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Abstract

We study the existence of a weak solution of a nonlocal problem

−LKu − µug1 + h(u)g2 = f in Ω,

u = 0 in Rn \Ω,

where Lk is a general nonlocal integrodifferential operator of fractional type, µ is a real parameter and
Ω is an open bounded subset of Rn (n > 2s, where s ∈ (0, 1) is fixed) with Lipschitz boundary ∂Ω. Here
f , g1, g2 : Ω→ R and h : R→ R are functions satisfying suitable hypotheses.
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1. Introduction
Recently, there has been considerable attention paid to the study of fractional and
nonlocal operators of elliptic type. Many interesting problems in the standard
framework of the Laplacian are widely studied in the literature. Nonlocal operators
arise in a natural way in many contexts, such as thin obstacle problem, optimization,
finance, phase transitions, stratified materials, anomalous diffusion, crystal dislocation,
soft thin films, semipermeable membranes, conservation laws, multiple scattering,
minimal surfaces, materials science and water waves. It is natural to enquire about
the existence of a solution for a nonlocal framework by extending the corresponding
classical results.

Let Ω be an open bounded subset of Rn, n > 2s, (where s ∈ (0, 1)) with Lipschitz
boundary ∂Ω. Let µ ∈ R and f , g1, g2 : Ω→ R, h : R→ R be functions satisfying
suitable hypotheses. We study the existence of weak solutions for the class of nonlocal
problems given by

−LKu − µug1 + h(u)g2 = f in Ω,

u = 0 in Rn \Ω,
(1.1)

c© 2016 Australian Mathematical Publishing Association Inc. 1446-7887/2016 $16.00

392

https://doi.org/10.1017/S144678871600032X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871600032X


[2] Existence of a weak solution for a class of fractional Laplacian equations 393

where LK is the integrodifferential operator defined as

LKu(x) :=
∫
Rn

(u(x + y) + u(x − y) − 2u(x))K(y) dy x ∈ Rn,

with the kernel K : Rn \ {0} → (0,+∞) such that

mK ∈ L1(Rn) where m(x) = min{1, |x|2}; (1.2)
there exists λ > 0 such that K(x) ≥ λ|x|−(n+2s) for all x ∈ Rn \ {0}; and (1.3)

K(x) = K(−x) for all x ∈ Rn \ {0}. (1.4)

An example for the singular kernel K is given by K(x) := |x|−(n+2s), which gives rise to
the fractional Laplace operator −(−∆)s and which, up to normalization factors, may be
defined as

−(−∆)su(x) :=
∫
Rn

u(x + y) + u(x − y) − 2u(x)
|y|n+2s dy, x ∈ Rn.

The homogeneous Dirichlet condition in (1.1) is given in Rn \Ω and not simply on the
boundary ∂Ω, which is consistent with the nonlocal nature of the operator LK . (We
refer to [3] and the references therein for further details on the fractional Laplacian).

Let the functional space X denote the linear space of Lebesgue measurable functions
from Rn to R such that the restriction to Ω of any function g in X belongs to L2(Ω) and
the map

(x, y) 7→ (g(x) − g(y))
√

K(x − y)

is in L2((Rn × Rn) \ (CΩ × CΩ), dx dy) (here CΩ := Rn \ Ω). We define X0 to be the
linear subspace of X, where

X0 := {g ∈ X : g = 0 almost everywhere in Rn \Ω}.

The space X0 is introduced in [16]; also refer to [15]. By a weak solution of (1.1), we
mean a solution u ∈ X0 of the equation∫

R2n
(u(x) − u(y))(ϕ(x) − ϕ(y))K(x − y) dx dy − µ

∫
Ω

g1(x)u(x)ϕ(x) dx

+

∫
Ω

h(u(x))g2(x)ϕ(x) dx =

∫
Ω

f (x)ϕ(x) dx ∀ϕ ∈ X0. (1.5)

Equivalently, (1.5) represents the weak formulation of (1.1). The weak solution of
(1.1) lies in a functional space X0, but this is not equivalent to the usual fractional
Sobolev space. The choice of the space X0 allows us to correctly encode the Dirichlet
boundary datum in the weak formulation of (1.1). In Section 2, we recall the
definitions of weak solutions of (1.1) and of the functional space X0, to make the
present paper self-contained.

