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Abstract
This study scrutinizes spatial econometric models and specifications of crop yield response functions to
provide a robust evaluation of empirical alternatives available to researchers. We specify 14 competing
panel regression models of crop yield response to weather and site characteristics. Using county corn yields
in the US, this study implements in-sample, out-of-sample, and bootstrapped out-of-sample prediction
performance comparisons. Descriptive propositions and empirical results demonstrate the importance
of spatial correlation and empirically support the fixed effects model with spatially dependent error struc-
tures. This study also emphasizes the importance of extensive model specification testing and evaluation of
selection criteria for prediction.
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1. Introduction
Because weather is a direct input to the biological process of plant growth, agriculture has been the
focus of many studies of climate impacts on crop yield production. Two primary approaches to
research on the relationship between weather/climate and agriculture have been the Ricardian
approach and estimation of crop yield response functions. These two approaches are based on
the common functional relation1:

y � f H; P; S; L� �; (1)

where y is the agriculturally relevant measure of interest, H is heat exposure, P is total precipita-
tion, S is soil characteristics, and L is other nonweather factors such as input mix, technology, or
other human factors. If the dependent variable is farmland value as a function of climate (the
multiyear average, or distribution, of weather), then the estimation of Equation (1) is called
the Ricardian approach; if y= crop yield as a function of weather, then Equation (1) is the crop
yield response function.
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Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

1Note that theoretical motivation, model specification, identification strategy, and results interpretation of the relationships
between independent and dependent variables in Equation (1) cannot be done interchangeably for the different dependent
variables in the Ricardian and crop yield response function approaches. Only the yield response function approach is con-
sidered in this study.
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Mendelsohn et al. (1994) introduced the Ricardian approach to study temperature impacts on
agriculture. As summarized in Ortiz-Bobea (2020), various theoretical and empirical extensions of
climate change impacts on agriculture through the Ricardian approach have been studied. Schlenker
and Roberts (2009) first popularized heat exposure bins to study nonlinear temperature effects on
crop yields. Deschênes and Greenstone (2007) suggested the panel estimation approach to scrutinize
the relationship between random weather fluctuation and agricultural output. Many econometric
models of climate change and weather impacts on agricultural yields have followed Fisher
et al.’s (2012) discussion of Deschênes and Greenstone (2007, 2012) along both theoretical and
empirical lines. In empirical applications, Tack et al. (2012) studied the higher moments of yield
responses and Tack et al. (2018) analyzed their implications on crop insurance. Belasco et al.
(2020) investigated the potential of a weather-based crop disaster program. Goodwin and
Piggott (2020) analyzed weather and technology interactions in crop insurance and Le et al.
(2020) studied weather impacts on the dairy sector.

As geospatially referenced and gridded data have become readily available, significant effort has
been devoted to econometric analysis of weather impacts on agriculture through crop yield
response functions and so-called Ricardian models of land value. Dell et al. (2014) summarized
these efforts as econometric identification and specifications of nonlinearity, causality, and estima-
tion of a yield damage function in response to weather and climate. Accordingly, Auffhammer et al.
(2013) pointed out five major econometric pitfalls associated with weather data and climate model
output in economic analysis: the choice of weather data set, averaging station-level data across space,
correlation between weather variables, endogenous weather data coverage, and spatial correlation.
While the first four pitfalls can be handled by proper data management or are addressed in the
previous literature, spatial correlation that can be rigorously managed using spatial econometric
techniques has received less attention in the Ricardian and yield response threads of the literature.

In the Ricardian approaches, spatial error structure was adopted from earlier literature
(Schlenker et al., 2006). Baylis et al. (2011) numerically explored the spatial dependence structure
in error and dependent variables with fixed and random effects (RE) panel regressions. Dall’erba
and Dominguez (2016) applied the spatial lag of weather variables in the Ricardian panel regres-
sion. Those studies, however, focused on the calculation of the direct and indirect marginal effects
of weather variables or the possibility of performing spatial econometric panel regression. To the
best of our knowledge, there is not any detailed discussion of the source of spatial correlation, pros
and cons of alternative model specifications, and prediction performance comparisons in this liter-
ature. The crop yield response function literature has even fewer applications of spatial econometrics
in panel regressions. Given that the crop yield response function is most often the base analysis in
the areas of climate change, food security, nutrition, and development economics, the lack of studies
using or evaluating spatial econometric models of crop yield response is quite surprising.2 There has
been great interest in using spatial econometric models of crop yield response in precision agricul-
ture research (e.g., Anselin et al., 2004; Liu et al., 2015). The data used in these studies, however, are
limited and do not go beyond cross-sectional analysis of prediction performance.

When ignoring or not properly incorporating spatial correlation in crop yield response func-
tions, four unintended econometric issues could arise in general. First, an improper model spec-
ification could be applied. Given that the true crop yield response function data generating process
is unknown, spatial correlation may be present for various reasons. Since the specification strate-
gies in spatial econometrics are dependent upon the source of spatial correlation, the choice of
spatial econometric models could be misguided. Second, estimated coefficients could be biased
due to measurement error. If a spatial correlation is caused by measurement error or omitted
variables, a proper spatial econometric model is one of the possible remedies (LeSage and
Pace, 2009). Because proper instrumental variables or control functions are not available in many

2We believe this is mainly because of the difficulty in building a balanced panel data set required by spatial econometric
approaches. This study has the same issue and it is discussed in the data section in detail.
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cases, the use of a spatial econometric model for crop yield response is a feasible alternative. Third,
statistical inference of estimates could be imprecise. If a spatial correlation is local, that is, exists in
error terms, the estimates could be unbiased, but inference based on these estimates could be
imprecise. Last, there is no theoretical standard or ad hoc guidance for whether the spatial econo-
metric models in the previous literature are properly adopted in practice.

