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INSTRUMENTAL VARIABLE

QUANTILE REGRESSION

WITH MISCLASSIFICATION∗
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This article investigates the instrumental variable quantile regression model

(Chernozhukov and Hansen, 2005, Econometrica 73, 245–261; 2013, Annual

Review of Economics, 5, 57–81) with a binary endogenous treatment. It offers two

identification results when the treatment status is not directly observed. The first

result is that, remarkably, the reduced-form quantile regression of the outcome

variable on the instrumental variable provides a lower bound on the structural

quantile treatment effect under the stochastic monotonicity condition. This result

is relevant, not only when the treatment variable is subject to misclassification,

but also when any measurement of the treatment variable is not available.

The second result is for the structural quantile function when the treatment

status is measured with error; the sharp identified set is characterized by a

set of moment conditions under widely used assumptions on the measurement

error. Furthermore, an inference method is provided in the presence of other

covariates.

1. INTRODUCTION

The instrumental variable quantile regression model (Chernozhukov and Hansen,

2005, 2013) aims to investigate heterogeneous treatment effects in the presence

of an endogenous binary treatment variable. In many empirical applications, the

treatment variable is potentially mismeasured, so it is empirically relevant how

researchers can use the instrumental variable quantile regression model with a

mismeasured treatment variable. For example, Chernozhukov and Hansen (2004)

use the instrumental variable quantile regression model to investigate the quantile

treatment effect of 401(k) participation on saving behaviors, but the pension plan
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type is subject to measurement error in survey datasets. Using the Health and

Retirement Study, Gustman, Steinmeier, and Tabatabai (2008) estimate that around

one-fourth of the survey respondents misclassified their pension plan type. To the

best ofmy knowledge, however, no paper has investigated the instrumental variable

quantile regression model when a binary regressor is potentially misclassified and

endogenous.

This article has two identification results on the structural quantile function

under the rank similarity condition.1 The first identification result considers a

reduced-form parameter, that is, the coefficient of the instrumental variable when

running the quantile regression of the outcome variable on the instrumental

variable. Under the rank similarity condition and the stochastic monotonicity

condition (Small and Tan, 2007; DiNardo and Lee, 2011), this reduced-form

parameter can be used as a lower bound for the structural quantile treatment

effect. Although it has been used by empirical studies (e.g., Bitler, Hoynes,

and Domina, 2016), the reduced-form quantile regression on the instrumen-

tal variable has not been formally related to the structural quantile treatment

effect. Moreover, this result does not depend on the treatment variable or its

measurement, and therefore it is relevant even when a measurement does not

exist.

The second identification result is to derive moment conditions for the structural

quantile function when the treatment variable is measured with exogenous errors.

The exogeneity of the measurement error is widely assumed in the measurement

error literature (e.g., Bound, Brown, and Mathiowetz, 2001) and yields exclusion

restrictions similar to Henry, Kitamura, and Salanié (2014). Given the structure

of the moment conditions, the structural quantile function can be under-identified

even if the order condition for point identification holds. In other words, additional

assumptions or variables are necessary to achieve point identification for the

structural quantile function. As an example of additional restrictions, this article

considers two observed measurements for one latent treatment variable, and point-

identify the structural quantile function. Point identification results from com-

bining two existing methods: misclassification correction techniques (Mahajan,

2006; Lewbel, 2007; Hu, 2008), and the identification results in Chernozhukov

and Hansen (2005, 2013).

Based on the partial identification result, an inference method for the structural

quantile function is provided by incorporating the misclassification probabili-

ties in the inference method of Chernozhukov and Hansen (2008). The pro-

posed inference method can include covariates other than the treatment variable,

1Wüthrich (2019) investigates the instrumental variable quantile regression model without the rank similarity

condition and characterizes the estimand of Chernozhukov and Hansen (2005) when the rank similarity condition

fails. Dong and Shen (2018), Frandsen and Lefgren (2018), Kim and Park (2018), and Yu (2017) propose a test for

the rank invariance or similarity condition.
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and it is computationally feasible by imposing a linear-in-parameters structure

on the structural quantile function. Simulation studies and an empirical illus-

tration demonstrate the finite sample performance for the proposed inference

method.

Related to this article, several papers have considered the problem of mismea-

sured regressors in the quantile regression framework, for example, Chesher (1991,

2017), Schennach (2008), Galvao and Montes-Rojas (2009), Wei and Carroll

(2009), Firpo, Galvao, and Song (2017), and Song (2018). They focus on the

case in which the mismeasured regressor is continuously distributed, whereas this

article focuses on a binary treatment variable in which the measurement error has

to be nonclassical.

Mahajan (2006), Lewbel (2007), and Hu (2008) consider identification of the

average treatment effect (or, more generally, the conditional density function of

the outcome variable given the true treatment variable) when a discrete treatment

variable is mismeasured. Their identification strategy is based on the assumption

that the true treatment variable (or the individual treatment effect in Lewbel, 2007)

is exogenous, and there is no straightforward way to modify their results to the

endogenous treatment.

Calvi, Lewbel, and Tommasi (2017), Yanagi (2019), and Ura (2018) investigate

the local average treatment effect model with a mismeasured binary treatment.

The local average treatment effect model is also a model for heterogeneous

treatment effects in the presence of endogeneity but has a different structure than

the instrumental variable quantile regression model.

Frazis and Loewenstein (2003), DiTraglia and García-Jimeno (2019), and

Nguimkeu, Denteh, and Tchernis (2019) study a linear regression model in which

a binary regressor is potentially misclassified and endogenous. Their approach

is based on a homogenous treatment effect, which does not hold in the quantile

treatment effect framework.

The remainder of this article is organized as follows. Section 2 introduces the

instrumental variable quantile regressionmodel (Chernozhukov andHansen, 2005,

2013) with a misclassified treatment variable. Section 3 studies the reduced-form

quantile regression of the outcome variable on the instrumental variable. Section

4 presents the identified set for the structural quantile function. Section 5 proposes

an inference method based on the identification analysis in Section 4. Section 6

provides an empirical illustration and simulation studies. Section 7 concludes. The

Appendix includes the proofs and additional results.

The rest of this article uses the following notations. Pr denotes the true prob-

ability measure for the observed and unobserved random variables. QRV1|RV2(τ )
is the τ th conditional quantile of a continuous random variable RV1 given a

random variable RV2. FRV1|RV2 is the conditional cumulative distribution function

of a random variable RV1 given a random variable RV2. fRV1|RV2 is the condi-

tional probability density function of a random variable RV1 given a random

variable RV2.
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2. INSTRUMENTAL VARIABLE QUANTILE REGRESSION MODEL
WITH MISCLASSIFICATION

This section presents notations and assumptions that are essentially those of the

instrumental variable quantile regressionmodel (Chernozhukov andHansen, 2005,

2013), although the treatment variable D* is not observed in this article. For

the sake of simplicity, covariates are omitted other than the treatment variable

when analyzing the identification problem. In the instrumental variable quantile

regression model, Y is an outcome variable, D* is a binary (true but latent)

treatment variable taking values in {0, 1}, and Z is an instrumental variable.D∗ = 1

means that the individual is treated; otherwise, D∗ = 0.

In Chernozhukov and Hansen (2004) and Section 6.1, the outcome variable Y

is the net amount of financial assets in dollars, the treatment variable D* is the

participation status in a 401(k) program, and the instrumental variable Z is the

401(k) eligibility indicator of whether an employer offers a 401(k) program to

employees.

The goal of this article is to investigate treatment effects of D* on Y. The error

term (U0, U1) and the (unknown) structural quantile function q(d*, u) are used to

model the relationship between the outcome variable Y and the binary treatment

variable D*:

Y = q(D∗,U) where U = (1−D∗)U0 +D∗U1.

The random variable q(d∗,Ud∗) is the potential outcome variable when D∗ = d∗.
The parameter of interest is the τ th quantile of the counterfactual outcome variable,

q(d*, τ ), for a given value of τ ∈ (0, 1).

To identify q(d*, u) even partially, it is necessary to impose some structure on the

unknown function, q(d*, u), and on the unobserved variable, Ud∗ . The following

assumptions are based on Chernozhukov and Hansen (2005, 2013). Unlike their

papers, the condition is local at the given value of τ , which is sufficient for deriving

the testable implication in Chernozhukov and Hansen (2005, Thm. 1) for the

structural quantile function at τ .2

Assumption 1. The mapping u 7→ q(d*, u) is strictly increasing and left-

continuous for every u ∈ [0, 1], and has the inverse y 7→ q−1(y,d∗).

Assumption 2. (i) Pr(U0 ≤ τ | Z) = Pr(U1 ≤ τ | Z) = τ . (ii) Pr(U0 ≤ τ |
D∗,Z)= Pr(U1 ≤ τ | D∗,Z).

Assumption 1 requires that the outcome variable Y is continuously distributed.

Assumption 2(i) is the exogeneity of the instrumental variable Z. This assumption

allows for the endogeneity of the treatment variable D*. Assumption 2(ii) is the

rank similarity condition on Ud∗ ≤ τ . It is a relaxation of the rank invariance

2The local restriction is a weaker condition than full independence between Z and Ud∗ (Chesher, 2003). Technically

speaking, Ud∗ ’s are not necessarily uniform random variables in this article since the assumptions are only about the

given value of τ , but the subsequent discussions in terms of the quantile treatment effect hold only when Ud∗ ’s are

uniform random variables.
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condition, U0 = U1, that an individual’s rank, Ud∗ , is the same regardless of

whether the individual is treated or controlled. The rank similarity condition allows

the two unobserved heterogeneity terms, U1 and U0, to be different, although it

still requires them to have the same distribution given the endogenous treatment

assignment and the instrumental variable. It enables the τ th quantile of the

counterfactual outcome variable, q(d*, τ ), to be compared between the control

group (d∗ = 0) and the treatment group (d∗ = 1). The rank similarity condition

is a restriction on the unobserved heterogeneity in the outcome variable equation

and has been widely used for investigating heterogenous treatment effects (e.g.,

Doksum, 1974; Heckman, Smith, and Clements, 1997; Chernozhukov andHansen,

2004).

Under the rank similarity condition, Chernozhukov and Hansen (2005) obtain

the following relationship between the distribution of (Y, D*, Z) and the structural

quantile function q(d*, τ ).

LEMMA 1 (Chernozhukov and Hansen, 2005, Thm. 1). Under Assumptions 1

and 2,

Pr(U ≤ τ | Z)= τ and Pr(Y ≤ q(D∗,τ ) | Z)= τ . (1)

The rest of this article adds the complication that the binary treatment variable

D* may not be observed. Then the equality (1) cannot be directly used for

identifying the structural quantile function.

3. QUANTILE REGRESSION OF Y ON Z

This section does not use any measurement ofD*; instead the relationship between

the outcome variable Y and the instrumental variable Z is used to provide a

lower bound on the structural quantile treatment effect q(1,τ )− q(0,τ ). Namely,

QY|Z=z1(τ ) − QY|Z=z0(τ ) can be a lower bound on q(1,τ ) − q(0,τ ), when Z

is a binary variable taking z0 and z1. This analysis provides a new structural

interpretation to QY|Z=z1(τ )−QY|Z=z0(τ ), which is computed as the regression

coefficient from the quantile regression of Y on Z. When Z takes more than two

values, the discussion in this section can be applied by selecting any two values

in the support of Z or partitioning the support into two parts. It is worth clarifying

that the results in this section and the following sections are valid regardless of

whether Z is binary, discrete, continuous, or mixed.

The result in this section uses the stochastic monotonicity condition (Small

and Tan, 2007 and DiNardo and Lee, 2011). It assumes a positive relationship

between the treatment variable D* and the instrumental variable Z in which, for

every possible realization u of U, the probability of being treated fU1,D
∗|Z=z(u,1)

is weakly increasing in z, and the probability of being untreated fU0,D
∗|Z=z(u,0)

is weakly decreasing in z. The condition is weaker than the deterministic mono-

tonicity condition (Imbens and Angrist, 1994; Angrist, Imbens, and Rubin, 1996)
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because it allows for defiers, that is, some individuals who change D* from 1 to 0

when Z increases.

Definition 1. The stochastic monotonicity condition is that

fU0,D
∗|Z=z1(u,0)≤ fU0,D

∗|Z=z0(u,0) and fU1,D
∗|Z=z1(u,1)≥ fU1,D

∗|Z=z0(u,1) (2)

for every u ∈ [0, 1].

Theorem 1 shows that, under the stochastic monotonicity condition in (2),

QY|Z=z1(τ )−QY|Z=z0(τ ) is biased toward zero compared with the structural quan-

tile treatment effect q(1,τ )−q(0,τ ).

THEOREM 1. Suppose that Assumptions 1 and 2 hold and that the stochastic

monotonicity condition holds.

(a) There is some unknown constant κ ∈ [0, 1] such that

QY|Z=z1(τ )−QY|Z=z0(τ )= κ× (q(1,τ )−q(0,τ )). (3)

(b) If fU0,D∗|Z=z1(u,0) < fU0,D∗|Z=z0(u,0) and fU1,D∗|Z=z1(u,1) >
fU1,D∗|Z=z0(u,1) in a neighborhood of τ , then κ 6= 0.