In the current literature [1, 2, 4–6, 10–15, 17–19], many authors have studied
nonlocal fractional Laplacian equations with superlinear, subcritical, asymptotically
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linear and critical nonlinearities. In [15], Servadei and Valdinoci studied the existence
of nontrivial solutions of the problem

−LKu = f (x, u) in Ω,

u = 0 in Rn \Ω,
(1.6)

using the mountain pass theorem. The function f (x, u) in (1.6) satisfies some suitable
hypotheses and one of the conditions is that

lim
|t|→0

f (x, t)
|t|

= 0 uniformly in x ∈ Ω.

The function f̃ (x, u) = µug1 − h(u)g2 + f , considered in (1.1), is not a special case of
the function f (x, u) in [15]. To study the existence of a solution of (1.1), the main
tools we used are a result due to Hess [7] on linear demicontinuous operators and
results on embedding theorems in suitable fractional Sobolev spaces. The study is
inspired by a semilinear elliptic Dirichlet boundary value problem (BVP) on a bounded
domain given in the book by Zeidler [21], where h is a real-valued bounded continuous
function defined on R and µ > 0 is a real number with certain restrictions.

The paper is organized as follows. Section 2 deals with preliminaries and some
basic results. Section 3 is concerned with the main result, namely, the existence of a
weak solution of (1.1) in a suitable fractional Sobolev space. Finally, Section 4 deals
with an extension to a class of continuous functions h that are not necessarily bounded.

2. Preliminaries

Throughout, let Ω be an open bounded subset of Rn, n > 2s (where s ∈ (0, 1) is
fixed) with Lipschitz boundary ∂Ω. We briefly recall the definition of the functional
space X0, as introduced in [16].

Let X denote the linear space of Lebesgue measurable functions from Rn to R such
that the restriction to Ω of any function g in X belongs to L2(Ω) and the map

(x, y) 7→ (g(x) − g(y))
√

K(x − y)

is in L2((Rn × Rn) \ (CΩ × CΩ), dx dy) (here CΩ := Rn \ Ω). We define X0 to be the
linear subspace of X given by

X0 := {g ∈ X : g = 0 almost everywhere in Rn \Ω}.

We know that X and X0 are nonempty, since C2
0(Ω) ⊆ X0, by [16, Lemma 5.1]. We

define the norm on the space X as

‖g‖X := ‖g‖2,Ω +

(∫
Q
|g(x) − g(y)|2K(x − y) dx dy

)1/2
,

where Q = (Rn × Rn) \ O and O = (CΩ) × (CΩ) ⊂ Rn × Rn. We can easily verify that
‖ · ‖X is a norm on X (for a proof, we refer the reader to [15]). ‖ · ‖p,Ω and ‖ · ‖∞,Ω
denote the standard norms in Lp(Ω) and L∞(Ω), respectively.
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For v ∈ X0, by [15, Lemmas 6 and 7], in the subsequent work, we define the function

v 7→ ‖v‖X0 =

(∫
Q
|v(x) − v(y)|2K(x − y) dx dy

)1/2
(2.1)

as the norm on X0. Also (X0, ‖ · ‖X0 ) is a Hilbert space (refer to [15, Lemmas 7]), with
inner product

〈u, v〉X0 :=
∫

Q
(u(x) − u(y))(v(x) − v(y)) K(x − y) dx dy.

Since v ∈ X0 (and so v = 0 almost everywhere in Rn \ Ω), we note that, in (2.1) (and
in the related scalar product), the integral can be extended to all Rn × Rn. While, for
a general kernel K satisfying conditions (1.2)–(1.4), X0 ⊂ Hs(Rn), in the case K(x) :=
|x|−(n+2s), the space X0 consists of all the functions of the usual fractional Sobolev space
Hs(Rn) that vanish almost everywhere outside Ω (refer to [18, Lemma 7]).

We define Hs(Rn) to be the usual fractional Sobolev space endowed with the norm
(the Gagliardo norm)

‖g‖Hs(Rn) = ‖g‖2,Rn +

(∫
Rn×Rn

|g(x) − g(y)|2

|x − y|n+2s dx dy
)1/2

.

We recall the embedding properties of X0 into the usual Lebesgue spaces (refer to [15,
Lemma 8]), for the sake of completeness.