To fill this gap, this study addresses the question of how spatial correlation can be presented
and specified using spatial econometrics to model the crop yield response function. To specify
alternative models, we first delve into the source of spatial correlation that gives rise to the neces-
sity of using spatial econometrics and motivates the need for this study. Three major sources of
spatial correlations this study identifies are spatial data aggregation processes, omitted variables,
and spatial heterogeneity. We initially select seven competing models that are the most frequently
adopted functional forms in the literature. Additionally, we replicate these models with the non-
linear temperature bins used in Schlenker and Roberts (2009). In total, we compare the prediction
performance of 14 different model specifications. The comparison analysis in this study is focused
on better prediction capability rather than better coefficient estimates. This is because the true data
generating process of equation (1) that relates crop yields to spatially varying components remains
unknown. Besides, making predictions is one of the primary purposes of research applying crop
yield response functions, especially in the context of climate change impacts on agriculture. This
also helps to avoid the unresolved controversial debate on identification and specification in spa-
tial econometrics models provoked by Gibbons and Overman (2012) and Pinkse and Slade (2010).

The data used in the performance comparisons are county-level corn yields, temperature, total
precipitation, and soil characteristics in the US from 1981 to 2018. Spatially gridded weather and soil
data were aggregated up to counties. Due to the intensively managed nature of irrigated crops that
masks the impact of precipitation on yield, we limit our study counties to those east of the 100th
Meridian line as in Schlenker and Roberts (2009). The prediction capabilities of candidate models
are compared using in-sample prediction standards. We also perform out-of-sample predictions for
2013–2018 using the coefficient estimates based on 1981–2012 data. Year-stratified bootstrapping is
also implemented to statistically test prediction performance using the 1981–2012 data.

2. Spatial Econometric Models of Crop Yield Response
2.1. NonSpatial Panel Regression

A general crop yield response function specifying the relationships in Equation (1) can be pre-
sented as the panel regression equation:

yit � g hit ;β� � � δ1Pit � δ2P
2
it � τ1t � τ2t

2 � µi � εit; (2)

where g(⋅) is a nonlinear function of heat units, hit, with the response coefficients β, the second and
third terms are a quadratic precipitation equation with the response coefficients δ, μi is the indi-
vidual (county) fixed effect (FE), t is the time trend, τ is its coefficient, and ϵit is the random error.
Roberts et al. (2013) empirically showed that the quadratic form in precipitation achieves suffi-
cient model fit. To control for advances in technology and other time-dependent trends, the qua-
dratic specification of time trend instead of time FE has generally been used in the literature (Miao
et al., 2016; Schlenker and Roberts, 2009). This study follows the prior literature and adopts a
quadratic function of the total precipitation and time trend variables3 in all model specifications
that follow.

3In this study, the use of year FE rather than time trends would pose an issue when performing prediction. Climate change is
generally about the long term, but estimated year FE based on the past (relatively short term) are not necessarily applicable in the
future. A time trend, however, may still be meaningful into the future, assuming the same trend of time-dependent changes as in the
past. To check the robustness of using time trends compared to year FE, we confirm that estimates based on quadratic time trends
do not significantly differ from estimates using two-way FE specifications for all FE models discussed in the later section (see S5 in
Supplemental Materials).
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Based on agronomic knowledge, corn yield is dependent upon heat accumulation rather than
temperature measures (e.g., mean, maximum, and minimum temperature) alone (Baskerville and
Emin, 1969). The total amount of heat exposure measured in degree days during the growing
season (growing season degree days: GDDs) is a popular measure of heat contribution to crop
development in crop yield response function or Ricardian approaches (Schlenker et al., 2006;
Schlenker and Roberts, 2009). Following Baylis et al. (2011) and Schlenker et al. (2006), this study
adopts the quadratic form of GDDs over the range 8–32°C for the crop development and the
square root of extreme heat GDDs (above 34°C) to capture excessive heat impacts.
Additionally, we replicate the Chebyshev polynomial specification of GDD bins used in
Schlenker and Roberts (2009), as discussed in Section 2.5.

For notational simplicity, we suppose Xit � �hit; h2it;
�����
heit

p
; Pit; P2

it � is a vector containing the
quadratic form of GDDs, square root of extreme heat GDDs, hite, and the quadratic form of total
growing season precipitation. The corresponding response coefficients are β= [β1,β2,β3,δ1,δ2].
The Pooled regression specification can be presented as:

yit � Xitβ� τ1t � τ2t
2 � εit: (3)

Soil characteristics (S) is only component in Equation (1) missing in Equation (3). As Yun and
Gramig (2019) pointed out, soil characteristics influence soil conditions that contribute to agri-
cultural yields based on complex relationships. In most cases, time-varying soil variables (e.g., soil
moisture level) are not available because of the implausibility of measurement. Generally available
soil characteristics (e.g., soil water holding capacity) from the gridded Soil Survey Geographic
Database (gSSURGO) are location-specific but not time-dependent variables. In both the crop
yield response function and Ricardian approaches, the FE term μi in (2) controls for time-
invariant soil characteristics (among other things, as discussed below). The FE panel regression
can be specified by altering Equation (3) as:

yit � Xitβ� τ1t � τ2t
2 � µi � εit: (4)