This theorem provides a one-sided bound on q(1,τ )−q(0,τ ): q(1,τ )−q(0,τ )≥
QY|Z=z1(τ )−QY|Z=z0(τ ) if QY|Z=z1(τ )−QY|Z=z0(τ ) ≥ 0; and q(1,τ )− q(0,τ ) ≤
QY|Z=z1(τ ) − QY|Z=z0(τ ) if QY|Z=z1(τ ) − QY|Z=z0(τ ) ≤ 0. This bound gives

researchers a justification for using QY|Z=z1(τ )−QY|Z=z0(τ ), which is a lower

bound for the structural quantile treatment effect. Note that QY|Z=z1(τ ) −
QY|Z=z0(τ ) is a simple object to compute; it is obtained as the quantile regression

coefficient on Z and various statistical software packages include linear and

nonlinear quantile regressions (e.g., the qreg command in Stata).

The stochastic monotonicity condition cannot be removed from Theorem 1, but

Lemma B.1 in the appendix shows that equation (3) holds with κ ∈ [−1,1] even if

the stochastic monotonicity condition does not hold. In other words, the inequality

|QY|Z=z1(τ )−QY|Z=z0(τ )| ≤ |q(1,τ )− q(0,τ ))| still holds without the stochastic

monotonicity condition. It is possible to use this inequality to test the significance

of D* by testing QY|Z=z1(τ )−QY|Z=z0(τ )= 0.

4. IDENTIFIED SET FOR THE STRUCTURAL QUANTILE FUNCTION

This section considers use of a potentially misclassified treatment variable D and

provides the sharp identified set for the structural quantile function q(·, τ ). To
extract some information about the true treatment D* from its measurement D,

the following restrictions on the misclassification probabilities are imposed.

Assumption 3. (i) (Pr(D = 1 | D∗ = 0,Y,Z),Pr(D = 0 | D∗ = 1,Y,Z)) =
(π0,π1) for some constants (π0, π1). (ii) Pr(D 6=D∗ |D∗ = 0,Y,Z)+Pr(D 6=D∗ |
D∗ = 1,Y,Z) < 1.
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Assumption 3(i) is that the measurement error does not depend on (Y, Z).

Assumption 3(ii) is that the measurement D is positively correlated with the true

treatment variable D*. These assumptions are widely used in the literature on

misclassification (e.g., Hausman, Abrevaya, and Scott-Morton, 1998, Mahajan,

2006; Lewbel, 2007; and Hu, 2008).

The sharp identified set for q(·, τ ) is the set of values for q(·, τ ) that exhausts all
the information from the model and the data distribution. LetQ be a subset of the

set of functions of {0,1}× [0,1] to R, and P∗ be a subset of the set of probability
distributions for (D, Z, U0, U1, D

*).3 Given a distribution P for (Y, D, Z), the sharp

identified set for (q, P*) is the set of elements (q̃,P̃∗) of Q×P∗ such that P is the

distribution for (q̃(D∗,U),D,Z) under P̃∗.4 The sharp identified set for q(·, τ ) is
defined as the projection of the sharp identified set for (q, P*) on the component

q(·, τ ).
The following theorem characterizes the sharp identified set for q(·, τ ) under

Assumptions 1, 2, and 3, by using moment equalities and inequalities.

THEOREM 2. Assume that all the elements in Q×P∗ satisfy Assumptions 1,
2, and 3. (a) Given a distribution P for the observed variables, if (y0, y1) belongs

to the sharp identified set for q(·, τ ), then
P(Y ≤ yD | Z)− τ = p1(P(Y ≤ y0 | Z)− τ)+p0(P(Y ≤ y1 | Z)− τ) (4)

for some (p0, p1) with p0 +p1 < 1 such that

0 ≤ p0 ≤ P(D= 1 | Y,Z) a.s. and 0 ≤ p1 ≤ P(D= 0 | Y,Z) a.s.
(b) The converse is also true ifQ×P∗ includes all (q, P*)’s satisfying Assumptions
1, 2, and 3.

The moment equality condition in equation (4) is equivalent to the main

testable implication in Chernozhukov and Hansen (2005) when (p0,p1)= (π0,π1)

where (π0, π1) are the true unknown misclassification probabilities defined in

Assumption 3. The moment inequality conditions about (π0, π1) are derived from

the following calculations:

3Q and P∗ are subsets because there can be restrictions on q and the distribution for (D, Z, U0, U1, D
*). Also note

that the distribution for (D, Z, U0, U1, D
*) can be characterized by

Pr(D= d,Z ≤ z,U0 ≤ u0,U1 ≤ u0,D
∗ = d∗)

and the distribution for (Y, D, Z) can be characterized by

Pr(Y ≤ y,D= d,Z ≤ z).

The distribution P for (Y, D, Z) is induced by (q, P*) via

P(Y ≤ y,D= 0,Z ≤ z)= P∗(D= 0,q(0,U0)≤ y,D∗ = 0,Z ≤ z)+P∗(D= 0,q(1,U1)≤ y,D∗ = 1,Z ≤ z)

P(Y ≤ y,D= 1,Z ≤ z)= P∗(D= 1,q(0,U0)≤ y,D∗ = 0,Z = z)+P∗(D= 1,q(1,U1)≤ y,D∗ = 1,Z ≤ z).

4In this article, q̃ is a generic element ofQ and P̃∗ is a generic element ofP∗, whereas q is the true structural quantile
function and P* is the true distribution for (D, Z, U0, U1, D

*).
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Pr(D= 1 | Y,Z)= π0 + (1−π0 −π1)Pr(D∗ = 1 | Y,Z)≥ π0

Pr(D= 0 | Y,Z)= π1 + (1−π0 −π1)Pr(D∗ = 0 | Y,Z)≥ π1.

As a corollary to Theorem 2, it is possible to compare the identified set for q(·, τ )
and the estimand in Chernozhukov and Hansen (2005), which does not consider

measurement error in D.

Corollary 1. Suppose all the assumptions in Theorem 2(b) hold. Every solution

(y0, y1) to P(Y ≤ yD | Z)− τ = 0, belongs to the sharp identified set for q(·, τ ).

As another corollary to Theorem 2, it is possible to relate QY1Z(τ ) to the

identified set for q(·, τ ). Although QY|Z=z1(τ )−QY|Z=z0(τ ) can be used as a lower
bound for q(1,τ )−q(0,τ ), it does not always belong to the identified set.

Corollary 2. Consider two points, z0 and z1, in the support of Z, and suppose

all the assumptions in Theorem 2 (b) hold. Then (y0,y1)= (QY|Z=z0(τ ),QY|Z=z1(τ ))
belongs to the sharp identified set for q(·, τ ) if and only if P(D = 1 | {y0 < Y ≤
y1 or y1 < Y ≤ y0},Z = z0) ≤ P(D = 1 | Y,Z) a.s. and P(D = 0 | {y0 < Y ≤
y1 or y1 < Y ≤ y0},Z = z1)≤ P(D= 0 | Y,Z) a.s.

Note that, by the exogeneity of Z, (q(0,τ ),q(1,τ )) = (QY|Z=z0(τ ),QY|Z=z1(τ ))
if D∗ = 1{Z = z1}. Corollary 2 is roughly related to the observation that, under

Assumption 3, D∗ = 1{Z = z1} implies

P(D= 1 | {y0 < Y ≤ y1 or y1 < Y ≤ y0},Z = z0)

= P(D= 1 | {y0 < Y ≤ y1 or y1 < Y ≤ y0},D∗ = 0)

= π0

≤ π0 + (1−π0 −π1)P(D∗ = 1 | Y,Z)
= P(D= 1 | Y,Z)

P(D= 0 | {y0 < Y ≤ y1 or y1 < Y ≤ y0},Z = z1)

= P(D= 0 | {y0 < Y ≤ y1 or y1 < Y ≤ y0},D∗ = 1)

= π1

≤ π1 + (1−π0 −π1)P(D∗ = 0 | Y,Z)
= P(D= 0 | Y,Z).

The precise derivations are found in the proof in the Appendix.

4.1. Under-Identification Even with Large Variation in Z

This section shows that the structural quantile function is not point identified in

general unless there is additional information on the model primitives (q, P*). The

failure of point identification is due to the rank condition and happens regardless of

the order condition based on equation (4), where the number of the parameters is 4,
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and the number of the equations is the number of the support points of Z. Theorem

3 presents this failure for a class of data generating processes. In particular,

the theorem states that the quantile treatment effect can be under-identified if

one cannot exclude that the treatment is exogenous. Based on the result, it is

necessary to impose additional assumptions (other than the ones maintained in this

article) to achieve point identification when the treatment variable is potentially

misclassified.

THEOREM 3. Consider d̄∗ = 0 or d̄∗ = 1. Assume (i) the mapping u 7→
q−1(q(1,u),0) is Lipschitz continuous, (ii) q(d∗,τ ) 6= q(1− d∗,τ ), (iii) (U0, U1)

is independent of (D*, Z), (iv) πd̄∗ > 0, and (v) for sufficiently small ε > 0, the

following three statements hold:

1. q̃ ∈ Q for every strictly increasing bijection t of [0, 1] to [0, 1] such that
|t(u)− u| ≤ ε for every u ∈ (0, 1), where q̃(d∗,·) = q(d∗,t(·)) and q̃(1−
d∗,·)= q(1−d∗,·).

2. P̃∗ ∈ P∗ for every distribution P̃∗ for (D, Z, U0, U1, D
*) such that P̃∗

satisfies Assumption 2 and that

P̃∗(D= 1− d̄∗ | U0,U1,D
∗ = d̄∗,Z)= πd̄∗ − ε

P̃∗(D= d̄∗ | U0,U1,D
∗ = 1− d̄∗,Z)= π1−d̄∗

|P̃∗(U0 ≤ u0,U1 ≤ u1,D
∗ = d∗,Z ≤ z)

−P∗(U0 ≤ u0,U1 ≤ u1,D
∗ = d∗,Z ≤ z)| ≤ ε.

Then the sharp identified set for q(·, τ ) has more than one element.

Condition (i) is a regularity condition. Condition (ii) is that the treatment

variable can have a nonzero effect on the outcome variable at quantile index τ .

Condition (iii) is that the treatment variable can be exogenous. Condition (iv) is

that there is a nonzero measurement error. Condition (v) is a condition about the

size of the parameter space Q×P∗. A sufficient condition for (v) is that Q×P∗

includes all (q, P*)’s satisfying Assumptions 1, 2, and 3.

Condition (iii) needs a careful discussion. Theorem 3 states that the quantile

treatment effect is not always point identified unless the treatment is assumed to

be endogenous. This theorem is more relevant when one cannot exclude that D*

is exogenous than when D* is known to be exogenous. When one cannot exclude

that D* is exogenous, there is a possibility for the lack of point identification. It

can be possible to point-identify the quantile treatment function if one can assume

that D* is not exogenous.

4.2. Point Identification with Second Measurement

Given the under-identification result in Theorem 3, this section considers the case

of twomeasurements forD* to achieve point identification of the structural quantile
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function. The identification strategy is based on existing results in the econometric

literature. First, the results in Mahajan (2006), Lewbel (2007), and Hu (2008) are

applied to identify fY,D∗|Z . Given identification of fY,D∗|Z , the identification result in
Chernozhukov and Hansen (2005, 2013) recovers the structural quantile function.

The following assumption and Lemma 2 are based on Theorem 1 in Hu (2008).

Assumption 4. (i) The two measurements, D and V, are conditionally indepen-

dent given D*. (ii) 0< fD∗|Z=z1(0) < 1. (iii) There are two points, v0 and v1, in the

support of V such that

(
fV|D∗=0(v0) fV|D∗=0(v1)

fV|D∗=1(v0) fV|D∗=1(v1)

)

is invertible. (iv) P(D=D∗ |D∗) > 1/2. (v) There are two points, z0 and z1, in the

support of Z.

LEMMA 2. Under Assumptions 3 and 4, f(Y,D∗)|Z is point identified.

Chernozhukov and Hansen (2013) provide a simple sufficient condition for

the global identification of the structural quantile function given f(Y,D∗)|Z . The
following assumption and identification result are borrowed from Chernozhukov

and Hansen (2013, Sect. 3.1).

Assumption 5. There is a cube L with (q(0,τ ),q(1,τ )) ∈ L such that

f(Y,D∗)|Z=z1(y1,1)

f(Y,D∗)|Z=z1(y0,0)
>
f(Y,D∗)|Z=z0(y1,1)

f(Y,D∗)|Z=z0(y0,0)
, f(Y,D∗)|Z=z1(y1,1) > 0 and

f(Y,D∗)|Z=z0(y0,0) > 0

for all (y0,y1) ∈ L.

LEMMA 3. Under Assumptions 1, 2, and 5, (q(0, τ ), q(1, τ )) is uniquely

determined from f(Y,D∗)|Z .

By Lemmas 2 and 3, the structural quantile function can be identified with two

measurements for D*.

THEOREM 4. Under Assumptions 1, 2, 3, 4, and 5, (q(0, τ ), q(1, τ )) is

identified.

5. INFERENCE PROCEDURE WITH COVARIATES

This section proposes an inference method for the structural quantile function.