Lemma 2.1. The embedding j : X0 ↪→ Lq(Rn) is continuous for any q ∈ [1, 2∗], while
the embedding is compact whenever q ∈ [1, 2∗), where 2∗ = 2n/(n − 2s). Hence, for
any q ∈ [1, 2∗], there exists a positive constant C(depending on q) such that

‖v‖q,Rn ≤ C‖v‖X0 (2.2)

for any v ∈ X0.

For further details on fractional Sobolev spaces, we refer the reader to [3] and to the
references therein, while for other details on X and X0, we refer to [16].

Let Y∗ denote the dual of the real Banach space Y . ‖ · ‖ and ‖ · ‖Y∗ denote the norms
on Banach space Y and dual space Y∗, respectively. For x ∈ Y and f ∈ Y∗, let ( f |x)
denote the evaluation of linear functional f at x. At each step, a generic constant is
denoted by c or k0, in order to avoid too many suffices.

Definition 2.2. Let B : Y → Y∗ be an operator on the real separable reflexive Banach
space Y . Then:

(i) B + N is asymptotically linear if B is linear and

‖Nu‖
‖u‖

→ 0 as ‖u‖ → ∞; and
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(ii) B satisfies condition (S) if

un ⇀ u and lim
n→∞

(Bun − Bu|un − u) = 0 implies un → u.

We say that B satisfying condition (S ) is a (S )-operator.

The following describes a real Gårding form G (compare with [20, page 364]).

Definition 2.3. Let X and Z be Hilbert spaces over R with the continuous embedding
X ⊆ Z. Then G : X × X → R is called a Gårding form if and only if G is bilinear and
bounded and there is a constant c > 0 and a real constant C such that

G(u, u) ≥ c‖u‖2X −C‖u‖2Z for all u ∈ X. (2.3)

Equation (2.3) is called the Gårding inequality. If C = 0, then G is called a strict
Gårding form. The Gårding form G is called regular if and only if the embedding
X ⊆ Z is compact.

In Section 3, we need the following result.

Proposition 2.4. Let B,N : Y → Y∗ be operators on the real separable reflexive Banach
space Y. Then:

(i) the operator B : Y → Y∗ is linear and continuous;
(ii) the operator N : Y → Y∗ is demicontinuous and bounded;
(iii) B + N is asymptotically linear; and
(iv) for each T ∈ Y∗ and for each t ∈ [0, 1], the operator At(u) = Bu + t(Nu − T )

satisfies condition (S ) in Y.

If Bu = 0 implies u = 0 then, for each T ∈ Y∗, the equation Bu + Nu = T has a solution
in Y.

For a detailed proof of the above theorem, we refer to [7] or to [21, Theorem 29.C].
We need the following hypotheses for further study.

(H1) Let h : R→ R be a bounded (that is, |h(t)| ≤ A, t ∈ R, A > 0) and continuous
function.

(H2) Assume that g1 ∈ L∞(Ω), g2 ∈ L2(Ω) and f ∈ L2(Ω).

We define the functionals B1, B2 : X0 × X0 → R as

B1(u, φ) =

∫
R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))K(x − y) dx dy −
∫

Ω

µu(x)g1(x)ϕ(x) dx

B2(u, ϕ) =

∫
Ω

h(u(x))g2(x)ϕ(x) dx.

Also define T : X0 → R as

T (ϕ) =

∫
Ω

f (x)ϕ(x) dx.
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A function u ∈ X0 is a solution of (1.1) if

B1(u, ϕ) + B2(u, ϕ) = T (ϕ), ∀ϕ ∈ X0.

We note that

|B1(u, ϕ)| ≤
∫
R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))K(x − y) dx dy + µ

∫
Ω

|g1(x)||u(x)||ϕ(x)| dx

≤

(∫
Q
|u(x) − u(y)|2K(x − y) dx dy

)1/2(∫
Q
|ϕ(x) − ϕ(y)|2K(x − y) dx dy

)1/2

+ |µ| ‖g1‖∞,Ω

(∫
Ω

|u(x)|2 dx
)1/2(∫

Ω

|ϕ(x)|2 dx
)1/2

= ‖u‖X0‖ϕ‖X0 + |µ| ‖g1‖∞,Ω‖u‖2,Ω‖ϕ‖2,Ω
≤ (1 + C|µ| ‖g1‖∞,Ω)‖u‖X0‖ϕ‖X0 , (2.4)

where C is a constant arising out of the inequality (2.2) in Lemma 2.1.
By hypotheses (H1) and (H2) and Holder’s inequality,

|B2(u, ϕ)| ≤
∫

Ω

|h(u(x))||ϕ(x)||g2| dx

≤ A
∫

Ω

|ϕ(x)||g2(x)| dx

≤ A‖ϕ‖2,Ω‖g2‖2,Ω ≤ AC‖ϕ‖X0‖g2‖2,Ω. (2.5)