Even though we include two important weather factors from Equation (1), some key weather var-
iables affecting agricultural outputs like vapor pressure deficit (Lobell et al., 2014) or other drought
measures are not considered in Equation (4). We would, of course, prefer to include omitted
weather variables as control variables. They are, however, generally unavailable. The instrumental
variables (IVs) or control function approaches can be used to overcome omitted variable bias. It is,
however, challenging to find proper IVs because potential IVs are correlated with agricultural
output. The panel specification in Equation (4) assumes weather variables are randomly and exog-
enously given, rendering past weather an improper IV or control factor. FE terms may control for
unobserved heterogeneity. In practice, it is impossible to discern time-invariant soil factors from
location-specific omitted weather variables. Auffhammer et al. (2013) pointed out that the RE
model can be used to address possible spatial correlation in the omitted weather variables. In spa-
tial econometrics, the omitted variable is a well-studied motivation to model a spatial correlation
structure in the regression error term (LeSage and Pace, 2009). Keeping soil factors in the control
variable set, therefore, the counterpart RE model to the FE model in Equation (4) is:

yit � Xitβ� τ1t � τ2t
2 � Sitθ� εit; (5)

where Sit is a vector of soil characteristics4 and θ contains the associated response coefficients.

4To avoid more cumbersome notation and to reflect more common annual panel data structures, we denote soil variables
by Sit in all regression equations. In practice, however, gSSURGO soil data from USDA are time-invariant and the depth and
area-weighted soil variables we employ change every 4 years according to spatially explicit changes in agricultural land uses
based on the NLCD. The details are in Section 3.
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2.2. Sources and Implications of Spatial Correlation

2.2.1. Spatial Aggregation in Weather
For a better description of the following model specifications, we estimate the county-level crop
yield response function with the Parameter-elevation Relationship on Independent Slopes Model
(PRISM) weather data, which is high resolution (4× 4 km) grid cell data that is widely used
throughout agricultural and applied economics. A PRISM grid cell is smaller than a county,
and each county consists of a different number of grid cells. The right panel of Figure 1 generalizes
an aggregation process of grid cell data to a county.

We can assume that there are regions A= A1 ∪ A2 ∪⋯∪ An and Ai ∩ Aj=Ø for ∀i ≠ j. In a
region Ai, it consists of several subregions as Ai= ai1 ∪ ai2 ∪⋯∪ aini and air ∩ ais=Ø for ∀r ≠ s.
In Figure 1, for example, A is the state of Indiana, Ai is a County in Indiana, and aij is a PRISM grid
cell in county i. If the temperature of PRISM grid cell aij isHij and Ai contains ni individual PRISM
grid cells. Then, a grid cell’s temperature can be written as:

Hij � Hi � vij �
Xni
j�1

wijHij � vij; (6)

where Hi is the county mean temperature (area-weighted by wij) and vij is a temperature variation
from Hi. From Equation (6), we have two propositions.

Proposition 1: The larger the extent of spatial aggregation, the more spatial variation is lost,
that is, spatial aggregation is a smoothing process such that as ni→∞, the absolute sum of vij
diverges, that is, limni!∞

Pni
j�1 jvijj is undefined.

Proposition 2: A larger spatial aggregation has less spatial correlation by Proposition 1. If k
(e.g., State) is a larger geographic aggregation unit than that of i (e.g., county), then Hk is in [min
(Hij),max(Hij)]. The spatial correlation (ρ) of two spatial units is ρk≤ ρi.

To empirically demonstrate these two propositions, we calculated Moran’s I statistic at the grid
cell, county, and state for annual average temperature, GDDs, and total precipitation for March to
August in Table 1 (full study period is available in Table S1 from Supplemental Materials) using
the PRISM data.

Figure 1. Spatial units of weather variable: average temperature in Indiana, USA, April 2014.
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Table 1 generally meets Propositions 1 and 2. As the spatial extent of aggregation increases
from grid cell (or county) to the entire state, spatial correlations tend to decline. Particularly, state-
level spatial correlations are significantly lower than those of grid cells or counties for GDDs and
total precipitation. Even though yearly temperature averages and GDDs both measure the mag-
nitude of heat, GDDs exhibit a more significant reduction in state-level Moran’s I. From Table 1,
we find that the reduced spatial variation (and spatial correlation) should pass through the error
terms. County-level weather variables reveal a high-spatial correlation (relative to state-level) that
is discussed in the next section in more detail.

The right panel of Figure 1 illustrates an additional proposition important to spatial correlation
in the error terms. In the right panel of Figure 1, we suppose that the centroid of region Ai (blue
square) is the blue dot (●), and the unknown true center of the county is the blue triangle (▴). The
most frequently adopted center of a spatial boundary is the centroid. The centroid is the physical
center of mass over a spatial unit. There is, however, no evident reason why the centroid is the
correct or best representative point for spatially varying quantities like weather variables.

Proposition 3: The true center of a spatial unit is not necessarily the centroid of the spatial unit.
The most representative value of a weather variable for a given spatial unit, therefore, could be
measured at any or many points within a spatial unit.