The method extends the inference method in Chernozhukov and Hansen (2008) to

incorporate misclassification probabilities. To include control variables X, a linear-

in-parameters structure is imposed on the structural quantile function:
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Y = q(D∗,X,U) with q(d∗,x,τ )= α0d
∗ + x′β0. (5)

This section focuses on constructing a confidence interval for α0.

With control variables X, Assumptions 1–3 are modified into the following

assumptions:

Assumption 6. With probability one, the mapping u 7→ q(d*, X, u) is strictly

increasing and left-continuous for every u ∈ [0, 1].

Assumption 7. (i) Pr(U0 ≤ τ | Z,X)= Pr(U1 ≤ τ | Z,X)= τ . (ii) Pr(U0 ≤ τ |
D∗,Z,X)= Pr(U1 ≤ τ | D∗,Z,X).

Assumption 8. (i) For each d∗ = 0,1, Pr(D 6= D∗ | D∗ = d∗,Y,Z,X) is a
constant, denoted by πd∗ . (ii) Pr(D 6= D∗ | D∗ = 0,Y,Z,X)+Pr(D 6= D∗ | D∗ =
1,Y,Z,X) < 1.

Given n i.i.d. copies {(Yi,Di,Xi,Zi) : i = 1, . . . ,n} of (Y, D, X, Z), a confidence
interval for α0 is constructed via the following two steps. The first step constructs

a confidence interval for (π0, π1). Given each point in the confidence interval for

(π0, π1), the second step constructs a confidence interval for α0. The size control

comes from the Bonferroni correction for the first and second steps.

The following condition is imposed on a (1− size1) confidence region, CI1, for

(π0, π1).

Assumption 9. lim infn→∞Pr((π0,π1) ∈ CI1)≥ 1− size1.

In the empirical illustration, CI1 is constructed by inverting the one-tailed t-tests

based on π0 ≤ E[D | Z = 0] and π1 ≤ E[1−D | Z = 1], where size1/2 for each t-

test. In the empirical illustration, the confidence interval for α0 is bounded by using

En[D | Z = 0] = 0 and En[1−D | Z = 1] ≈ 0.3.

At the true value (α0, π0, π1) of (α, p0, p1), the following testable implications

(cf. Chernozhukov and Hansen, 2008) hold. As in Chernozhukov and Hansen

(2008), it is possible to replace Z with a function g(X, Z) of (X, Z).

LEMMA 4. Under Assumptions 6–8,

0 ∈ arg min
γ

min
β
Q0(θ;α0,π0,π1).

where ν0(y,x,z)= E[D | Y = y,X = x,Z = z], t+ = 1{t ≥ 0} · t, ρτ (t)= (τ −1{t ≤
0})t, θ = (β ′,γ ′)′, W = [X′,Z′]′ and

Q0(θ;α,p0,p1)= E[ρτ (Y−W ′θ)(1−p1 −D)]+E[ρτ (Y−α−W ′θ)(D−p0)].

= E[ρτ (Y−W ′θ)(1−p1 −ν0(Y,X,Z))+]
+E[ρτ (Y−α−W ′θ)(ν0(Y,X,Z)−p0)+].

This article assumes thatQ0(θ ;α0, π0, π1) has a unique minimizer over θ for the

true parameter value (α0, π0, π1), which is implied by Assumption 12(1). Since

(α0, π0, π1) is unknown, an estimator for θ is computed as a function of (α, p0, p1):
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θ̂ (α;p0,p1)= arg min
θ∈2

Qn(θ;α,p0,p1),

where ν̂(y,x,z) is an estimator for ν0(y, x, z), and

Qn(θ;α,p0,p1)= En[ρτ (Y−W ′θ)(1−p1 − ν̂(Y,X,Z))+]
+En[ρτ (Y−α−W ′θ)(ν̂(Y,X,Z)−p0)+].

The objective function Qn(θ ;α, p0, p1) is convex in θ , which is the result of using

ν̂(Y,X,Z) instead of D. This transformation comes from Buchinsky and Hahn

(1998) and Abadie, Angrist, and Imbens (2002).5 To simplify the arguments, a

parametric model ν0(y,x,z)= νδ0(y,x,z) is imposed with a parametric estimator δ̂

for δ0 and the following assumptions.

Assumption 10. (i) E[D*|Y, X, Z] is bounded away from zero and one.

(ii) sup(y,x,z)|ν̂(y,x,z) − ν0(y,x,z)| = op(1) where ν̂(y,x,z) = νδ̂(y,x,z). (iii)

En

[
W(ξ0(ν̂)− ξ0(ν0)−40(δ0)(δ̂− δ0)

]
= op(n

−1/2), where

ξ0(ν)= (τ −1{Y−W ′θ0 ≤ 0})(1−π1 −ν(Y,X,Z))
+ (τ −1{Y−α0 −W ′θ0 ≤ 0})(ν(Y,X,Z)−π0)

40(δ)= (1{Y−W ′θ0 ≤ 0})−1{Y−α0 −W ′θ0 ≤ 0}) ∂
δ′ νδ(Y,X,Z).

(iv) There are n random variables, ψδ, 1, . . ., ψδ, n, such that δ̂− δ0 = En[ψδ]+
op(n

−1/2) with E[‖ψδ‖2] < ∞. (v) There is an estimator, (ψ̂δ,1, . . . ,ψ̂δ,n), for

(ψδ, 1, . . ., ψδ, n), that satisfies E[‖ψ̂δ −ψδ‖2] = o(1). (vi) There is an estimator
∂̂
δ′ νδ for

∂
δ′ νδ that satisfies E

[∥∥∥W
(
∂̂
δ′ νδ(Y,X,Z)−

∂
δ′ νδ(Y,X,Z)

)∥∥∥
]

= o(1). (vii)

E
[∥∥W ∂

δ′ νδ(Y,X,Z)
∥∥2

]
<∞.

The optimization of Qn(θ ;α, p0, p1) is implemented in the same way as the

linear quantile regression. Namely, the objective function can be written as

Qn(θ;α,p0,p1)= n−1
∑2n

i=1ρτ (Y̌i− W̌i
′θ), where

Y̌i =
{
Yi(1−p1 − ν̂(Yi,Xi,Zi))+ if i≤ n

Yi−n(ν̂(Yi−n,Xi−n,Zi−n)−p0)+ if i≥ n+1

W̌i =
{
Wi(1−p1 − ν̂(Yi,Xi,Zi))+ if i≤ n

Wi−n(ν̂(Yi−n,Xi−n,Zi−n)−p0)+ if i≥ n+1.

for i= 1, . . . ,n,n+1, . . . ,2n.6

5I am thankful to a referee for proposing this transformation.

6Note that ρτ (t)c = (τ − 1{t ≤ 0})tc = (τ − 1{ct ≤ 0})ct = ρτ (ct) for every t ∈ R and c ≥ 0. Since the weights,

(1−p1 − ν̂(Y,X,Z))+ and (ν̂(Y,X,Z)−p0)+, are non-negative,

ρτ (Y−W ′θ)(1−p1 − ν̂(Y,X,Z))+ = ρτ (Y(1−p1 − ν̂(Y,X,Z))+ − (W(1−p1 − ν̂(Y,X,Z))+)′θ)
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The asymptotic variance for θ̂ (α;p0,p1) is estimated with a kernel function K(·)
and a bandwidth h. For every value of (α, p0, p1), the asymptotic variance for

θ̂ (α;p0,p1) estimated by

�̂(α;p0,p1)= En[λ̂(α;p0,p1)WW ′]−1En[ŝ(α;p0,p1)ŝ(α;p0,p1)′]
En[λ̂(α;p0,p1)WW ′]−1,

where

ξ̂ (α;p0,p1)= (τ −1{Y−W ′θ̂ (α;p0,p1)≤ 0})(1−p1 − ν̂(Y,X,Z))

+ (τ −1{Y−α−W ′θ̂ (α;p0,p1)≤ 0})(ν̂(Y,X,Z)−p0)

4̂(α;p0,p1)= 1{Y−W ′θ̂ (α;p0,p1)≤ 0} ∂̂
δ′ νδ(Y,X,Z)

−1{Y−α−W ′θ̂ (α;p0,p1)≤ 0} ∂̂
δ′ νδ(Y,X,Z)

ŝ(α;p0,p1)= ξ̂ (α;p0,p1)W+En
[
W4̂(α;p0,p1)

]
ψ̂δ

λ̂(α;p0,p1)= Kh(Y−W ′θ̂ (α;p0,p1))(1−p1 −D)

+Kh(Y−α−W ′θ̂ (α;p0,p1))(D−p0).

Denote by �̂γ (α;p0,p1), the asymptotic variance for γ̂ (α;p0,p1).
The proposed confidence interval for α0 is

CIα(size1 + size2)=
⋃

(p0,p1)∈CI1

{α ∈ A : T(α;p0,p1)≤ cv},

where A is the parameter space for α, the test statistic is

T(α;p0,p1)= nγ̂ (α;p0,p1)′�̂γ (α;p0,p1)−1γ̂ (α;p0,p1),
and the critical value cv is the (1−size2) quantile of theχ

2 distributionwith dim(γ )

degrees of freedom. The proposed confidence interval satisfies the asymptotic size

control under the following assumptions.

Assumption 11. θ0 ≡ (β0
′,0′)′ is in the interior of a compact parameter

space 2.

ρτ (Y−α−W ′θ)(ν̂(Y,X,Z)−p0)+ = ρτ ((Y−α)(ν̂(Y,X,Z)−p0)+ − (W(ν̂(Y,X,Z)−p0)+)
′θ).

Therefore,

Qn(θ;α,p0,p1)= En[ρτ (Y−W ′θ)(1−p1 − ν̂(Y,X,Z))+]+En[ρτ (Y−α−W ′θ)(ν̂(Y,X,Z)−p0)+]

= 1

n

2n∑

i=1

ρτ

(
Y̌i − W̌ ′

i θ
)
.
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Assumption 12. (i) E
[
fY−α0D∗|Z,X(W ′θ0)WW ′] is invertible. (ii) E[‖W‖4] is

finite. (iii) limǫ→0Pr(|Y−W ′θ0| ≤ ǫ · ‖W‖)= 0 and limǫ→0Pr(|Y−α0 −W ′θ0| ≤
ǫ · ‖W‖)= 0. (iv) There is a constant C such that max{fY|X,Z,D,f

(1)
Y|X,Z,D}< C a.s.

Assumption 13. (i) h → 0 and
√
nh → ∞ as n → ∞. (ii) K is differentiable

with supv|K(1)(v)|<∞,
∫
K(v)dv= 1,

∫
|K(v)v|dv<∞, and

∫
K(v)2dv<∞.

THEOREM 5. Under Assumptions 6–13, liminfn→∞Pr(α0 ∈ CIα(size1 +
size2))≥ 1− (size1 + size2).

Assumption 11 is a regularity condition on the parameter. Assumption 12(i) is

that the Hessian matrix is nonsingular, and it implies point identification of θ0
given the true value (α0, π0, π1). Assumption 12(ii)–(iv) is a regularity condition

on the distribution of the observables. Assumption 13 is a restriction on the

bandwidth and the kernel function, which is used to estimate the asymptotic

variance �̂γ (α;p0,p1).

6. EMPIRICAL ILLUSTRATION AND MONTE CARLO SIMULATIONS

This section investigates the finite sample performance of the proposed method

using an existing empirical application and simulated datasets. As emphasized in

Section 4.1, the inference results presented in this section are valid regardless of

whether the structural quantile function is point or partially identified.

6.1. Empirical Illustration

This empirical illustration studies the quantile treatment effects of the 401(k)

participation on financial savings (Chernozhukov and Hansen, 2004) and consider

the problem of mismeasured 401(k) participation.7 It uses the same dataset as

Chernozhukov and Hansen (2004), which is an extract from the Survey of Income

and Program Participation of 1991. The sample contains 9,915 households with at

least one person in employment and without any income from self-employment.

The model is based on Chernozhukov and Hansen (2004). The outcome variable

Y is the net amount of financial assets in dollars, the measured treatment variableD

is self-reported participation in a 401(k) program, and the instrumental variable Z

is 401(k) eligibility, an indicator variable of whether a 401(k) program is available

in any of the companies for which the household member work. The summary

statistics for (Y, D, Z) are in Table 1.

