A3
1D

a2
0(D + 1)2

− A2 A1(2 − 3D)

2a0(D + 1)
+ A1ξ

2
N

3a3
0(D + 1)

− a2 A1

a0
+ 2A1ξN

3a3
0(1 +D)

∂ξN

∂τ
,

(A6)
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and

γ2 = 2A3
1D(DM+M− 3)

9a2
0(D + 1)2

+ 8A2 A1D
3a0(D + 1)

+ 2a2 A2(D + 1)

3A1

− 2A2ξ
2
N

9a2
0 A1

+ 2A2
2

3A1
− 4A2ξN

9a2
0 A1

∂ξN

∂τ
. (A7)

Similarly to before, these coefficients generalise those describing the base flow through the
addition of terms involving derivatives with respect to τ and the higher-order terms. We
note that (A4) and (A5) depend on A3 and a3 through the combination (D + 1)a3 + A3,
which can be eliminated by subtracting (A4) from (A5), which gives

γ1 = γ2. (A8)

Finally, solving (A3) and (A8) for A2 and a2 yields

A2 = −4A2
1

9a0

(
M− 3

D + 1

)
, (A9)

a2 = 1
9(D + 1)a2

0

[
3ξN

(
ξN + 2

∂ξN

∂τ

)
+ A2

1a0

(
4M− 9 − 3

D + 1

)]
, (A10)

specifying a2 and A2 in terms of a0, A1 and ξN .

Appendix B. Perturbed fluxes
Explicit expressions for perturbations to the fluxes are given by (3.27)–(3.30), where

αu1 = − 3
ξN0

F0
[

f0
(
(D + 1) f ′

0 + F ′
0
)+ F0

(
f ′
0 + F ′

0
)]

, (B1)

αu2 = − 3
2ξN0

[
f 2
0
(
(D + 1) f ′

0 + F ′
0
)+ 2MF2

0
(

f ′
0 + F ′

0
)+ 4 f0 F0

(
f ′
0 + F ′

0
)]

, (B2)

αu3 = − 1
2ξN0

F0

[
3(D + 1) f 2

0 + 6 f0 F0 + 2MF2
0

]
, (B3)

αu4 = − 1
2ξN0

F0

[
6 f0 F0 + 3 f 2

0 + 2MF2
0

]
, (B4)

αu5 = 1
2ξ2

N0
F0

[
3 f 2

0
(
(D + 1) f ′

0 + F ′
0
)+ 2MF2

0
(

f ′
0 + F ′

0
)+ 6 f0 F0

(
f ′
0 + F ′

0
)]

, (B5)

αl1 = − 3
ξN0

f0
[
((D + 1) f0 + F0) f ′

0 + ( f0 + F0) F ′
0
]
, (B6)

αl2 = − 3
2ξN0

f 2
0
(

f ′
0 + F ′

0
)
, (B7)

αl3 = − 1
2ξN0

f 2
0 (2(D + 1) f0 + 3F0) , (B8)

α14 = − 1
2ξN0

f 2
0 (2 f0 + 3F0) , (B9)

αl5 = 1
2ξ2

N0
f 2
0
[
2 f0

(
(D + 1) f ′

0 + F ′
0
)+ 3F0

(
f ′
0 + F ′

0
)]

. (B10)

1013 A32-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
23

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10233


Journal of Fluid Mechanics

REFERENCES

AL-HOUSSEINY, T.T., TSAI, P.A. & STONE, H.A. 2012 Control of interfacial instabilities using flow
geometry. Nat. Phys. 8 (10), 747–750.

ALGWAUISH, G. & NAIRE, S. 2023 The thermo-viscous fingering instability of a cooling spreading liquid
dome. Phys. Fluids 35 (11), 112109.

BALL, T.V. & HUPPERT, H.E. 2019 Similarity solutions and viscous gravity current adjustment times. J. Fluid
Mech. 874, 285–298.

BALMFORTH, N.J. & CRASTER, R.V. 2000 Dynamics of cooling domes of viscoplastic fluid. J. Fluid Mech.
422, 225–248.

BEN-JACOB, E. 1997 From snowflake formation to growth of bacterial colonies II: Cooperative formation of
complex colonial patterns. Contemp. Phys. 38 (3), 205–241.