If we build a distance-based spatial weights matrix using the blue dot, the measurement error
will go through the error terms again because errors are spatially correlated. From the above three
propositions, we specify the spatial dependence structure in the error terms in the FE (Spatial
Error Model (LeSage and Pace, 2009), hereafter SEM) and RE (based on Kapoor, Kelejian &
Prucha (2007), hereafter KKP) spatial models as:

yit � Xitβ� τ1t � τ2t2 � µi � uit;where uN � r IT �WN� �uN � εN ; (7)

yit � Xitβ� τ1t � τ2t
2 � Sitθ� uit; where uN � r IT �WN� �uN � εN (8)

In Equations (7) and (8), the error structure is defined as uN= r(ITWN)uN� ϵN, where N is the
number of spatial observations, T is the length of time, r is the spatial error coefficient, I is an
identity matrix, W is the spatial weights matrix, and is the Kronecker product.

Table 1. Moran’s I statistic of the yearly average temperature, growing season degree days (GDD) (March to August), total
precipitation (March to August), and corn yields (bu/ac), 2001–2012

Mean Temperature GDD Total Precipitation Yields

Year Grid County State Grid County State Grid County State County

2001 0.9869 0.9781 0.7314 0.6963 0.7971 0.2792 0.9530 0.7004 0.3177 0.6921

2002 0.9871 0.9793 0.7295 0.7245 0.7997 0.2004 0.9596 0.7220 0.3470 0.8625

2003 0.9862 0.9798 0.7366 0.7118 0.8327 0.1438 0.9569 0.8447 0.2785 0.7576

2004 0.9868 0.9803 0.7376 0.7080 0.7437 0.2167 0.9552 0.7449 0.1518 0.7645

2005 0.9871 0.9797 0.7386 0.6767 0.7467 0.0953 0.9431 0.7667 0.2904 0.7400

2006 0.9873 0.9788 0.7258 0.6581 0.6999 0.0755 0.9416 0.6927 0.2615 0.7353

2007 0.9870 0.9808 0.7485 0.6678 0.7270 0.1039 0.9584 0.5954 0.0821 0.7879

2008 0.9879 0.9823 0.7328 0.7164 0.7859 0.1687 0.9633 0.7171 0.1904 0.8069

2009 0.9878 0.9827 0.7362 0.7094 0.7651 0.3062 0.9579 0.7618 0.2920 0.8101

2010 0.9877 0.9787 0.7381 0.6764 0.6820 0.1040 0.9418 0.6394 0.1842 0.8400

2011 0.9884 0.9829 0.7452 0.7119 0.7358 0.3715 0.9556 0.7551 0.2183 0.7916

2012 0.9872 0.9788 0.7309 0.6706 0.7607 0.3090 0.9461 0.6802 0.2998 0.7793

Note: The full table for 1981–2012 is available from Table S1 in the provided Supplemental Materials.
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2.2.2. Spatial Correlation in Weather
It is widely noted that weather variables exhibit spatial correlation (Auffhammer et al., 2013; Dell
et al., 2014). The previous literature of the Ricardian approaches motivated the use of spatial lags
on weather variables by their spatial correlation (Baylis et al., 2011; Dall’erba and Dominguez,
2016). Auffhammer et al. (2013) stated that the spatial dependence of the regressors would
not be a problem if the model correctly accounts for all weather variables. Spatial econometricians,
however, certainly disagree with this argument (Anselin, 2006). A spatial correlation also could be
an issue depending upon the spatial unit or the measurement of variables shown in Table 1. The
model specification that accounts for spatially correlated weather variables is the spatial lagged
X model (SLX) in Elhorst (2014):

yit � Xitβ� wiXitγ � τ1t � τ2t2 � µi � εit; (9)

where γ is the spatial lag coefficient and wi is the ith row of the spatial weights matrix W.

2.2.3. Spatial Correlation in Crop Yields
In the general crop yield response function of Equation (2), an essential assumption of the panel
regression is that observed crop choices are optimal and do not change (Deschênes and
Greenstone, 2007). Since crop choice is the optimized decision under the historical weather
and climate, this assumption does not consider a situation where extreme climate change neces-
sitates a change in the crops grown. Farmers, therefore, are assumed to change their input mix or
management to sustain their optimized crop yields under climate change and increasing weather
variability. The changes in nonweather or nonsoil factors, L in Equation (1), are now the focus of
possible spatial correlation. In our data, corn yields show high Moran’s I statistics (about 0.7–0.8)
as shown in Tables 1 and S1. Since factors subsumed in L are reflected in the time trend only in
Equation (2), changes in L constitute omitted socioeconomic variables. As argued in Anselin
(2006) and LeSage and Pace (2009), the omitted socioeconomic variables have neighboring effects
and motivate the adoption of a spatially lagged dependent variable that is believed to be a good
proxy for the omitted variable(s). Our spatial panel specification taking this standard approach to
account for potentially important omitted socioeconomic variables (Spatial Autoregressive Model,
hereafter SAR) is:

yit � ρwiyjt � Xitβ� τ1t � τ2t2 � µi � εit; (10)

where ρ is the coefficient on the spatially lagged dependent variable. It is important to note that
equation (10) cannot be used for future prediction because of the general unavailability of the
neighbor’s (i≠j) dependent variable (yjt), crop yields in our example. We estimate equation
(10), but we exclude it from the out-of-sample prediction performance analysis of 2013–2018 data
for this reason.