Also,

|T (ϕ)| ≤
∫

Ω

| f (x)||ϕ(x)| dx ≤ ‖ f ‖2,Ω‖ϕ‖2,Ω ≤ C‖ f ‖2,Ω‖ϕ‖X0 , (2.6)

where C is a constant arising out of the inequality (2.2). Now B1(u, ·), B2(u, ·) is linear
and bounded. We define the operators

B,N : X0 → [X0]∗

as
(Bu|ϕ) = B1(u, ϕ), (Nu|ϕ) = B2(u, ϕ) for u, ϕ ∈ X0.

Then (1.1) is equivalent to the operator equation Bu + Nu = T , u ∈ X0.

3. Main results

In this section, we study the existence of a weak solution for (1.1).

Theorem 3.1. Assume (H1) and (H2). Let µ > 0 not be an eigenvalue of

−LKu − µu(x) = 0 in Ω,

u = 0 on Rn \Ω
(3.1)
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and, in addition, let
1 > µC‖g1‖∞,Ω, (3.2)

where C is a constant arising out of the inequality (2.2). Then the BVP (1.1) has a
weak solution u ∈ X0. Moreover, every (weak) solution u of (1.1) satisfies

‖u‖X0 ≤
C{A‖g2‖2,Ω + ‖ f ‖2,Ω}

(1 −Cµ‖g1‖∞,Ω)
,

where A is a constant, from hypotheses (H1).

Proof. We give a brief sketch of the proof. First we write the BVP (1.1) as operator
equation

u ∈ X0 : Bu + Nu = T in [X0]∗,

where T ∈ [X0]∗, B,N : X0→ [X0]∗ satisfies all the conditions given in Proposition 2.4.
For convenience, we divide the proof into five steps.

Step 1. From the previous section, we know that the operator B is linear and
continuous. By Lemma 2.1, the embedding of X0 ↪→↪→ L2(Ω) is compact which shows
that B1(· , ·) is a strict regular Gårding form [20, page 364]. In fact, we obtain

B1(u, u) =

∫
R2n

(u(x) − u(y))(u(x) − u(y))K(x − y) dx dy −
∫

Ω

µu2(x)g1(x) dx

≥

∫
Q

(u(x) − u(y))2K(x − y) dx dy − µ‖g1‖∞,Ω

∫
Ω

u2 dx

= ‖u‖2X0
− µ‖g1‖∞,Ω‖u‖22,Ω. (3.3)

Let uk ⇀ u weakly in X0 and

lim
k→∞

(Buk − Bu|uk − u) = 0. (3.4)

Claim. uk → u strongly in X0 or B satisfies condition (S ). Since B is linear, as in
(3.3),

(Buk − Bu|uk − u) = (B(uk − u)|uk − u) = B1(uk − u, uk − u)
≥ ‖uk − u‖2X0

− µ‖g1‖∞,Ω‖uk − u‖22,Ω
≥ (1 −Cµ‖g1‖∞,Ω)‖uk − u‖2X0

. (3.5)

From (3.4) and (3.5), we note that

0 ≤ (1 −Cµ‖g1‖∞,Ω) lim
k→∞
‖uk − u‖2X0

≤ lim
k→∞

(Buk − Bu|uk − u) = 0.

Since (1 − Cµ‖g1‖∞,Ω) > 0, ‖uk − u‖2X0
→ 0 as k→∞; otherwise, ‖uk − u‖X0 → 0, as

k→∞, which implies that B satisfies condition (S).
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Step 2.

Claim. B + N is asymptotically linear. By the boundedness of h, we observe that,

|(Nu|ϕ)| = |B2(u, ϕ)| ≤ AC‖g2‖2,Ω‖ϕ‖X0 ∀u ∈ X0,

which implies that
‖Nu‖X∗0 ≤ C′,

where C′ = AC‖g2‖2,Ω is a constant depending on Ω. Consequently,

‖Nu‖X∗0
‖u‖X0

→ 0 as ‖u‖X0 →∞,

which shows that B + N is asymptotically linear and that the operator N is strongly
continuous (see [21, Corollary 26.14, page 572]).