The details for the confidence intervals are as follows. The prespecified sizes are

(size1,size2) = (1%,4%), where size1 is used to construct a confidence interval

for unknown misclassification probabilities (π0, π1) and size2 is used for the

7Ura (2018) uses the same empirical setting to investigate the local average treatment effect under treatment

misclassification.
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Table 1. Summary statistics for Y, D, and Z

Sample size Mean SD

Y: family net financial assets (in $1,000) 9,915 18.05 63.52

D: 401(k) participation 9,915 0.26 0.44

Z: 401(k) eligibility 9,915 0.37 0.48
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Figure 1. (Color online) Three point-wise 95% confidence intervals for α0. The solid curves represent

the proposed inference method, the dash-dotted line (−.) curves represent the inference method that

assumes π0 = π1 = 0, and the dashed (−−) curves represent the inference method that assumes

(π0,π1)= (0,0.31).

critical value cv. The confidence interval for (π0, π1) is CI1 = {0}× [0,0.31] for

(π0, π1), where {0} follows from En[D | Z = 0] = 0 and [0, 0.31] comes from

the one-tailed t-test for π1 ≤ E[1−D | Z = 1] with size 0.5%. The conditional

probability of D given (Y, X, Z) is estimated by probit regression of D on all

the interactions of (1, X, Z) and the cubic polynomials of Y.8 Using p0 = 0 and

grid points p1 = 0,0.01,0.02, . . . ,0.31 for CI1, CIα(size1+ size2) is constructed by⋃
p1=0,0.01,0.02,...,0.31 {α ∈ A : T(α;p0,p1)≤ cv}.
Figure 1 (left) shows the 95% confidence intervals based on Section 4, with the

specification in equation (5) and the same list of covariates as Benjamin (2003) and

Chernozhukov and Hansen (2004).9 The figure also shows the 95% confidence

intervals that assume π0 = π1 = 0, that is, no misclassification. The confidence

intervals that assume π0 = π1 = 0 are exactly the same as the confidence intervals

proposed in Chernozhukov andHansen (2008, Sect. 3). All the confidence intervals

are point-wise, that is, computed separately for each quantile index τ .

8The interaction terms can be written as (1,X′,Z′,Y,Y ·X′,Y ·Z′,Y2,Y2 ·X′,Y2 ·Z′,Y3,Y3 ·X′,Y3 ·Z′)′.
9X includes a constant, age, age2, income categories, family size, education dummies, marital status dummy, two-

earner status dummy, defined benefit pension status dummy, individual retirement account participation status

dummy, and homeownership status dummy. The number of the covariates in X is 18.
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In this empirical exercise, the confidence intervals proposed in this article

are comparable in lengths to those that assume no misclassification. There are

several features of this empirical exercise that make the confidence intervals tight

(compared with those that assume no misclassification). First, in this empirical

exercise, En[D | Z = z0] = 0 implies π0 = 0, so under-identification for q(·, τ )
mainly comes from under-identification for the scalar parameter π1. It makes

the degree of under-identification smaller than when π0 and π1 are both under-

identified. Second, the confidence intervals that assume π0 = π1 = 0, are large

enough to include the confidence interval with another value of (p0, p1). Figure 1

(right) shows the confidence intervals that assume (p0,p1) = (0,0) and that with

(p0,p1) = (0,0.31), where the points (0, 0) and (0, 0.31) are the two endpoints

for CI1. The confidence intervals that assume (p0,p1) = (0,0) include those that

assume (p0,p1)= (0,0.31) for almost all the values of τ .

6.2. Monte Carlo Simulations

Monte Carlo simulations are based on the following data generating process. The

instrumental variable Z takes z0 with probability 0.5 and z1 with probability 0.5.

The error term (Ũ,V) is a two-dimensional mean-zero normal random vector with

variance 1 and correlation coefficient 0.5, independent of Z. The covariate X is

X = (1,X̃), where X̃ is a four-dimensional standard normal random vector with

identity covariance matrix, independent of (Z,Ũ,V). The latent treatment variable

D* is determined by

D∗ = 1{1{Z = z1}+X′β+V > 0},
and the outcome variable Y is determined by

Y = exp(8(Ũ)−0.5)D∗ +X′β+ Ũ,

where 8 is the standard normal cumulative distribution function and β = (−(2×
1)−1,− (2×2)−1, . . . ,− (2×5)−1)′. The binary measurement D is determined by

Pr(D 6=D∗ |D∗)= πD∗ , where (π0,π1)= (0,0),(0.1,0),(0,0.1),(0.2,0),(0.1,0.1),

(0,0.2),(0.2,0.1),(0.1,0.2). The true values for α0 is exp(τ −0.5).

In this simulation exercise, coverage frequencies are computed for two inference

methods over [α0 −1,α0 +1]. One is the proposed inference method and the other

is the inference method that assumes no misclassification, that is, π0 = π1 = 0.

All the results are based on n = 1,000, (size1,size2) = (1%,4%), and 5,000

simulations.10

10The details about the confidence interval is as follows. CI1 = [0,c̄0]× [0,c̄1] where the value of c̄0 comes from the

one-tailed t-test for π0 ≤ E[D | Z = 0] with size 0.5% and the value of c̄1 comes from the one-tailed t-test for π1 ≤
E[1−D | Z = 1] with size 0.5%. As in the empirical exercise, ν0(y, x, z) is estimated by the probit regression of D on

all the interactions of (1, X, Z) and the cubic polynomials of Y. Using 1% grid points (p0,p1)∈ {0,0.01,0.02, . . . ,c̄0}×
{0,0.01,0.02, . . . ,c̄1}, CIα(size1 + size2) is

⋃
p1=0,0.01,0.02,...,c̄0

⋃
p1=0,0.01,0.02,...,c̄1

{α ∈ A : T(α;p0,p1)≤ cv}.
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Figure 2. Coverage frequencies. The dash-dot (−.) curve represents the proposed inference method,

and the dashed (−−) curve represents the inference method that assumes π0 = π1 = 0.

Figure 2.a summarizes the simulation results when there is no misclassification,

that is, (π0,π1)= (0,0). In this case, both the proposed method and the method that

assumes π0 = π1 = 0 have correct size, that is, the coverage frequency at the true

value of α is at least 95%. The proposed inferencemethod is less powerful than that

with π0 = π1 = 0, but this is the cost for achieving robustness to misclassification.

Figure 2.b–h summarizes the simulation results when there is some misclassi-

fication. The method that assumes π0 = π1 = 0 does not have correct size as (π0,

π1) becomes far from (0, 0), but the proposed method always has correct size. This

is consistent with Theorem 5, which shows that the proposed method has correct

size even in the presence of misclassification.

To summarize these simulation results, the proposed inference method covers

the true parameter value at least with the prespecified significance level in finite

samples. A practitioner could obtain a narrower confidence interval by assuming

no misclassification, but the confidence interval may not cover the true parameter

with correct size when there is non-negligible misclassification.

Additional simulation results, which provide a comparison between the pro-

posed inference method and the infeasible method with knowing (p0,p1) =
(π0,π1), are provided in the online Supplementary Material associated with this

article.
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Figure 2 (continued): Coverage frequencies. The dash-dot (−.) curve represents the proposed

inference method, and the dashed (−−) curve represents the inference method that assumes π0 =
π1 = 0.

7. CONCLUSION

This article extends the instrumental variable quantile regression model (Cher-

nozhukov and Hansen, 2005, 2013) for a binary regressor, to situations when

this binary regressor is potentially misclassified. The first identification result is

that under the rank similarity condition and the stochastic monotonicity condition,

the reduced-form question effect, QY|Z=z1(τ )−QY|Z=z0(τ ), is biased toward zero

compared with the structural quantile treatment effect q(1,τ )−q(0,τ ). The second

identification result characterizes the sharp identified set for q(d*, τ ) under widely

used assumptions. An inference method for the structural quantile function is

provided, and its finite sample performance is demonstrated in simulation studies

and an empirical illustration.

8.SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit http://dx.doi.org/10.

1017/S026646662000002X
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APPENDIX

Appendix A discusses the identified set when the outcome variable is discrete, and

Appendix B provides the proofs for the results in the main text.

APPENDIX A: IDENTIFIED SET WITH A DISCRETE OUTCOME
VARIABLE

This appendix demonstrates how to modify Theorem 2 when the outcome variable is

discrete. Assumptions 1 and 2 are modified into the following two conditions.

Assumption A.1. The mapping u7→q(d*, u) is weakly increasing and left-continuous for

every u ∈ [0, 1].

Assumption A.2. (i) Pr(U0 ≤ τ pZ)≥ τ and Pr(U1 ≤ τ pZ)≥ τ . (ii) Pr(U0 ≤ τ |D∗,Z)=
Pr(U1 ≤ τ | D∗,Z).
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Under the above two assumptions, Theorem 2 can be modified as follows:

THEOREM 6. Assume that all the elements in Q×P∗ satisfy Assumptions 3, A.1, and
A.2. (a) Given a distribution P for the observed variables, if (y0, y1) belongs to the sharp

identified set for q(·, τ ), then

P(Y ≤ yD | Z)− τ ≥ p1(P(Y ≤ y0 | Z)− τ)+p0(P(Y ≤ y1 | Z)− τ) (A.1)

for some (p0, p1) with p0 + p1 < 1 such that 0 ≤ p0 ≤ P(D = 1 | Y,Z) a.s. and 0 ≤ p1 ≤
P(D= 0 | Y,Z) a.s. (b) The converse is also true ifQ×P∗ includes all (q, P*)’s satisfying
Assumptions 3, A.1, and A.2.

Proof. The proof for (a) is as follows. Define (p0,p1)= (π0,π1). By Assumption 3,
(
P∗(D∗ = 0 | Y,Z)
P∗(D∗ = 1 | Y,Z)

)
= (1−p0 −p1)

−1
(
P(D= 0 | Y,Z)−p1
P(D= 1 | Y,Z)−p0

)
. (A.2)

Using equation (A.2),

P(Y ≤ yD | Z)−p1P(Y ≤ y0 | Z)−p0P(Y ≤ y1 | Z)= (1−p0 −p1)P(Y ≤ yD∗ | Z).

Since Assumption (A.1) implies P(Y ≤ yD∗ | Z)= P(q(D∗,U)≤ q(D∗,τ ) | Z)≥ P(U ≤ τ |
Z) = P(U0 ≤ τ | Z) ≥ τ , it follows that P(Y ≤ yD | Z)− p1P(Y ≤ y0 | Z)− p0P(Y ≤ y1 |
Z)≥ (1−p0−p1)τ , and then equation (A.1) holds. Moreover, by equation (A.2), P∗(D∗ =
d∗ | Y,Z)≥ 0 implies P(D= 0 | Y,Z)≥ p1 and P(D= 1 | Y,Z)≥ p0.

In the proof for (b), it is necessary to find (q̃,P̃∗) ∈ Q×P∗ such that q̃(d∗,τ ) = yd∗

and that P is the distribution for (Y, D, Z) under P̃∗. For each d∗ = 0,1, there is a strictly

increasing bijection td∗ : [0,1]→ [0,1] such that td∗(τ )= FY|D=d∗(yd∗). For each d∗ = 0,1

and every u ∈ [0, 1], define q̃(d∗,u)= QY|D=d∗(td∗(u)). Define the distribution P̃∗ for (D,

Z, U0, U1, D
*) by

P̃∗(D= 1−d∗ | Z,U0,U1,D
∗)= pD∗

P̃∗(Z ≤ z,U0 ≤ u0,U1 ≤ u1,D
∗ = d∗)= P̃∗(Y ≤ q(d∗,min{u0,u1}),Z ≤ z,D∗ = d∗),

where
(
P̃∗(Y ≤ y,Z ≤ z,D∗ = 0)

P̃∗(Y ≤ y,Z ≤ z,D∗ = 1)

)
=

(
1−p0 p1
p0 1−p1

)−1(
P(Y ≤ y,Z ≤ z,D= 0)

P(Y ≤ y,Z ≤ z,D= 1)

)
. (A.3)

By construction, the distribution for (Y, D, Z) under (q̃,P̃∗) is P, and q̃(d∗,τ ) = yd∗ for

each d∗ = 0,1. To show (q̃,P̃∗) ∈ Q×P∗, it suffices to show that Assumptions A.1 and 3

hold for (q̃,P̃∗). The rest of the proof is going to show Assumption 2(i).11 By rearranging

equation (A.1),

τ ≤ 1−p1

1−p0 −p1
P(Y ≤ y0,D= 0 | Z)− p1

1−p0 −p1
P(Y ≤ y0,D= 1 | Z)

− p0

1−p0 −p1
P(Y ≤ y1,D= 0 | Z)+ 1−p0

1−p0 −p1
P(Y ≤ y1,D= 1 | Z).

11Assumption A.1 follows from the definition of q̃. Assumption 2(ii) follows from the definition of P̃∗. Assumption

3 follows from P̃∗(D 6= D∗ | Z,U0,U1,D
∗)= pD∗ .
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Using equation (A.3), τ ≤ P̃∗(Y ≤ y0,D
∗ = 0 | Z)+ P̃∗(Y ≤ y1,D

∗ = 1 | Z). The definition
of q̃ and P̃∗ implies

P̃∗(U0 ≤ τ | Z)= P̃∗(Y ≤ y0,D
∗ = 0 | Z)+ P̃∗(Y ≤ y1,D

∗ = 1 | Z)≥ τ

P̃∗(U1 ≤ τ | Z)= P̃∗(Y ≤ y0,D
∗ = 0 | Z)+ P̃∗(Y ≤ y1,D

∗ = 1 | Z)≥ τ,

which is Assumption 2(i).

APPENDIX B: PROOFS OF THE RESULTS IN THE MAIN TEXT

Proof of Theorem 1

LEMMA B.1. Under Assumptions 1 and 2, QYpZ(τ ) is a convex combination of q(1, τ )

and q(0, τ ).