2.3. Specification of Heat Exposure Bins

As initiated in Schlenker and Roberts (2009), nonlinear temperature impacts on crop yields are
evident. Cooper et al. (2017) studied specification bias in crop yield response function and argued
the necessity of a flexible function form. Carter et al. (2018) reviewed the literature adopting
binned weather variables as regressors and suggested the possibility of multicollinearity when
using it in panel regression. Even though there has not been any consensus about picking the
“best” specification of heat units, it is agreed that heat should enter the crop yield response func-
tion regression nonlinearly. To adopt a more flexible functional form of g(hit;β) in Equation (2),
this study replicates all seven models previously specified using the binned heat exposure as in
Schlenker and Roberts (2009) as:
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yit �
Z

h

h
g�h�ϕitdh� δ1Pit � δ2P2

it � τ1t � τ2t2 � εit; (3’)

yit �
Z

h

h
g�h�ϕitdh� δ1Pit � δ2P

2
it � τ1t � τ2t

2 � µi � εit; (4’)

yit �
Z

h

h
g�h�ϕitdh� δ1Pit � δ2P2

itτ1t � τ2t2 � Sitθ� εit; (5’)

yit �
Z

h̄
g�h�ϕitdh� δ1Pit � δ2P2

it � τ1t � τ2t2 � µi � εit; where uN � r IT �WN� �uN � εN

(7’)

yit �
Z

h̄
g�h�ϕitdh� δ1Pit � δ2P

2
it � τ1t � τ2t

2 � Sitθ� uit where uN � r IT �WN� �uN � εN ;

(8’)

yit �
Z

h̄

h
g h� �ϕitdh� δ1Pit � δ2P

2
it � wi

Z
h̄

h
g h� �ϕitdh; Pit; P2

it

" #
γ � τ1t � τ2t

2 � τi � τit; (9’)

yit � ρwiyjt �
Z

h

h
g h� �ϕitdh� δ1Pit � δ2P2

it � τ1t � τ2t2 � µi � εit: (10’)

In Equations (3’)–(10’), nonlinear heat exposure is expressed as the cumulative GDDs over the
growing season as

R
h
h g�h�ϕitdh, where ϕit is the time distribution of GDDs in county i during year

t,g(h) is theheat exposure lengthdefinedbetweenthe lowerboundhandtheupperboundh.Tonumer-
ically estimate Equations (3’)–(10’), we use the eighth-order Chebyshev polynomials following
Schlenker and Roberts (2009). The detailed specification equation is described in Appendix A1.
andthevariablesweneed toestimateare theChebyshevpolynomial regressioncoefficientsofeachxit, k.

3. Data and Spatial Weights Matrix
To implement a prediction performance comparison, we assemble county data to estimate the
corn yield response function in the US. Because corn yields are heavily dependent on adequate
rainfall or irrigation, we consider the US counties to the east of the 100th Meridian line following
Schlenker and Roberts (2009). Because of a declining response rate in the National Agricultural
Statistics Service (NASS) acreage and production survey (Johansson et al., 2017), it is infeasible to
obtain well-balanced corn yield data from the NASS. While estimation methods for nonspatial
panel regression are broadly applicable in both balanced and unbalanced panel data, spatial panel
models with unbalanced data are not widely available5 and are a current research topic (two excep-
tions: Pfaffermayr, 2009; Wang and Lee, 2013). To estimate all 14 model specifications, therefore,
we first investigate the frequencies of NASS county corn yield records for 1981–2018 in Figure 2.

East of the 100th Meridian there were 2,471 counties in the 2012 Agricultural Census county
boundary map. As shown in Figure 2, the number of observations available to construct a

5To estimate spatial econometrics models, the reduced form regression equation from the structural equations is essential.
Since we generally do not know the spatial data generating process, missing observations in unbalanced panel data can rarely
be managed using statistical approximation. Also, the spatial weights matrix is exogenously determined by the spatial struc-
ture. Because it changes the spatial structure, adopting the time-varying spatial weights matrix corresponding to unbalanced
panel data violates the exogeneity of the spatial structure assumption. For these reasons, spatial econometrics models with
unbalanced panel data have not been analyzed like nonspatial panel models have.
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balanced panel with records for all years has declined sharply. To build a balanced county panel,
this study uses 1,042 counties (1981–2012) that, together, were the largest of counties available for
analysis to construct a balanced panel with a minimum of 1,000 observations. This is about 57% of
the total number of counties with at least one reported year of corn growing history detailed in
Appendix A2. The difficulty of acquiring balanced data likely explains why there has been scant
literature using spatial econometrics to study crop yield response compared to Ricardian
approaches. There would be a concern about selection bias from removing counties with unbal-
anced yield histories. We implement the robustness check for three benchmark models (Pooled,
FE, and RE) before and after removing unbalanced yields for 1981–2012 (see Table S4 in
Supplemental Materials). The results show that the selection bias in our analysis is not likely
to be serious, and this finding is consistent with results from the similar robustness checks adopted
in Schlenker and Roberts (2009). The counties included in this study are shown in Figure 3.