Step 3. From Step 2, we note that the operator B satisfies condition (S). Since N
is strongly continuous, we note that t(Nu − T ) is strongly continuous for t ∈ [0, 1].
For each t ∈ [0, 1], the operator At(u) = Bu + t(Nu − T ) is a strongly continuous
perturbation of the (S )-operator B. So the operator At(u) satisfies condition (S)
(compare with [21, Proposition 27.12, page 595]).

Step 4. Now Bu = 0 implies that∫
R2n

(u(x) − u(y))2K(x − y) dx dy −
∫

G
µu2(x)g1(x) dx = 0.

Consequently,
(1 −Cµ‖g1‖∞,Ω)‖u‖2X0

≤ 0,

which shows that u = 0 (since 1 −Cµ‖g1‖∞,Ω > 0).
By Proposition 2.4, Bu + Nu = T has a solution u ∈ X0 which, equivalently, shows

that the BVP (1.1) has a solution u ∈ X0.

Step 5. As in (3.5) (with the help of embedding in Lemma 2.1),

B1(u, u) ≥ (1 −Cµ‖g1‖∞,Ω)‖u‖2X0
.

Since 1 > Cµ‖g1‖∞,Ω, we obtain

‖u‖2X0
≤

( 1
1 −Cµ‖g1‖∞,Ω

)
B1(u, u). (3.6)

Also, we note that
|B1(u, u)| ≤ C{A‖g2‖2,Ω + ‖ f ‖2,Ω}‖u‖X0 . (3.7)

By (3.6) and (3.7),

‖u‖X0 ≤
C{A‖g2‖2,Ω + ‖ f ‖2,Ω}

(1 −Cµ‖g1‖∞,Ω)
. �
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Next we dispense with the condition (3.2) when g1 does not change sign. The two
results are related to the cases when g1 ≥ 0 with µ ≤ 0 and g1 ≤ 0 with µ > 0. These
results are similar to Theorem 3.1, but with suitable changes.

Theorem 3.2. Suppose that (H1) and (H2) hold. Let g1 ≥ 0 and µ ≤ 0. Then the BVP
(1.1) has a solution u ∈ X0 and

‖u‖X0 ≤ C{A‖g2‖2,Ω + ‖ f ‖2,Ω},

where C is a constant arising out of the inequality (2.2).

Proof. As in Theorem 3.1, the basic idea is to reduce the problem (1.1) to an
operator equation Bu + Nu = T and study the existence of a solution with the help
of Proposition 2.4. To proceed, we define B, N and T , as in Theorem 3.1, and , by a
similar argument to that used for estimates (2.4), (2.5) and (2.6),

|B1(u, ϕ)| ≤ (1 + C|µ|‖g1‖∞,Ω)‖u‖X0‖ϕ‖X0

|B2(u, ϕ)| ≤CA‖g2‖2,Ω‖ϕ‖X0

|T (ϕ)| ≤C‖ f ‖2,Ω‖ϕ‖X0 ,

where the constant C comes from Lemma 2.1. The compact embedding of X0 ↪→↪→
L2(Ω) shows that B1(· , ·) is a strict regular Gårding form. Also, µ ≤ 0 and g1 ≥ 0 yield

B1(u, u) =

∫
R2n

(u(x) − u(y))2K(x − y) dx dy −
∫

Ω

µu2(x)g1(x) dx ≥ ‖u‖2X0
. (3.8)

Let uk ⇀ u weakly in X0 and

lim
k→∞

(Buk − Bu|uk − u) = 0. (3.9)

We claim that uk → u strongly in X0 or B satisfies condition (S ). Since B is linear, as
in (3.8),

(Buk − Bu|uk − u) = (B(uk − u)|uk − u)
= B1(uk − u, uk − u) ≥ ‖uk − u‖2X0

. (3.10)