Proof. By the monotonicity of q(·, d*) and Lemma 1,

τ = P(Y ≤ q(D∗,τ ) | Z)≥ P(Y ≤ min{q(1,τ ),q(0,τ )} | Z)= FY|Z(min{q(1,τ ),q(0,τ )})
τ = P(Y ≤ q(D∗,τ ) | Z)≤ P(Y ≤ max{q(1,τ ),q(0,τ )} | Z)= FY|Z(max{q(1,τ ),q(0,τ )}).

Since QYpZ(·) is monotonic, it follows that min{q(1,τ ),q(0,τ )} ≤ QY|Z(τ ) ≤ max

{q(1,τ ),q(0,τ )}.

By Lemma B.1, the statement of theorem holds if q(1,τ ) = q(0,τ ). The rest of

the proof is going to focus on q(1, τ ) > q(0, τ ). By Lemma B.1, there is some κ ∈
[−1,1] such that QY|Z=z1(τ )−QY|Z=z0(τ ) = κ(q(1,τ )− q(0,τ )). Here, it is sufficient to

show QY|Z=z1(τ ) ≥ QY|Z=z0(τ ) for Theorem 1(a) and QY|Z=z1(τ ) > QY|Z=z0(τ ) for

Theorem 1(b). Since QYpZ(τ ) is a convex combination of q(1, τ ) and q(0, τ ), it follows

q(1, τ ) ≥ QYpZ(τ ) ≥ q(0, τ ). Since

P(Y ≤ QY|Z(τ ),D∗ = 0 | Z)+P(Y ≤ QY|Z(τ ),D∗ = 1 | Z)
= FY|Z(QY|Z(τ ))

= τ

= P(q(D∗,U)≤ q(D∗,τ ) | Z)
= P(q(0,U)≤ q(0,τ ),D∗ = 0 | Z)+P(q(1,U)≤ q(1,τ ),D∗ = 1 | Z),

it follows that P(q(0,τ ) < q(0,U) ≤ QY|Z(τ ),D∗ = 0 | Z) = P(QY|Z(τ ) < q(1,U) ≤
q(1,τ ),D∗ = 1 | Z). Using the monotonicity of u 7→ q(d*, u), P(τ <U ≤ q−1(QY|Z(τ ),0),
D∗ = 0 | Z) = P(q−1(QY|Z(τ ),1) < U ≤ τ,D∗ = 1 | Z). Using the density function

fUd∗,D∗|Z(y,d∗), the above equation can be rewritten as

∫ q−1(QY|Z(τ ),0)

τ
fU0,D∗|Z(u,0)du=

∫ τ

q−1(QY|Z(τ ),1)
fU1,D∗|Z(u,1)du. (B.1)

The first half of this proof is going to show Theorem 1(a). Evaluate equation (B.1) at Z = z0
and then
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∫ q−1(QY|Z=z0 (τ ),0)

τ
fU0,D∗|Z=z0(u,0)du=

∫ τ

q−1(QY|Z=z0 (τ ),1)
fU1,D∗|Z=z0(u,1)du.

Since fU0,D
∗|Z=z1(u,0)≤ fU0,D

∗|Z=z0(u,0) and fU1,D
∗|Z=z1(u,1)≥ fU1,D

∗|Z=z0(u,1),

∫ q−1(QY|Z=z0 (τ ),0)

τ
fU0,D∗|Z=z1(u,0)du≤

∫ τ

q−1(QY|Z=z0 (τ ),1)
fU1,D∗|Z=z1(u,1)du.

Subtracting the above equation from equation (B.1) at Z = z1, and then

∫ q−1(QY|Z=z0 (τ ),0)

q−1(QY|Z=z1 (τ ),0)
fU0,D∗|Z=z1(u,0)du≤

∫ q−1(QY|Z=z1 (τ ),1)

q−1(QY|Z=z0 (τ ),1)
fU1,D∗|Z=z1(u,1)du.

Using Y = q(D∗,U),
∫ QY|Z=z0 (τ )

QY|Z=z1 (τ )
fY,D∗|Z=z1(y,0)dy≤

∫ QY|Z=z1 (τ )

QY|Z=z0 (τ )
fY,D∗|Z=z1(y,1)dy,

and then
∫ QY|Z=z1 (τ )
QY|Z=z0 (τ )

fY,D∗|Z=z1(u)du≥ 0, which implies τ−FY,D∗|Z=z1(QY|Z=z0(τ ))≥ 0.

The second half of the proof is going to show Theorem 1(b). To the contrary, sup-

pose QY|Z=z0(τ ) ≤ QY|Z=z1(τ ). By Theorem 1(a), QY|Z=z0(τ ) = QY|Z=z1(τ ). Using
1fUd∗,D∗|Z(u,d∗)= fUd∗,D∗|Z=z1(u,d

∗)− fUd∗,D∗|Z=z0(u,d
∗), equation (B.1) implies

∫ q−1(QY|Z=z0 (τ ),0)

τ
1fU0,D∗|Z(u,0)du=

∫ τ

q−1(QY|Z=z0 (τ ),1)
1fU1,D∗|Z(u,1)du.

Since fU0,D∗|Z=z1(u,0)≤ fU0,D∗|Z=z0(u,0) and fU1,D∗|Z=z1(u,1)≥ fU1,D∗|Z=z0(u,1),

∫ q−1(QY|Z=z0 (τ ),0)

τ
|1fU0,D∗|Z(u,0)|du= −

∫ τ

q−1(QY|Z=z0 (τ ),1)
|1fU1,D∗|Z(u,1)|du.

Since fU0,D
∗|Z=z1(u,0) < fU0,D

∗|Z=z0(u,0) and fU1,D
∗|Z=z1(u,1) > fU1,D

∗|Z=z0(u,1)
in a neighborhood of τ , the above equation implies q−1(QY|Z=z0(τ ),0) = τ =
q−1(QY|Z=z0(τ ),1), which contradicts q(1, τ ) > q(0, τ ).

Proof of Theorem 2

The proof for (a) is as follows. By Assumption 3,

(
P∗(D∗ = 0 | Y,Z)
P∗(D∗ = 1 | Y,Z)

)
= (1−π0 −π1)−1

(
P(D= 0 | Y,Z)−π1
P(D= 1 | Y,Z)−π0

)
.

Equation (1) in Lemma 1 becomes equation (4). Moreover, P∗(D∗ = d∗ | Y,Z)≥ 0 implies

P(D= 0 | Y,Z)≥ π1 and P(D= 1 | Y,Z)≥ π0.

In the proof for (b), it is necessary to find (q̃,P̃∗) ∈ Q×P∗ such that q̃(d∗,τ ) = yd∗

and that P is the distribution for (Y, D, Z) under P̃∗. For each d∗ = 0,1, there is a

strictly increasing bijection td∗ : [0,1] → [0,1] such that td∗(τ )= FY|D=d∗(yd∗). For each
d∗ = 0,1 and every u ∈ [0, 1], define q̃(d∗,u) = QY|D=d∗(td∗(u)). Define the distribution
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P̃∗ for (D, Z, U0, U1, D
*) by

P̃∗(D 6= D∗ | Z,U0,U1,D
∗)= pD∗

P̃∗(Z ≤ z,U0 ≤ u0,U1 ≤ u1,D
∗ = d∗)= P̃∗(Y ≤ q(d∗,min{u0,u1}),Z ≤ z,D∗ = d∗),

where
(
P̃∗(Y ≤ y,Z ≤ z,D∗ = 0)

P̃∗(Y ≤ y,Z ≤ z,D∗ = 1)

)
=

(
1−p0 p1
p0 1−p1

)−1(
P(Y ≤ y,Z ≤ z,D= 0)

P(Y ≤ y,Z ≤ z,D= 1)

)
. (B.2)

By construction, the distribution for (Y,D, Z) under (q̃,P̃∗) is P, and q̃(d∗,τ )= yd∗ for each
d∗ = 0,1. To show (q̃,P̃∗) ∈ Q×P∗, it suffices to show that Assumptions 1, 2, and 3 hold

for (q̃,P̃∗). The rest of the proof is going to show Assumption 2(i). By rearranging equation

(4),

τ = 1−p1

1−p0 −p1
P(Y ≤ y0,D= 0 | Z)− p1

1−p0 −p1
P(Y ≤ y0,D= 1 | Z)

− p0

1−p0 −p1
P(Y ≤ y1,D= 0 | Z)+ 1−p0

1−p0 −p1
P(Y ≤ y1,D= 1 | Z).

Using equation (B.2), τ = P̃∗(Y ≤ y0,D
∗ = 0 | Z)+ P̃∗(Y ≤ y1,D

∗ = 1 | Z). The definition
of q̃ and P̃∗ implies

P̃∗(U0 ≤ τ | Z)= P̃∗(Y ≤ y0,D
∗ = 0 | Z)+ P̃∗(Y ≤ y1,D

∗ = 1 | Z)= τ

P̃∗(U1 ≤ τ | Z)= P̃∗(Y ≤ y0,D
∗ = 0 | Z)+ P̃∗(Y ≤ y1,D

∗ = 1 | Z)= τ .

Proof of Corollary 1

Use (p0,p1)= (0,0). Then (y0, y1) satisfies the conditions in Theorem 2.

Proof of Corollary 2

In this proof, assume QY|Z=z0(τ ) ≤ QY|Z=z1(τ ) without loss of generality. The “only if”

part of this corollary is shown as follows. By Theorem 2, equation (4) holds for some (p0,

p1) with 0 ≤ p0 ≤ P(D = 1 | Y,Z) a.s. and 0 ≤ p1 ≤ P(D = 0 | Y,Z) a.s. Using (y0,y1) =
(QY|Z=z0(τ ),QY|Z=z1(τ )), equation (4) becomes

P(y0 < Y ≤ y1,D= 1 | Z = z0)= p0P(y0 < Y ≤ y1 | Z = z0)

−P(y0 < Y ≤ y1,D= 0 | Z = z1)= −p1P(y0 < Y ≤ y1 | Z = z1).

Since p0 ≤ P(D= 1 | Y,Z) a.s. and p1 ≤ P(D= 0 | Y,Z) a.s., it follows that P(D= 1 | y0 <
Y ≤ y1,Z = z0)≤ P(D= 1 | Y,Z) a.s. and P(D= 0 | y0 < Y ≤ y1,Z = z1)≤ P(D= 0 | Y,Z)
a.s.

The “if” part of this corollary is shown by choosing p0 = P(D= 1 | y0 < Y ≤ y1,Z = z0)

and p1 = P(D= 0 | y0 < Y ≤ y1,Z = z1).

Proof of Theorem 3

Assume d̄∗ = 0 for simplicity. Note that q(d∗,u) = QY|D∗=d∗,Z(u) from Condition (iii).

Take sufficiently small ε > 0 and define
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(q̃(0,u),q̃(1,u))=
(
q

(
0,u+ ε

1−π0 −π1
(u−P∗(Y ≤ q(1,u) | D∗ = 0))

)
,q(1,u)

)

(p0,p1)= (π0 − ε,π1).

Condition (iv) guarantees p0 ≥ 0. Consider U0 = U1 and define P̃∗ by

P̃∗(q̃(0,U0)≤ y,D∗ = 0,Z ≤ z)= 1−π0 −π1
1−π0 −π1 + εP

∗(Y ≤ y,D∗ = 0,Z ≤ z)

P̃∗(q̃(1,U1)≤ y,D∗ = 1,Z ≤ z)= P∗(Y ≤ y,D∗ = 1,Z ≤ z)

+ ε

1−π0 −π1 + εP
∗(Y ≤ y,D∗ = 0,Z ≤ z)

P̃∗(D= 0 | Z,U1,D
∗ = 1)= π1

P̃∗(D= 1 | Z,U0,D
∗ = 0)= π0 − ε.

By Condition (ii), u 6= P∗(Y ≤ q(1,u) |D∗ = 0) and q̃(0,τ ) 6= q(0,u) as long as ε is positive.

To establish the statement of this theorem, the rest of the proof is going to show that (q̃,P̃∗)∈
Q×P∗ and that (q̃,P̃∗) is observationally equivalent to (q, P*).

First, (q̃,P̃∗) ∈ Q × P∗. The Lipschitz continuity in Condition (i) guarantees that

u 7→ t(u) is a strictly increasing bijection of [0, 1] into [0, 1] for sufficiently small ε, where

t(u)= u+ ε
1−π0−π1 (u−P∗(Y ≤ q(1,u) | D∗ = 0). Therefore, Condition (v) implies q̃ ∈ Q

for sufficiently small ε. To show P̃∗ ∈ P∗, it suffices to show Assumption 2(i) because

Assumption 2(ii) holds for U =U0 =U1. By the definition of q̃ and independence between

Z and Y given D*,

P∗(Y ≤ q̃(0,τ ),D∗ = 0 | Z)= P∗(D∗ = 0 | Z)P∗(Y ≤ q̃(0,τ ) | D∗ = 0)

= P∗(D∗ = 0 | Z)
(
τ + ε

1−π0 −π1
(τ −P∗(Y ≤ q(1,τ ) | D∗ = 0))

)

= P∗(D∗ = 0 | Z)
(
τ + ε

1−π0 −π1
(τ −P∗(Y ≤ q(1,τ ) | D∗ = 0,Z))

)
,

where the second equality uses q(0,u)= QY|D∗=0(u). By the definition of P̃
∗ and q̃,

P̃∗(U ≤ τ | Z)= 1−π0 −π1
1−π0 −π1 + εP

∗(D∗ = 0 | Z)

×
(
τ + ε

1−π0 −π1
(τ −P∗(Y ≤ q(1,τ ) | D∗ = 0,Z))

)

+P∗(Y ≤ q(1,τ ),D∗ = 1 | Z)

+ ε

1−π0 −π1 + εP
∗(Y ≤ q(1,τ ),D∗ = 0 | Z)

= τP∗(D∗ = 0 | Z)+P∗(Y ≤ q(1,τ ),D∗ = 1 | Z)
= τ,

where the last equality uses q(1,u)= QY|D∗=1,Z(u).