The remaining years (2013–2018) of corn yield data available from NASS are used to assess
out-of-sample prediction performance. There are 38,344 (33,344 for 1981–2012 and 5,622 for
2013–2018) total county corn yield observations in the study area (Figure 3) for the entire in-
sample and out-of-sample period from 1981 to 2018. Among these, 5,622 (14.43%) observations
are used for out-of-sample prediction. To summarize, we first use balanced panel data (total
33,344 observations) from the N = 1,042 counties for T = 32 years for the estimation and in-
sample model fitting, and then we implement out-of-sample predictions using data from the same
counties in 2013–2018. To further investigate prediction performance, we also implement year-
stratified bootstrapping using the 1981–2012 data detailed in the next section.

The minimum and maximum temperature daily PRISM data for March to August 1981–2018
are used to calculate GDDs. Using the pre-processed daily weather data from Yun and Gramig
(2019), we build −60 to �60°C heat exposure length in 1°C increment as Schlenker and Roberts

Figure 2. Number of counties east of the 100th Meridian line with a complete (balanced) panel of agricultural statistics
records, 1981–2018.
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(2009) did. Then, we sum the heat exposure lengths to get the GDDs between 8 and 32°C and
above 34°C for Equations (3)–(10), and the −1–30°C bins specified in Equations (3’)–(10’). The
total growing season precipitation is the sum of daily total precipitation in PRISM from March to
August (1981–2018).

In this study, we carefully select soil variables for RE models. Much of the previous literature
adopted soil structure (e.g., proportion of sand, clay, and silt) and other properties such as drain-
age or soil erosion factors as separate variables. For example, Schlenker et al. (2006) and Baylis
et al. (2011) used the percentage of clay and soil permeability. It is, however, important to note
that soil structure is one of the major determinants of other soil characteristics that may more
directly relate to crop yield or weather induce crop stress. Higher clay content means higher per-
meability, and more sandy soils have higher drainage class and erosion factors. Including soil tex-
ture and other related soil property variables in a regression together, therefore, may double-count
soil characteristics. Wolkowski (2005) classifies 10 important soil quality factors in crop produc-
tion systems. Among those, we selected four quantifiable factors—organic matter, K factor, water
holding capacity, and soil pH—to avoid the double-counting issue.6 These variables are extracted

Figure 3. Study area: dark blue counties (n= 1,042) with balanced data used for estimation and in-sample prediction
analysis.

6Wolkowski (2005) identified 10 soil quality factors that farmers prioritized as important indicators of soil quality: organic
matter, crop appearance, earthworms, erosion, tillage ease, drainage, soil structure, soil pH, soil P and K tests, and yield.
Among these, we include four quantitative metrics available from gSSURGO in an effort to avoid double-counting (i.e., water
holding capacity reflects soil texture and directly relates to weather variables that influence yield) that are popularly used in the
literature.
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from Yun and Gramig (2019) that provides the depth-weighted average soil factors across soil
horizons from gSSURGO on land where agricultural production occurs. The summary statistics
of variables used in prediction analysis are in Table 2.

In the regression, we take the log of crop yields as yit= log (corn yieldit � 1). We use Yun and
Gramig’s (2019) agricultural land use and land cover adjusted soil characteristics based on the
1992, 2001, 2011, and 2016 US Geological Survey’s National Land Cover Database (NLCD),
and we match them to the years in the balanced panel data (1992 to 1981–1995; 2001 to
1996–2003; 2011 to 2004–2013; and 2016 to 2014–2018). The soil variable summary statistics,
therefore, are the descriptive statistics for soil underlying agricultural land uses in the 4 years
of the NLCD.

Choosing a proper spatial weights matrix is one of the difficult questions in spatial economet-
rics. Figure 3 illustrates why a spatial weights matrix based on continuity cannot be applied
because there are a few isolated counties that have no direct neighbors. In the recent
Ricardian literature, Baylis et al. (2011) adopted the 10-nearest neighbors, and Dall’erba and
Dominguez (2016) used the neighbors within a 240 km cut-off distance. This study selects the
six-nearest neighbors to construct the spatial weights matrix; as shown in the results, we believe
this choice of the spatial weights works properly.

4. Estimation Results and Prediction Performances
We estimate 14 different model specifications. First, we estimate the response coefficients using
the balanced panel data (1981–2012). The estimation results for the models in Equations (3)–(10)
are presented in Table 3. The full estimation results are available from Table S2 in Supplemental
Materials. Following Elhorst (2014) and conventional usage, we provide abbreviated model names
in the first row of Table 3.

The estimation results in Table S2 show that most individual estimates are significant, and their
signs are generally in the same direction. Compared to the FE model that excludes time-invariant
variables relevant to yield determination, the soil variables in the RE model are statistically sig-
nificant. As discussed in the specification section, this empirically supports the argument that
location FE terms capture county-specific soil characteristics. In the SEM, KKP, and SAR spatial
econometric models, all spatial response coefficients (r, γ, and ρ) are highly significant. One inter-
pretation caveat is needed for the SLX model of Equation (9). The spatially lagged weather var-
iables were applied to all weather variables following the general specification rules in spatial
econometrics, including the squared terms. The primary issue here is how to interpret the

Table 2. Summary statistics

Variables # of Obs. Mean Median S.D. Min. Max

Corn yields by county, 1981–2012 (bu/ac) 33,344 115.3 116.0 33.5 0.0 236.6

Growing degree days (GDDs) for 8–32°C 33,344 149.9 151.0 12.0 92.5 180.7

Extreme growing degree days (GDDs) for 34°C or above 33,344 3.7 1.6 5.4 0.0 60.0

Total precipitation (mm) 33,344 573.2 560.3 152.1 57.5 1,284.4

Area-weighted soil water holding capacity (whc) (cm/cm3) 4,168 26.2 26.6 5.4 9.8 39.4

Soil erosion K factor 4,168 0.3 0.3 0.1 0.1 0.6

Organic matter (om) (%) 4,168 2.2 1.7 1.9 0.4 30.6

Soil pH (spH) 4,168 6.4 6.4 0.9 4.6 8.0

Notes: Weather variables calculate for March to August; Summary statistics of soil variables are calculated only for agricultural land in 1,042
counties based on four separate years of the National Land Cover Database spanning the study period from Yun and Gramig (2019).