From (3.9) and (3.10), we note that

0 ≤ lim
k→∞
‖uk − u‖2X0

≤ lim
k→∞

(Buk − Bu|uk − u) = 0,

which implies that ‖uk − u‖X0 → 0 as k → ∞ and, consequently, B satisfies
condition (S). Next, we also show that B + N is asymptotically linear and that N is
strongly continuous. The proof is similar to that of Theorem 3.1 and we omit it for
brevity. Since µ ≤ 0, we get that Bu = 0 implies that u = 0 and hence we note that
µ ≤ 0 is not an eigenvalue of (3.1). By Proposition 2.4, Bu + Nu = T has a solution
u ∈ X0, which equivalently shows that the BVP (1.1) has a solution u ∈ X0. Since µ ≤ 0
and g1 ≥ 0, we get (as in (3.8)) B1(u, u) ≥ ‖u‖2X0

. Then, by a similar argument to that in
Theorem 3.1,

‖u‖X0 ≤ C{A‖g2‖2,Ω + ‖ f ‖2,Ω},

where C is a constant arising out of the inequality (2.2). �
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With suitable modifications in the proof of Theorem 3.2, we arrive at the following
result.

Theorem 3.3. Suppose that (H1) and (H2) hold. Let g1 ≤ 0 and µ > 0. Then (1.1) has
a weak solution u ∈ X0 and there is a constant k0 such that ‖u‖X0 ≤ k0 for every (weak)
solution u.

4. Extensions

In Section 3, the nonlinearity h is assumed to be continuous and bounded. In this
section, we extend these results to a class of functions h that are continuous only. The
generalized form of Hölder’s inequality comes in handy for getting suitable estimates.
We establish the existence of a weak solution for (1.1), where h : R→ R is required to
be continuous and to satisfy |h(t)| ≤ |t|ε , 0 < ε < 1 for all t ∈ R. Again, we consider the
cases µ ≤ 0 and µ > 0 separately. The proofs are similar to the ones in Section 3, so
we restrict ourselves to sketching the differences, whenever needed. The result in [21]
is not applicable here since h is not bounded. We collect the common hypotheses for
convenience.

(H′1) Suppose that h : R→ R, defined by |h(t)| ≤ |t|ε , t ∈ R, 0 < ε < 1.
(H′2) g1 ∈ L∞(Ω), g2 ∈ L2/(1−ε)(Ω), 0 < ε < 1 and f ∈ L2(Ω).

Theorem 4.1. Let the hypotheses (H′1) and (H′2) hold. Let g1 ≥ 0 and µ ≤ 0. Then (1.1)
has a weak solution u ∈ X0 and there is a constant k0 such that ‖u‖X0 ≤ k0 for every
(weak) solution u.

Proof. We give only a sketch of the proof since it is similar to the proof of
Theorem 3.2. For u ∈ X0, from the hypotheses and by Lemma 2.1, we note that

|B1(u, ϕ)| ≤ (1 + C|µ|‖g1‖∞,Ω)‖u‖X0‖ϕ‖X0 ,

|T (ϕ)| ≤ C‖ f ‖2,Ω‖ϕ‖X0 ,

where the constant C comes from Lemma 2.1. Again, by Lemma 2.1 and the
generalized form of Hölder’s inequality [9, page 67],

|B2(u, ϕ)| ≤
∫

Ω

|h(u(x))||ϕ(x)||g2| dx ≤ ‖u‖ε2,Ω‖ϕ‖2,Ω‖g2‖2/(1−ε),Ω.

We also observe that B1 satisfies condition (S) by a similar argument to that of
Theorem 3.2 (also refer to [21, Proposition 27.12]). We observe that

|(Nu|ϕ)| = |B2(u, ϕ)| ≤ C‖u‖εX0
‖ϕ‖X0‖g2‖2/(1−ε),Ω,

which implies that
‖Nu‖X∗0 ≤ C‖u‖εX0

‖g2‖2/(1−ε),Ω = c‖u‖εX0
,

where c = C‖g2‖2/(1−ε),Ω is a constant. So

‖Nu‖X∗0
‖u‖X0

≤
c‖u‖εX0

‖u‖X0

→ 0 as ‖u‖X0 →∞. (4.1)
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This shows that B + N is asymptotically linear. Also, u ∈ L2(Ω) implies that h(u) ∈
L2/ε(Ω) and we define the Nemytskii operator

F : L2(Ω)→ L2/ε(Ω)

by (Fu)(x) = h(u(x)); so F is continuous (by [8, Theorem 2.1]). By hypotheses (H′1)
and (H′2) and the generalized Hölder inequality, we note that

|(Nun|ϕ) − (Nu|ϕ)| ≤
∫

Ω

|h(un) − h(u)||g2||ϕ| dx

≤C‖h(un) − h(u)‖2/ε,Ω‖g2‖2/(1−ε),Ω‖ϕ‖X0 .