Second, (q̃,P̃∗) is observationally equivalent to (q, P*). By the definition of P̃∗,
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P̃∗(Y ≤ y,D∗ = 1,Z ≤ z)= P̃∗(q̃(1,U)≤ y,D∗ = 1,Z ≤ z)= P∗(Y ≤ y,D∗ = 1,Z ≤ z)

+ ε

1−π0 −π1 + εP
∗(Y ≤ y,D∗ = 0,Z ≤ z)

P̃∗(Y ≤ y,D∗ = 0,Z ≤ z)= P̃∗(q̃(0,U)≤ y,D∗ = 0,Z ≤ z)

= 1−π0 −π1
1−π0 −π1 + εP

∗(Y ≤ y,D∗ = 0,Z ≤ z).

Therefore,

P̃(Y ≤ y,D= 0,Z ≤ z)= P̃∗(D= 0 | Z,U0,U1,D
∗ = 0)P̃(Y ≤ y,D∗ = 0,Z ≤ z)

+ P̃∗(D= 0 | Z,U0,U1,D
∗ = 1)P̃(Y ≤ y,D∗ = 1,Z ≤ z)

= (1−π0 + ε) 1−π0 −π1
1−π0 −π1 + εP

∗(Y ≤ y,D∗ = 0,Z ≤ z)

+π1P∗(Y ≤ y,D∗ = 1,Z ≤ z)

+π1
ε

1−π0 −π1 + εP
∗(Y ≤ y,D∗ = 0,Z ≤ z)

= (1−π0)P∗(Y ≤ y,D∗ = 0,Z ≤ z)

+π1P∗(Y ≤ y,D∗ = 1,Z ≤ z)

= P∗(Y ≤ y,D= 0,Z ≤ z)

and it can be similarly shown that P̃(Y ≤ y,D= 1,Z ≤ z)= P∗(Y ≤ y,D= 1,Z ≤ z).

Proof of Lemma 2

Under Assumption 4(i),

f(D,V)|Z(d,v)=
(
fD|D∗=0,Z(d) fD|D∗=1,Z(d)

)(
fD∗|Z(0) 0

0 fD∗|Z(1)

)(
fV|D∗=0(v)

fV|D∗=1(v)

)
.

Under Assumption 3,

(
f(D,V)|Z(0,v0) f(D,V)|Z(0,v1)
f(D,V)|Z(1,v0) f(D,V)|Z(1,v1)

)

=
(
1−π0 π1
π0 1−π1

)(
fD∗|Z(0) 0

0 fD∗|Z(1)

)(
fV|D∗=0(v0) fV|D∗=0(v1)

fV|D∗=1(v0) fV|D∗=1(v1)

)
.

Under Assumption 4(ii) and (iii), the above matrix for Z = z1 is invertible, so

(
f(D,V)|Z=z0(0,v0) f(D,V)|Z=z0(0,v1)
f(D,V)|Z=z0(1,v0) f(D,V)|Z=z0(1,v1)

)(
f(D,V)|Z=z1(0,v0) f(D,V)|Z=z1(0,v1)
f(D,V)|Z=z1(1,v0) f(D,V)|Z=z1(1,v1)

)−1

=
(
1−π0 π1
π0 1−π1

)(
fD∗|Z=z0(0)/fD∗|Z=z1(0) 0

0 fD∗|Z=z0(1)/fD∗|Z=z1(1)

)

×
(
1−π0 π1
π0 1−π1

)−1

.

Under Assumption 4(iv), the eigenvalue decomposition of the above matrix is uniquely

determined, so (π0, π1) is identified. Since f(Y,D)|Z(y,d) =
∑

d∗=0,1 fD|Y=y,D∗=d∗,Z(d)
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f(Y,D∗)|Z(y,d∗), Assumption 3 implies

f(Y,D)|Z(y,0)= π0f(Y,D∗)|Z(y,1)+ (1−π0)f(Y,D∗)|Z(y,0)

f(Y,D)|Z(y,1)= (1−π1)f(Y,D∗)|Z(y,1)+π1f(Y,D∗)|Z(y,0),

so that f(Y,D∗)|Z is point identified.

Proof of Lemma 3

It follows from Theorem 2 of Chernozhukov and Hansen (2013).

Proof of Theorem 4

It follows from Lemmas 2 and 3.

Proof of Lemma 4

Note that

(1−π0 −π1)E[ρτ (Y−α0D∗ −W ′θ)]

= (1−π0 −π1)E[ρτ (Y−W ′θ)(1−D∗)]+ (1−π0 −π1)E[ρτ (Y−α0 −W ′θ)D∗]

= (1−π1)E[ρτ (Y−W ′θ)(1−D)]−π1E[ρτ (Y−W ′θ)D]

−π0E[ρτ (Y−α0 −W ′θ)(1−D)]+ (1−π0)E[ρτ (Y−α0 −W ′θ)D]

= E[ρτ (Y−W ′θ)(1−π1 −D)]]+E[ρτ (Y−α0 −W ′θ)(D−π0)]
= E[ρτ (Y−W ′θ)(1−π1 −E[D | Y,X,Z])]]+E[ρτ (Y−α0 −W ′θ)(E[D | Y,X,Z]−π0)],

because

(
1−π0 π1
π0 1−π1

)−1

= 1

1−π0 −π1

(
1−π1 −π1

−π0 1−π0

)
.

Since Pr(Y−α0D∗ ≤ X′β0+0 ·Z | X,Z)= Pr(q(D∗,X,U)≤ q(D∗,X,τ ) | X,Z)= τ , Cher-

nozhukov and Hansen (2008, p. 383) derives 0∈ arg minγ
(
minβ E[ρτ (Y−α0D∗ −W ′θ)]

)
.

Therefore,

0 ∈ arg min
γ

(
min
β
E[ρτ (Y−W ′θ)(1−π1 −ν0(Y,X,Z))]

+E[ρτ (Y−α0 −W ′θ)(ν0(Y,X,Z)−π0)]
)
.

Note that ν0(Y,X,Z)− π0 = (ν0(Y,X,Z)− π0)+ and 1− π1 − ν0(Y,X,Z) = (1− π1 −
ν0(Y,X,Z))+, because

E[D | Y,X,Z] = π0 + (1−π0 −π1)E[D∗ | Y,X,Z] ≥ π0

1−E[D | Y,X,Z] = π1 + (1−π0 −π1)E[1−D∗ | Y,X,Z] ≥ π1.
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Proof of Theorem 5

By Lemmas B.6 and B.10 below, P(T(α0;π0,π1) ≤ cv)→ 1− size2 as n→ ∞. Then the

theorem follows from

P(α0 ∈ CIα(size1 + size2))≥ P({α0 ∈ CIα(size1 + size2)}∩ {(π0,π1) ∈ CI1})
≥ P({T(α0;π0,π1)≤ cv}∩ {(π0,π1) ∈ CI1})
≥ P(T(α0;π0,π1)≤ cv)−P((π0,π1) /∈ CI1)

and then lim infn→∞P(α0 ∈ CIα(size1 + size2))≥ 1− (size1 + size2).

The following proof assumes 1−π1 − ν̂(Y,X,Z) ≥ 0 and ν̂(Y,X,Z)−π0 ≥ 0 without

loss of generality, because E[D*pY, X, Z] is bounded away from zero and one, and then

1−π1 − ν̂(Y,X,Z)= (1−π0 −π1)E[1−D∗ | Y,X,Z]− (ν̂(Y,X,Z)−ν(Y,X,Z)) > 0

ν̂(Y,X,Z)−π0 = (1−π0 −π1)E[D∗ | Y,X,Z]+ (ν̂(Y,X,Z)−ν(Y,X,Z)) > 0

with probability approaching one.

LEMMA B.2. supθ∈2|Q̄n(θ)− Q̄0(θ)| = op(1), where Q̄n(θ) = Qn(θ;α0,π0,π1) and
Q̄0(θ)= Q0(θ;α0,π0,π1).

Proof. The proof of this lemma is to check the conditions in Newey and McFadden

(1994, Lem. 2.9). Since 2 is compact and Q̄0 is continuous, it suffices to show Q̄n(θ) =
Q̄0(θ)+op(1) for every θ ∈2 and |Q̄n(θ̃)− Q̄n(θ)| ≤ 2En [‖W‖] · ‖θ̃−θ‖ for every θ̃,θ ∈
2. This proof uses

Q̄∗
n(θ)= En[ρτ (Y−W ′θ)(1−π1 −ν0(Y,X,Z))+]

+En[ρτ (Y−α0 −W ′θ)(ν0(Y,X,Z)−π0)+].

The pointwise convergence of Q̄n(θ) to Q̄0(θ) is shown by demonstrating Q̄n(θ)−Q̄∗
n(θ)=

op(1) and Q̄
∗
n(θ)− Q̄0(θ)= op(1). Since

|Q̄n(θ)− Q̄∗
n(θ)| ≤ En[ρτ (Y−W ′θ)|ν̂(Y,X,Z)−ν0(Y,X,Z)|]

+En[ρτ (Y−α0 −W ′θ)|ν̂(Y,X,Z)−ν0(Y,X,Z)|]
≤ sup
(y,x,z)

|ν̂(y,x,z)−ν0(y,x,z)|
(
En[|ρτ (Y−W ′θ)|+ |ρτ (Y−α0 −W ′θ)|]

)
,

Assumption 10(ii) implies Q̄n(θ)− Q̄∗
n(θ) = op(1). Moreover, Q̄∗

n(θ)− Q̄0(θ) = Q̄∗
n(θ)−

E[Q̄∗
n(θ)]= op(1) is shown by checking the secondmoment of Q̄∗

n(θ): E[Q̄
∗
n(θ)

2]=O(1/n)

follows from

E
[(
ρτ (Y−W ′θ)(1−π1 −D)+ρτ (Y−α0 −W ′θ)(D−π0)

)2]1/2

≤ E
[(
Y−W ′θ

)2]1/2 +E
[(
Y−α0 −W ′θ

)2]1/2

≤ 2E
[
Y2

]1/2
+α0 +2E

[
‖W‖2

]1/2
‖θ‖

<∞.
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The in-probability Lipschitz condition is shown as follows. Since |ρτ (Y−W ′θ)−ρτ (Y−
W ′θ̃ )| ≤ |W ′(θ̃−θ)| ≤ ‖W‖·

∥∥∥θ̃ − θ
∥∥∥ and |ρτ (Y−α0−W ′θ)−ρτ (Y−α0−W ′θ̃ )| ≤ ‖W‖·

∥∥∥θ̃ − θ
∥∥∥, it follows that |Q̄n(θ̃)− Q̄n(θ)| ≤ En

[
‖W‖ ·

∥∥∥θ̃ − θ
∥∥∥
]

+ En

[
‖W‖ ·

∥∥∥θ̃ − θ
∥∥∥
]

≤

2En [‖W‖] ·
∥∥∥θ̃ − θ

∥∥∥.

LEMMA B.3. θ̂0 − θ0 = op(1), where θ̂0 = θ̂ (α0;π0,π1).

Proof. The proof of this lemma is to check the conditions in Newey and McFadden

(1994, Thm. 2.1) to establish the consistency. Since 2 is compact, Q̄0 is continuous, and

Lemma B.2 establishes the uniform convergence of Q̄n(θ), it suffices to show that Q̄0 is

uniquely minimized at θ0. As in the proof of Lemma 4,

Q̄0(θ)= E
[
ρτ (Y−W ′θ)(1−π1 −D)+ρτ (Y−α0 −W ′θ)(D−π0)

]

= (1−π0 −π1)E
[
ρτ (Y−α0D∗ −W ′θ)

]
.

Since

∂

∂θ
Q̄0(θ)= (1−π0 −π1)

∂

∂θ
E

[
ρτ (Y−α0D∗ −W ′θ)

]

= (1−π0 −π1)E
[
(FY−α0D∗|X,Z(W ′θ)− τ)W

]

∂2

∂θ∂θ ′ Q̄0(θ)= (1−π0 −π1)E
[
fY−α0D∗|X,Z(W ′θ)WW ′],

it follows that ∂
∂θ
Q̄0(θ0) = 0 and ∂2

∂θ∂θ ′ Q̄0(θ) is positive semidefinite everywhere and

positive definite at θ0. Therefore, Q̄0 is uniquely minimized at θ0.