Journal of Agricultural and Applied Economics 63

https://doi.org/10.1017/aae.2021.29 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2021.29
https://doi.org/10.1017/aae.2021.29
https://doi.org/10.1017/aae.2021.29


meaning of squared terms. If all weather terms are linear, then the spatial dependence structure is
apparent. The squared terms, however, do not clearly explain how the spatial dependence of the
first-order terms is spatially connected to the squared terms.

We do not present the overall goodness-of-fit or relevant overall significance test statistic
because the estimation methods are different across models. To compare in-sample prediction
performance, we calculate the squared sum of errors, root mean squared errors, and
Amemiya’s prediction criterion. Considering all three prediction performance metrics, the best
in-sample prediction model is the SAR model (10). The second best is either the FE or SLX model.
Since these models are frequently adopted to forecast future outcomes, we estimate the predicted
log corn yields using the 2013–2018 data that are not used for the estimation. The root mean
squared prediction errors (RMPE) in the last row of Table 3 is a metric of their prediction per-
formance. The RMPE results indicate that the SEMmodel (7) performs slightly better than the FE
model (4).

It is important to note that the SLX and SAR models are not compatible with this prediction
analysis because the data set is an unbalanced panel. Notably, we do not have corn yield data or
spatial weights (regions not included in the spatial weights matrix) for all neighbor counties. If we
are interested in future prediction to investigate the impact of climate change, the SAR and SLX
are unusable. The prior Ricardian literature examined the SAR specification estimating the direct
and indirect marginal effects for future prediction. We do not estimate these effects because they
are not directly comparable to other models in this study.

In Table 4, we repeat the same estimation and prediction analysis for models specified using
nonlinear GDD bins in equations (3’)–(10’). The full estimation results are available from Table S3
in Supplemental Materials.

Like Table S2, most of the estimates are statistically significant, and signs of estimates are simi-
lar across models. Note that we put the constant (0th order) term of the eighth-order Chebyshev
polynomials in the intercept, FE, or error terms. Since each coefficient of the Chebyshev polyno-
mials does not mean the size of GDDs, the signs of the estimates cannot be interpreted directly.
Similar to Equation (9) in Table 3, the estimates of the spatially lagged terms in SLX model (9’) do
not have direct meaning either. The SAR model has the best in-sample prediction performance.
Again, the RMPE is not applicable in the SAR and SLX models. In the out-of-sample RMPE, the
FE model performs slightly better than the SEM.

Table 3. Estimated spatial coefficients and in-sample prediction performances

Pooled FE RE SEM KKP SLX SAR

Equation
(3)

Equation
(4)

Equation
(5)

Equation
(7)

Equation
(8)

Equation
(9)

Equation
(10)

r, γ, or ρ 0.8148***(0.0035) 0.8216***(0.0033) 0.8003(0.0037)

County FE No Yes No Yes No Yes Yes

# of Obs. 33,344 33,344 33,344 33,344 33,344 33,344 33,344

SSE 2,390.9 1,223.1 2,024.7 1,252.2 2,088.5 1,215.1 485.3

RMSE 0.2678 0.1915 0.2464 0.1938 0.2503 0.1909 0.1206

APC 0.0717 0.0391 0.0608 0.0376 0.0627 0.0388 0.0146

RMPE 0.1920 0.1535 0.1864 0.1533 0.1758 NA NA

Notes: * p< 10%, ** p< 5%, and *** p< 1%; Standard errors are reported in parentheses; County FE, county fixed effects; SSE, sum of
squared errors; RMSE, root mean squared errors; APC, Amemiya’s prediction criterion; RMPE, root mean squared prediction errors for
2013–2018 out-of-sample period. The full estimation results are available from Table S2 in the provided Supplemental Materials.
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Across Tables 3 and 4 (in addition to Tables S2 and S3), it is important to note that the two RE
models (RE and KKP) perform relatively poorly compared to the other models. The in-sample
prediction capability of these models is also weaker after adopting the eighth-order polynomial
in GDDs. The FE and SEM models, however, perform better in both in- and out-of-sample pre-
diction with the nonlinear polynomial GDDs. Given that the nonlinear temperature effects were
empirically proven in the previous literature, we believe that the RE models are not a good pre-
dictor in these data.

To extensively scrutinize prediction performance, we implement an additional out-of-sample
approach with the year-stratified bootstrap following Schlenker and Roberts (2009). Due to the
considerable correlation across counties, this year-to-year sampling is able to preserve the
location-specific correlations within a year and reflect annual random weather fluctuations.
We first randomly selected 32 individual years of data with replacement from the entire 32-year
panel (1981–2012). The first 27 years of randomly drawn data are used for the estimation, and the
remaining 5 years (15.6% of the whole data) are used to evaluate out-of-sample prediction. We
replicate this process 1,000 times and got the RMPEs as a distribution for the 14 competing
models. The results are summarized in Table 5.