Let un ⇀ u weakly in X0. Then, by the compact embedding X0 ↪→↪→ L2(Ω) and since
F is continuous in L2/ε(Ω),

‖Nun − Nu‖X∗0 → 0 as n→∞.

By a similar argument to that of Theorem 3.1, the operator At(u) = Bu + t(Nu − T )
satisfies condition (S). If µ ≤ 0, then Bu = 0 implies u = 0 and µ ≤ 0 is not an
eigenvalue of the linear problem (3.1). By Proposition 2.4, the operator equation
Bu + Nu = T and, consequently, (1.1) has a solution u ∈ X0, which completes the proof
of the existence of a solution.

Now, as in (3.8),
B1(u, u) ≥ ‖u‖2X0

. (4.2)

Also, we note that

|B1(u, u)| ≤ C{‖u‖εX0
‖g2‖2/(1−ε),Ω + ‖ f ‖2,Ω}‖u‖X0 . (4.3)

By (4.2) and (4.3),

‖u‖X0 ≤ C{‖u‖εX0
‖g2‖2/(1−ε),Ω + ‖ f ‖2,Ω}. (4.4)

If ‖u‖X0 ≥ 1, from (4.4),

‖u‖X0 ≤ C(‖g2‖2/(1−ε),Ω + ‖ f ‖2,Ω)‖u‖εX0
,

which implies that
‖u‖1−εX0

≤ c 0 < ε < 1,

(where c = C(‖g2‖2/(1−ε),Ω + ‖ f ‖2,Ω))

or ‖u‖X0 ≤ c1/(1−ε) 0 < ε < 1.

If ‖u‖X0 ≤ 1, we have nothing to prove. Let k0 = max{1, c1/(1−ε)}. Hence

‖u‖X0 ≤ k0. �

Remark. Theorem 4.1 holds if g1 ≤ 0 and µ > 0 with the other conditions remaining
intact. But when µ > 0 and g1 change sign, we need additional conditions on µ and g1
(stated below), as in Theorem 3.1. We state these results below in Theorem 4.2 and
we give a sketch of the proof. We note that, in (4.1), the required asymptotic linearity
of B + N is a consequence of ε lying between zero and one.

https://doi.org/10.1017/S144678871600032X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871600032X


[12] Existence of a weak solution for a class of fractional Laplacian equations 403

Theorem 4.2. Let the hypotheses (H′1) and (H′2) hold. Also, let µ > 0 not be an
eigenvalue of (3.1) and, in addition, let 1 > Cµ‖g1‖∞,Ω. Then the BVP (1.1) has a
weak solution u ∈ X0 and there is a constant k0 such that ‖u‖X0 ≤ k0 for every (weak)
solution u.

Proof. The proof of the existence of a weak solution u ∈ X0 for (1.1) is similar to the
arguments in Theorem 4.1 and Theorem 3.1 and hence is omitted. As in Theorem 3.1,
we note that

(1 −Cµ‖g1‖∞,Ω)‖u‖2X0
≤ C{‖u‖εX0

‖g2‖2/(1−ε),Ω + ‖ f ‖2,Ω}‖u‖X0 ,

where C is a constant. Since 1 > Cµ‖g1‖∞,Ω, we obtain

‖u‖X0 ≤
C(‖u‖εX0

‖g2‖2/(1−ε),Ω + ‖ f ‖2,Ω)

(1 −Cµ‖g1‖∞,Ω)
. (4.5)

If ‖u‖X0 ≥ 1, from (4.5),

‖u‖X0 ≤
C(‖g2‖2/(1−ε),Ω + ‖ f ‖2,Ω)‖u‖εX0

(1 −Cµ‖g1‖∞,Ω)
,

which implies that
‖u‖1−εX0

≤ c 0 < ε < 1,

(where c = (C(‖g2‖2/(1−ε),Ω + ‖ f ‖2,Ω))/((1 −Cµ‖g1‖∞,Ω)))

or ‖u‖X0 ≤ c1/(1−ε).

If ‖u‖X0 ≤ 1, we have nothing to prove. Let k0 = max{1, c1/(1−ε)}. Then

‖u‖X0 ≤ k0. �
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