LEMMAB.4. En
[
ξ0(ν̂)W

]
=En[s0]+op(n

−1/2), where s0 = ξ0(ν0)W+E
[
W40(δ0)

]
ψδ .

Proof. By Assumption 10(iii) and (iv), En
[
ξ0(ν̂)W

]
= En

[
ξ0(ν0)W

]
+ E

[
W40(δ0)

]

En[ψδ]+op(n
−1/2).

LEMMA B.5. Define

λ0(τ )= fY|D,Z,X(W ′θ0 −n−1/2W ′
τ )(1−π1 −D)

+ fY|D,Z,X(α0 +W ′θ0 −n−1/2W ′
τ )(D−π0)

g(τ,ν)= (ρτ (Y−W ′θ0 −n−1/2W ′
τ )−ρτ (Y−W ′θ0))(1−π1 −ν(Y,X,Z))+

+ (ρτ (Y−α0 −W ′θ0 −n−1/2W ′
τ )−ρτ (Y−α0 −W ′θ0))(ν(Y,X,Z)−π0)+

rn(τ )= nEn[g(τ,ν̂)]−
1

2
τ

′E[λ0(0)WW ′]τ +
√
nτ ′En

[
ξ0(ν̂)W

]
.

Then sup
τ
|rn(τ )| = op(1).

Proof. If rn(τ )= op(1) pointwise in τ , it is possible to the convexity lemma in Pollard

(1991) to τ 7→ nEn[g(τ,ν̂)]+
√
nτ ′En

[
ξ0(ν̂)W

]
, and then sup

τ
|rn(τ )| = op(1). Therefore,

it suffices to show that rn(τ )= op(1) pointwise in τ . Note that
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E[λ0(0)WW
′] = E

[
fY|D,Z,X(W ′θ0)(1−π1 −ν0(Y,X,Z))+WW ′]

+E
[
fY|D,Z,X(α0 +W ′θ0)(ν0(Y,X,Z)−π0)+WW ′],

where the equality uses the law of iterated expectation, (1−π1−ν0(Y,X,Z))+ = 1−π1−
ν0(Y,X,Z) and (ν0(Y,X,Z)−π0)+ = ν0(Y,X,Z)−π0. Therefore, ∂

∂τ
E[ng(τ,ν0)]

∣∣∣τ=0 =

−n1/2E
[
ξ0(ν0)W

]
= 0 and ∂2

∂τ∂τ ′ E[ng(τ,ν0)] = E[λ0(τ )WW
′] = E[λ0(0)WW

′]+ o(1),

so that

E[ng(τ,ν0)] = 1

2
τ

′E[λ0(0)WW ′]τ +o(1).

Therefore,

rn(τ )= nEn[g(τ,ν̂)]−nE[g(τ,ν0)]+
√
nτ ′En

[
ξ0(ν̂)W

]
+o(1).

= En
[
ng(τ,ν̂)+

√
nτ ′ξ0(ν̂)W

]
−En

[
ng(τ,ν0)+

√
nτ ′ξ0(ν0)W

]

+En
[
ng(τ,ν0)+

√
nτ ′ξ0(ν0)W

]
−E[ng(τ,ν0)]+o(1)

= En
[
n(g(τ,ν̂)−g(τ,ν0))+

√
nτ ′(ξ0(ν̂)− ξ0(ν0))W

]

+ (En−E)[ng(τ,ν0)+
√
nτ ′ξ0(ν0)W]+o(1),

where the last equality follows from E[τ ′ξ0(ν0)W] = 0.

First, En
[
n(g(τ,ν̂)−g(τ,ν0))+

√
nτ ′(ξ0(ν̂)− ξ0(ν0))W

]
converges to zero in L1. By

the definitions of g(τ , ν) and ξ0(ν),

n(g(τ,ν̂)−g(τ,ν0))+
√
nτ ′(ξ0(ν̂)− ξ0(ν0))W

= n× term1 × ((1−π1 − ν̂(Y,X,Z))+ − (1−π1 −ν0(Y,X,Z)))
+n× term2 × ((ν̂(Y,X,Z)−π0)+ − (ν0(Y,X,Z)−π0)),

where term1 = ρτ (Y − W ′(θ0 − n−1/2
τ )) − ρτ (Y − W ′θ0) + (τ − 1{Y − W ′θ0 ≤

0})n−1/2W ′
τ and term2 = ρτ (Y − α0 − W ′(θ0 − n−1/2

τ )) − ρτ (Y − α0 − W ′θ0) +
(τ − 1{Y − α0 −W ′θ0 ≤ 0})n−1/2W ′

τ . By the definition of ρτ , the two terms, term1

and term2, can be bounded as follows:

|term1| ≤ 1{|Y−W ′θ0| ≤ |n−1/2W ′
τ |}

(
|Y−W ′θ0|+ |n−1/2W ′

τ |
)

≤ 1{|Y−W ′θ0| ≤ |n−1/2W ′
τ |}×2|n−1/2W ′

τ | (B.3)

|term2| ≤ 1{|Y−α0 −W ′θ0| ≤ |n−1/2W ′
τ |}

(
|Y−α0 −W ′θ0|+ |n−1/2W ′

τ |
)

≤ 1{|Y−α0 −W ′θ0| ≤ |n−1/2W ′
τ |}×2|n−1/2W ′

τ |. (B.4)

As long as 1−π1 − ν̂(Y,X,Z)≥ 0 and ν̂(Y,X,Z)−π0 ≥ 0,

|(1−π1 − ν̂(Y,X,Z))+ − (1−π1 −ν0(Y,X,Z))| = |(1−π1 − ν̂(Y,X,Z))
− (1−π1 −ν0(Y,X,Z))|

≤ sup
(y,x,z)

|ν̂(y,x,z)−ν0(y,x,z)| (B.5)

|(ν̂(Y,X,Z)−π0)+ − (ν0(Y,X,Z)−π0)| = |(ν̂(Y,X,Z)−π0)− (ν0(Y,X,Z)−π0)|
≤ sup
(y,x,z)

|ν̂(y,x,z)−ν0(y,x,z)|. (B.6)
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Now it is possible to bound E
[∥∥En

[
n(g(τ,ν̂)−g(τ,ν0))+

√
nτ ′(ξ0(ν̂)− ξ0(ν0))W

]∥∥]
as

follows:

E
[∥∥En

[
n(g(τ,ν̂)−g(τ,ν0))+

√
nτ ′(ξ0(ν̂)− ξ0(ν0))W

]∥∥]

≤ E
[∣∣n(g(τ,ν̂)−g(τ,ν0))+

√
nτ ′(ξ0(ν̂)− ξ0(ν0))

∣∣‖W‖
]

≤ 2nE[1{|Y−W ′θ0| ≤ |n−1/2W ′
τ |}|n−1/2W ′

τ |‖W‖] sup
(y,x,z)

|ν̂(y,x,z)−ν0(y,x,z)|

+2nE[1{|Y−α0 −W ′θ0| ≤ |n−1/2W ′
τ |}|n−1/2W ′

τ |‖W‖]
sup
(y,x,z)

|ν̂(y,x,z)−ν0(y,x,z)|.

Since |fYpX, Z | ≤ C, it follows that

E[1{|Y−W ′θ0| ≤ |n−1/2W ′
τ |}|n−1/2W ′

τ |‖W‖] ≤ 2Cn−1E[|W ′
τ |2 ‖W‖]

E[1{|Y−α0 −W ′θ0| ≤ |n−1/2W ′
τ |}|n−1/2W ′

τ |‖W‖] ≤ 2Cn−1E[|W ′
τ |2 ‖W‖],

so that

E
[∣∣n(g(τ,ν̂)−g(τ,ν0))+

√
nτ ′(ξ0(ν̂)− ξ0(ν0))

∣∣‖W‖
]

≤ 8CE[|W ′
τ |2 ‖W‖] sup

(y,x,z)

|ν̂(y,x,z)−ν0(y,x,z)|

= o(1).

Next, (En −E)[ng(τ,ν0)+
√
nτ ′ξ0(ν0)W] converges to zero in L2. Using the bounds in

equations (B.3)-(B.6),

E[(ng(τ,ν0)+
√
nτ ′ξ0(ν0)W)2]1/2

≤ nE[|term1|2 × ((1−π1 − ν̂(Y,X,Z))+ − (1−π1 −ν0(Y,X,Z)))2]1/2

+nE[|term2|2 × ((ν̂(Y,X,Z)−π0)+ − (ν0(Y,X,Z)−π0))2]1/2

≤ 4nE[1{|Y−W ′θ0| ≤ |n−1/2W ′
τ |}× |n−1/2W ′

τ |2]1/2 sup
(y,x,z)

|ν̂(y,x,z)−ν0(y,x,z)|.

+4nE[1{|Y−α0 −W ′θ0| ≤ |n−1/2W ′
τ |}× |n−1/2W ′

τ |2]1/2

× sup
(y,x,z)

|ν̂(y,x,z)−ν0(y,x,z)|

≤ 8n1/2E[|W ′
τ |2]1/2 sup

(y,x,z)

|ν̂(y,x,z)−ν0(y,x,z)|

= o(n1/2),

and then E[((En − E)[ng(τ,ν0) + √
nτ ′ξ0(ν0)W])2] = n−1E[(ng(τ,ν0) + √

nτ ′

ξ0(ν0)W)
2] = o(1).

LEMMA B.6.
√
n(θ̂0 − θ0) = √

nE[λ0(0)WW
′]−1En[s0] + op(1) and therefore√

n(θ̂0 − θ0) →d N (0,�0) as n → ∞, where �0 = E[λ0(0)WW
′]−1E[s0s0

′]E[λ0(0)
WW ′]−1.
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Proof. Define ηn = √
nE[λ0(0)WW

′]−1En[s0]. It suffices to show
√
n(θ̂0 − θ0)= ηn+

op(1). By Lemma B.4, ηn = √
nE[λ0(0)WW

′]−1En
[
ξ0(ν̂)W

]
+op(1). Using the definition

of rn(·),

−1

2
ηn

′E[λ0(0)WW ′]ηn+ rn(ηn)= nEn[g(ηn,ν̂)]

≥ nEn[g(
√
n(θ̂0 − θ0),ν̂)]

= 1

2
(
√
n(θ̂0 − θ0)−ηn)′E[λ0(0)WW ′](

√
n(θ̂0 − θ0)−ηn)

− 1

2
ηn

′E[λ0(0)WW ′]ηn+ rn(
√
n(θ̂0 − θ0))

≥ 1

2
‖
√
n(θ̂0 − θ0)−ηn‖2eigmin

(
E[λ0(0)WW

′]
)

− 1

2
ηn

′E[λ0(0)WW ′]ηn+ rn(
√
n(θ̂0 − θ0)),

where the first inequality uses
√
n(θ̂0−θ0)= arg min

τ
En[g(τ,ν̂)] and eigmin

(
E[λ0(0)WW

′]
)

is the minimum eigenvalue of E[λ0(0)WW
′]. Therefore, rn(ηn) − rn(

√
n(θ̂0 − θ0)) ≥

1
2‖√n(θ̂0 − θ0)− ηn‖2eigmin

(
E[λ0(0)WW

′]
)
, so that Lemma B.5 implies

√
n(θ̂0 − θ0)−

ηn = op(1).

LEMMA B.7. Pr(|Y −W ′θ0| ≤ ‖(θ̂0 − θ0)‖‖W‖}) = o(1) and Pr(|Y − α0 −W ′θ0| ≤
‖(θ̂0 − θ0)‖‖W‖})= o(1).

Proof. By Lemma B.6 and Assumption 12(iii), the first part of this lemma follows from

Pr(|Y−W ′θ0| ≤ ‖(θ̂0 − θ0)‖‖W‖}) ≤ Pr(‖(θ̂0 − θ0)‖ ≤ n−1/2 log(n))+Pr(|Y−W ′θ0| ≤
n−1/2 log(n)‖W‖})= o(1). The second part can be shown similarly.

LEMMA B.8. En[ŝ(α0;π0,π1)ŝ(α0;π0,π1)′] = E[s0s0
′]+op(1).