BEN-JACOB, E., SCHMUELI, H., SHOCHET, O. & TENENBAUM, A. 1992 Adaptive self- organisation during
growth of bacterial colonies. Physica A 187 (3-4), 378–424.

BISCHOFBERGER, I., RAMACHANDRAN, R. & NAGEL, S.R. 2014 Fingering versus stability in the limit of
zero interfacial tension. Nat. Commun. 5 (1), 5265.

CHRISTY, I. & HINTON, E.M. 2023 Two-layer gravity currents of generalized Newtonian fluids. Proc. R. Soc.
A 479 (2279), 2279.

CINAR, Y., RIAZ, A. & TCHELEPI, H.A. 2009 Experimental study of CO2 injection into saline formations.
Soc. Petrol. Engrs J. 14 (04), 589–594.

DAUCK, T.-F. 2020 Viscous fingering instabilities and gravity currents, PhD thesis, University of Cambridge,
UK.

DAUCK, T.-F., BOX, F., GELL, L., NEUFELD, J.A. & LISTER, J.R. 2019 Shock formation in two-layer equal-
density viscous gravity currents. J. Fluid Mech. 863, 730–756.

DIAS, E.O. & MIRANDA, J.A. 2010 Control of radial fingering patterns: a weakly nonlinear approach.
Phys. Rev. E 81 (1), 016312.

FAST, P., KONDIC, L., SHELLEY, M.J. & PALFFY-MUHORAY, P. 2001 Pattern formation in non-Newtonian
Hele–Shaw flow. Phys. Fluids 13 (5), 1191–1212.

FINK, J.H. & GRIFFITHS, R.W. 1990 Radial spreading of viscous-gravity currents with solidifying crust.
J. Fluid Mech. 221, 485–509.

FINK, J.H. & GRIFFITHS, R.W. 1998 Morphology, eruption rates and rheology of lava domes: insights from
laboratory models. J. Geophys. Res. 103 (B1), 527–545.

GRUNDY, R.E. & MCLAUGHLIN, R. 1982 Eigenvalues of the Barenblatt–Pattle similarity solution in
nonlinear diffusion. Proc. R. Soc. Lond. A 383 (1784), 89–100.

GYLLENBERG, A.A. & SAYAG, R. 2022 Lubricated axisymmetric gravity currents of power-law fluids.
J. Fluid Mech. 949, A40.

HEWITT, I.J. 2013 Seasonal changes in ice sheet motion due to melt water lubrication. Earth Planet. Sci. Lett.
371–372, 16–25.

HINDMARSH, R.C.A. 2004 Thermoviscous stability of ice-sheet flows. J. Fluid Mech. 502, 17–40.
HINDMARSH, R.C.A. 2009 Consistent generation of ice-streams via thermo-viscous instabilities modulated

by membrane stresses. Geophys. Res. Lett. 36, L06502.
HINTON, E.M. 2022 Inferring rheology from free-surface observations. J. Fluid Mech. 937, 2202–02893.
HOMSY, G.M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19 (1), 271–311.
HULL, D. 1999 Fractology. Cambridge University Press.
HUPPERT, H.E. 1982a Flow and instability of a viscous current down a slope. Nature 300 (5891), 427–429.
HUPPERT, H.E. 1982b The propagation of two-dimensional and axisymmetric viscous gravity currents over a

rigid horizontal surface. J. Fluid Mech. 121, 43–58.
JUEL, A. 2012 Flattened fingers. Nat. Phys. 8 (10), 706–707.
KONDIC, L., SHELLEY, M.J. & PALFFY-MUHORAY, P. 1998 Non-Newtonian Hele–Shaw flow and the

Saffman–Taylor instability. Phys. Rev. Lett. 80 (7), 1433–1436.
KOWAL, K.N. 2021 Viscous banding instabilities: non-porous viscous fingering. J. Fluid Mech. 926, A4.
KOWAL, K.N. & WORSTER, M.G. 2019a Stability of lubricated viscous gravity currents. Part 1. Internal and

frontal analyses and stabilisation by horizontal shear. J. Fluid Mech. 871, 970–1006.
KOWAL, K.N. & WORSTER, M.G. 2019b Stability of lubricated viscous gravity currents. Part 2. Global

analysis and stabilisation by buoyancy forces. J. Fluid Mech. 871, 1007–1027.
KOWAL, K.N. & WORSTER, M.G. 2015 Lubricated viscous gravity currents. J. Fluid Mech. 766, 626–655.
KUMAR, P., ZURI, S., KOGAN, D., GOTTLIEB, M. & SAYAG, R. 2021 Lubricated gravity currents of power-

law fluids. J. Fluid Mech. 916, A33.
LEUNG, L.T. & KOWAL, K.N. 2022a Lubricated viscous gravity currents of power-law fluids. Part 1. Self-

similar flow regimes. J. Fluid Mech. 940, A26.