Proof. The weak law of large numbers implies En[s0s0
′] = E[s0s0

′]+ op(1), and then

it suffices to show En[ŝ(α0;π0,π1)ŝ(α0;π0,π1)′ − s0s0
′] = op(1). Since

En[(ŝ(α0;π0,π1)− s0)(ŝ(α0;π0,π1)− s0)
′]

= En[(̂ξ (α0;π0,π1)− ξ0(ν0))WW ′(̂ξ (α0;π0,π1)− ξ0(ν0))′]
+En[(̂ξ (α0;π0,π1)− ξ0(ν0))Wψ̂δ ′]En

[
W(4̂(α0;π0,π1)−40(δ0))

] ′

+En[(̂ξ (α0;π0,π1)− ξ0(ν0))Wψ̂δ ′](En−E)
[
W40(δ0)

] ′

+En[(̂ξ (α0;π0,π1)− ξ0(ν0))W(ψ̂δ−ψδ)′]E
[
W40(δ0)

] ′

+En
[
W(4̂(α0;π0,π1)−40(δ0))

]
En[ψ̂δW

′(̂ξ (α0;π0,π1)− ξ0(ν0))′]
+En

[
W(4̂(α0;π0,π1)−40(δ0))

]
En[ψ̂δψ̂δ

′]En
[
W(4̂(α0;π0,π1)−40(δ0))

] ′

+En
[
W(4̂(α0;π0,π1)−40(δ0))

]
En[ψ̂δψ̂δ

′](En−E)
[
W40(δ0)

] ′

+En
[
W(4̂(α0;π0,π1)−40(δ0))

]
En[ψ̂δ(ψ̂δ−ψδ)′]E

[
W40(δ0)

] ′

+ (En−E)
[
W40(δ0)

]
En[ψ̂δW

′(̂ξ (α0;π0,π1)− ξ0(ν0))′]
+ (En−E)

[
W40(δ0)

]
En[ψ̂δψ̂δ

′]En
[
W(4̂(α0;π0,π1)−40(δ0))

] ′

+ (En−E)
[
W40(δ0)

]
En[ψ̂δψ̂δ

′](En−E)
[
W40(δ0)

] ′
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+ (En−E)
[
W40(δ0)

]
En[ψ̂δ(ψ̂δ−ψδ)′]E

[
W40(δ0)

] ′

+E
[
W40(δ0)

]
En[(ψ̂δ−ψδ)W ′(̂ξ (α0;π0,π1)− ξ0(ν0))′]

+E
[
W40(δ0)

]
En[(ψ̂δ−ψδ)ψ̂δ ′]En

[
W(4̂(α0;π0,π1)−40(δ0))

] ′

+E
[
W40(δ0)

]
En[(ψ̂δ−ψδ)ψ̂δ ′](En−E)

[
W40(δ0)

] ′

+E
[
W40(δ0)

]
En[(ψ̂δ−ψδ)(ψ̂δ−ψδ)′]E

[
W40(δ0)

] ′

and

En[(ŝ(α0;π0,π1)− s0)s0
′]

= En[(̂ξ (α0;π0,π1)− ξ0(ν0))WW ′ξ0(ν0)′]

+En[(̂ξ (α0;π0,π1)− ξ0(ν0))Wψδ ′]E
[
W40(δ0)

] ′

+En
[
W(4̂(α0;π0,π1)−40(δ0))

]
En[ψ̂δW

′ξ0(ν0)′]

+En
[
W(4̂(α0;π0,π1)−40(δ0))

]
En[ψ̂δψδ

′]E
[
W40(δ0)

] ′

+ (En−E)
[
W40(δ0)

]
En[ψ̂δW

′ξ0(ν0)′]+ (En−E)
[
W40(δ0)

]

En[ψ̂δψδ
′]E

[
W40(δ0)

] ′ +E
[
W40(δ0)

]

En[(ψ̂δ−ψδ)W ′ξ0(ν0)′]

+E
[
W40(δ0)

]
En[(ψ̂δ−ψδ)ψδ ′]E

[
W40(δ0)

] ′,

it suffices to show that (En −E)
[
W40(δ0)

]
= op(1), that En[ψ̂δW

′ξ0(ν0)′], En[ψ̂δψδ ′],
En[ψ̂δW

′ξ0(ν0)′], and En[ψ̂δψδ
′] are Op(1), and that the sample averages of the

following variables are op(1): (1) (̂ξ (α0;π0,π1) − ξ0(ν0))Wψδ
′, (2) (̂ξ (α0;π0,π1) −

ξ0(ν0))WW
′ξ0(ν0)′, (3) (̂ξ (α0;π0,π1) − ξ0(ν0))WW

′(̂ξ (α0;π0,π1) − ξ0(ν0))
′, (4)

(̂ξ (α0;π0,π1) − ξ0(ν0))Wψ̂δ
′, (5) (̂ξ (α0;π0,π1) − ξ0(ν0))W(ψ̂δ − ψδ)

′, (6) W(4̂(α0;
π0,π1) − 40(δ0)), (7) ψ̂δW

′(̂ξ (α0;π0,π1) − ξ0(ν0))
′, (8) ψ̂δ(ψ̂δ − ψδ)

′, (9) (ψ̂δ −
ψδ)W

′ξ0(ν0)′, (10) (ψ̂δ−ψδ)W ′(̂ξ (α0;π0,π1)− ξ0(ν0))′, and (11) (ψ̂δ−ψδ)(ψ̂δ−ψδ)′.
The convergence (En−E)

[
W40(δ0)

]
= op(1) comes from the weak law of large numbers,

and the other parts come from a combination of Assumption 10(iv)–(vii) and the following

equalities:

E[‖ξ0(ν0)W‖2]<∞ (B.7)

E[‖(̂ξ (α0;π0,π1)− ξ0(ν0))W‖2] = o(1) (B.8)

E
[
W(4̂(α0;π0,π1)−40(δ0))

]
= op(1). (B.9)

Note that equation (B.7) follows from |ξ0(ν0)| ≤ 2 and E[‖W‖2]<∞.

First, equation (B.8) is shown as follows. Since

|̂ξ(α0;π0,π1)− ξ0(ν0)| ≤ |(1{Y−W ′θ0 ≤ 0}−1{Y−W ′θ̂0 ≤ 0})|× |1−π1 − ν̂(Y,X,Z)|
+ |τ −1{Y−W ′θ0 ≤ 0}|× |ν0(Y,X,Z)− ν̂(Y,X,Z)|
+ |1{Y−α0 −W ′θ0 ≤ 0}−1{Y−α0 −W ′θ̂0 ≤ 0}|

× |ν̂(Y,X,Z)−π0|
+ |τ −1{Y−α0 −W ′θ0 ≤ 0}|× |ν̂(Y,X,Z)−ν0(Y,X,Z)|

≤ 1{|Y−W ′θ0| ≤ ‖(θ̂0 − θ0)‖‖W‖}
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+1{|Y−α0 −W ′θ0| ≤ ‖(θ̂0 − θ0)‖‖W‖}
+2|ν̂(Y,X,Z)−ν0(Y,X,Z)|,

it follows that

E[‖(̂ξ (α0;π0,π1)− ξ0(ν0))W‖2]1/2

≤ Pr(|Y−W ′θ0| ≤ ‖(θ̂0 − θ0)‖‖W‖})1/4E[‖‖W‖4]1/4

+Pr(|Y−α0 −W ′θ0| ≤ ‖(θ̂0 − θ0)‖‖W‖)1/4E[‖‖W‖4]1/4

+2E[|ν̂(Y,X,Z)−ν0(Y,X,Z)|4]1/4E[‖‖W‖4]1/4.

By Assumption 10(ii) and Lemma B.7, equation (B.8) holds.

Next, equation (B.9) is shown as follows. Since

4̂(α0;π0,π1)−40(δ0)= 1{Y−W ′θ̂0 ≤ 0}
(
∂̂

δ′
νδ(Y,X,Z)−

∂

δ′
νδ(Y,X,Z)

)

+
(
1{Y−W ′θ̂0 ≤ 0}−1{Y−W ′θ0 ≤ 0}

) ∂
δ′
νδ(Y,X,Z)

−1{Y−α−W ′θ̂0 ≤ 0}
(
∂̂

δ′
νδ(Y,X,Z)−

∂

δ′
νδ(Y,X,Z)

)

−
(
1{Y−α−W ′θ̂0 ≤ 0}−1{Y−α−W ′θ0 ≤ 0}

) ∂
δ′
νδ(Y,X,Z),

it follows that

E
[∥∥W(4̂(α0;π0,π1)−40(δ0))

∥∥]

≤ 2E

[∥∥∥∥W
(
∂̂

δ′
νδ(Y,X,Z)−

∂

δ′
νδ(Y,X,Z)

)∥∥∥∥
]

+Pr(|Y−W ′θ0| ≤ ‖(θ̂0 − θ0)‖‖W‖)1/2E
[∥∥∥∥W

∂

δ′
νδ(Y,X,Z)

∥∥∥∥
2
]1/2

+Pr(|Y−α0 −W ′θ0| ≤ ‖(θ̂0 − θ0)‖‖W‖)1/2E
[∥∥∥∥W

∂

δ′
νδ(Y,X,Z)

∥∥∥∥
2
]1/2

.

By Lemma B.7 and Assumption 10(vi) and (vii), equation (B.9) holds.

LEMMA B.9. En[λ̂(α0;π0,π1)WW ′] = E[λ0(0)WW
′]+op(1).

Proof. Since

E[‖λ0(0)WW ′‖2] ≤ E[‖fY|D,Z,X(W ′θ0)(1−π1 −D)

+ fY|D,Z,X(α0 +W ′θ0)(D−π0)‖2 · ‖W‖4]
≤ E[(‖fY|D,Z,X(W ′θ0)‖+‖fY|D,Z,X(α0 +W ′θ0)‖)2 · ‖W‖4]
≤ 4C2E[‖W‖4]
<∞,

https://doi.org/10.1017/S026646662000002X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662000002X


IVQR WITH MISCLASSIFICATION 203

the weak law of large numbers implies En[λ0(0)WW
′] = E[λ0(0)WW

′]+op(1). It suffices

to show that En[λ̂(α0;π0,π1)WW ′] = En[λ0(0)WW
′] + op(1). Using the mean value

expansion,

λ̂(α0;π0,π1)−λ0(0)=
(
K
(1)
h (Ṽ)(1−π1 −D)+K

(1)
h (Ṽ−α0)(D−π0)

)
W ′(θ̂0 − θ0)

+
(
Kh(Y−W ′θ0)− fY|D,Z,X(W ′θ0)

)
(1−π1 −D)

+
(
Kh(Y−α0 −W ′θ0)− fY|D,Z,X(α0 +W ′θ0)

)
(D−π0),

whereKh(t)=K(t/h)/h, and Ṽ is a value between Y−W ′θ̂0 and Y−W ′θ0. Using the above
mean value expansion,

‖En[λ̂(α0;π0,π1)WW ′]−En[λ0(0)WW
′]‖

= ‖En[(λ̂(α0;π0,π1)−λ0(0))WW ′]‖

≤
∥∥∥En

[(
K
(1)
h (Ṽ)(1−π1 −D)+K

(1)
h (Ṽ−α0)(D−π0)

)
W ′(θ̂0 − θ0)WW ′

]∥∥∥

+‖En[
(
Kh(Y−W ′θ0)− fY|D,Z,X(W ′θ0)

)
(1−π1 −D)WW ′]‖

+‖En[
(
Kh(Y−α0 −W ′θ0)− fY|D,Z,X(α0 +W ′θ0)

)
(D−π0)WW ′]‖

≤ 2supv|K
(1)
h (v)| ·

∥∥∥(θ̂0 − θ0)
∥∥∥ ·En[‖W‖3]

+‖En[
(
Kh(Y−W ′θ0)− fY|D,Z,X(W ′θ0)

)
(1−π1 −D)WW ′]‖

+‖En[
(
Kh(Y−α0 −W ′θ0)− fY|D,Z,X(α0 +W ′θ0)

)
(D−π0)WW ′]‖

≤ Op(n
−1/2)+‖En[

(
Kh(Y−W ′θ0)− fY|D,Z,X(W ′θ0)

)
(1−π1 −D)WW ′]‖

+‖En[
(
Kh(Y−α0 −W ′θ0)− fY|D,Z,X(α0 +W ′θ0)

)
(D−π0)WW ′]‖.

Since each entry in WW ′ has a finite variance, it suffices to show that

En[
(
Kh(Y−W ′θ0)− fY|D,Z,X(W ′θ0)

)
(1−π1 −D)ω] = op(1) (B.10)

En[
(
Kh(Y−α0 −W ′θ0)− fY|D,Z,X(α0 +W ′θ0)

)
(D−π0)ω] = op(1) (B.11)

for a random variable ω such that ω is a function of (D, Z, X) and E[ω2]<∞. The rest of

the proof is going to focus on (B.10) because the proof for (B.11) is similar. The mean of

the left-hand side of (B.10) is O(h), because

|E[
(
Kh(Y−W ′θ0)− fY|D,Z,X(W ′θ0)

)
ω]| ≤ E[

∫
|K(v)|

∣∣fY|X,Z,D(W ′θ0 + vh)

−fY|D,Z,X(W ′θ0)
∣∣dv|ω|]

≤ ChE[|ω|]
∫

|K(v)v|dv

= O(h).

The variance of the left-hand side of (B.10) is O((nh)−1), because

E[(
(
Kh(Y−W ′θ0)− fY|D,Z,X(W ′θ0)

)
ω)2]

≤ E[

∫
Kh(y−W ′θ0)2fY|X,Z,D(y)dyω2]+E[fY|D,Z,X(W ′θ0)2ω2]
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−2E[

∫
Kh(y−W ′θ0)fY|X,Z,D(y)dyfY|D,Z,X(W ′θ0)ω]

≤ Ch−1
∫
K(v)2dvE[ω2]+C2E[ω2]+2C2E[|ω|]

= O(h−1).

LEMMA B.10. �̂(α0;π0,π1)=�0 +op(1).

Proof. Since E[λ0(0)WW
′] = E

[
fY−α0D∗|Z,X(W ′θ0)WW ′] is invertible, the statement

of this lemma follows from Lemmas B.8 and B.9.
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