1013 A32-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
23

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10233


H. Yang and K.N. Kowal

LEUNG, L.T. & KOWAL, K.N. 2022b Lubricated viscous gravity currents of power-law fluids. Part 2. Stability
analysis. J. Fluid Mech. 940, A27.

LI, S., LOWENGRUB, J.S., FONTANA, J. & PALFFY-MUHORAY, P. 2009 Control of viscous fingering patterns
in a radial Hele–Shaw cell. Phys. Rev. Lett. 102 (17), 174501.

LISTER, J.R. & KERR, R.C. 1989 The propagation of two-dimensional and axisymmetric viscous gravity
currents at a fluid interface. J. Fluid Mech. 203, 215–249.

LUO, R.I, CHEN, Y. & LEE, S. 2018 Particle-induced viscous fingering: Review and outlook. Phys. Rev. Fluids
3 (11), 110502.

MASIUK, T., KADAKIA, P. & WANG, Z. 2016 Development of a physiologically relevant dripping analytical
method using simulated nasal mucus for nasal spray formulation analysis. J. Pharmaceut. Anal. 6 (5),
283–291.

MATHUNJWA, J.S. & HOGG, A.J. 2006 Self-similar gravity currents in porous media: linear stability of the
Barenblatt–Pattle solution revisited. Eur. J. Mech. B-Fluids 25 (3), 360–378.

MORROW, L.C., MORONEY, T.J. & MCCUE, S.W. 2019 Numerical investigation of controlling interfacial
instabilities in non-standard Hele–Shaw configurations. J. Fluid Mech. 877, 1063–1097.

MULLINS, W.W. & SEKERKA, R.F. 1964 Stability of a planar interface during solidification of a dilute binary
alloy. J. Appl. Phys. 35 (2), 444–451.

NASE, J., DERKS, D. & LINDNER, A. 2011 Dynamic evolution of fingering patterns in a lifted Hele–Shaw
cell. Phys. Fluids 23 (12), 123101.

ORR, F.M. & TABER, J.J. 1984 Use of carbon dioxide in enhanced oil recovery. Science 224 (4649), 563–569.
PERKINS, T.K., JOHNSTON, O.C. & HOFFMAN, R.N. 1965 Mechanics of viscous fingering in miscible

systems. Soc. Petrol. Engrs J. 5 (04), 301–317.
PIHLER-PUZOVIC, D., ILLIEN, P., HEIL, M. & JUEL, A. 2012 Suppression of complex fingerlike patterns at

the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108 (7), 074502.
PIHLER-PUZOVIC, D., PERILLAT, R., RUSSELL, M., JUEL, A. & HEIL, M. 2013 Modelling the suppression

of viscous fingering in elastic-walled Hele–Shaw cells. J. Fluids Mech. 731, 161–183.
SAFFMAN, P.G. & TAYLOR, G. 1958 The penetration of a fluid into a porous medium or Hele–Shaw cell

containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1242), 312–329.
SHAH, K.S., PEGLER, S.S. & MINCHEW, B.M. 2021 Two-layer fluid flows on inclined surfaces. J. Fluid

Mech. 917, A54.
SMITH, S.H. 1969 On initial value problems for the flow in a thin sheet of viscous liquid. J. Appl. Maths Phys.

20 (4), 556–560.
TAYLOR, G.I. 1963 Cavitation of a viscous fluid in narrow passages. J. Fluid Mech. 16 (4), 595–619.
TROIAN, S.M., HERBOLZHEIMER, E., SAFRAN, S.A. & JOANN, J.F. 1989 Fingering instabilities of driven

spreading films. Europhys. Lett. 10 (1), 25–30.
VAQUERO-STAINER, C., HEIL, M., JUEL, A. & PIHLER-PUZOVIĆ, D. 2019 Self-similar and disordered front
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