The second and third columns are the in-sample and out-of-sample prediction performance
statistics described in Tables 3 and 4. The fourth column is the mean of the RMPE from 1,000
bootstrap replications. The gray-colored cells indicate the best-performing model for each predic-
tion performance metric. The remaining 14 columns report a pairwise Welch t-test against the
null hypothesis of equal mean RMPE given unequal variances. Failure to reject the null hypothesis
indicates that two models provide the same level of prediction accuracy. The figures in the cells are
the t statistics. Since the sign of t statistic does not deliver any meaningful information, we omit the
signs for simplicity. Because of the symmetry, we also present the upper diagonal cells only. The
gray-colored cells indicate the cases that we cannot reject the null at any significance level.

The most directly noticeable results in Table 5 is that the SAR model of Equation (10’) pro-
duced the most inaccurate prediction performances. The mean RMPEs for both Equations (10)
and (10’) are the largest two among all 14 specifications. In addition, the Welch tests showed that
both are the two most different values from all others. In the prior Ricardian approaches, Baylis
et al. (2011) and Dall’erba and Dominguez (2016) empirically demonstrated that the SAR model
worked well to explain land values. Our results, however, show that the SAR model is not likely to
be a proper predictor in the crop yield response function.

Table 4. Estimation results with nonlinear GDD bins

Pooled FE RE SEM KKP SLX SAR

Equation
(3’)

Equation
(4’)

Equation
(5’)

Equation
(7’)

Equation
(8’)

Equation
(9’)

Equation
(10’)

r, γ, or ρ 0.8130***(0.0036) 0.8212***(0.0033) 0.7950***(0.0037)

County FE No Yes No Yes No Yes Yes

# of Obs. 33,344 33,344 33,344 33,344 33,344 33,344 33,344

SSE 2316.9 1186.4 2420.6 1234.7 2234.3 1171.5 485.2

RMSE 0.2636 0.1886 0.2694 0.1924 0.2589 0.1874 0.1206

APC 0.0695 0.0379 0.0727 0.0371 0.0671 0.0375 0.0146

RMPE 0.2004 0.1517 0.2286 0.1533 0.2380 NA NA

Notes: * p< 10%, ** p< 5%, and *** p< 1%; Standard errors are reported in parentheses; County FE, county fixed effects; SSE, sum of squared
errors; RMSE, root mean squared errors; APC, Amemiya’s prediction criterion; RMPE, root mean squared prediction errors for 2013–2018 out-of-
sample period. The full estimation results are available from Table S3 in the provided Supplemental Materials.
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Table 5. Model comparison for prediction accuracy

In-Sample
Out-of-
Sample

Out-of-Sample Bootstrapping (1981–2012): 27 Years for Estimation � 5 Years for Prediction with 1000 Replications

Welch Test for Equal Prediction Accuracy (Absolute t value Only)

Mean Pooled FE RE SEM KKP SLX SAR Pooled FE RE SEM KKP SLX SAR

Equation RMSE RMPE RMPE (3) (4) (5) (7) (8) (9) (10) (3’) (4’) (5’) (7’) (8’) (9’) (10’)

(3) 0.2678 0.1920 0.3223 29.78 14.18 31.78 11.74 29.32 49.51 1.63 27.68 0.75 30.20 1.19 27.41 86.45

(4) 0.1915 0.1535 0.2619 17.65 1.55 20.62 0.31 59.02 30.58 1.74 31.07 0.39 29.00 1.90 111.65

(5) 0.2464 0.1864 0.2955 19.60 2.90 17.21 54.07 15.45 15.56 14.50 18.09 13.13 15.31 102.56

(7) 0.1938 0.1533 0.2587 22.67 1.86 59.60 32.51 3.29 33.25 1.15 31.02 3.46 114.19

(8) 0.2503 0.1758 0.3005 20.16 53.36 13.11 18.45 11.88 21.07 10.63 18.18 101.57

(9) 0.1909 NA 0.2625 58.59 30.13 1.42 30.55 0.70 28.54 1.59 110.97

(10) 0.1206 NA 0.6357 48.83 58.38 50.05 59.15 49.96 58.30 17.30

(3’) 0.2636 0.2004 0.3257 28.54 2.47 30.99 2.81 28.27 83.20

(4’) 0.1886 0.1517 0.2657 28.78 2.12 26.88 0.17 109.16

(5’) 0.2694 0.2286 0.3209 31.52 0.52 28.49 91.41

(7’) 0.1924 0.1533 0.2611 29.43 2.29 112.07

(8’) 0.2589 0.2380 0.3200 26.61 88.63

(9’) 0.1874 NA 0.2658 108.72

(10’) 0.1206 NA 0.5243

Notes: RMSE for the root mean squared errors; RMPE for the root mean squared prediction error; Second column reports in-sample RMSE in Tables 3 and 4 for 1981–2012; Third column reports out-of-sample
prediction error in Tables 3 and 4 for 2013–2018; Fourth column reports mean out-of-sample RMPE from the 1000 bootstrapping; Shaded cells indicate prediction error between models is statistically
indistinguishable based on Welch test of the RMPE.
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The best three out-of-sample prediction performances are Equations (7), (7’), and (4), that is,
the lowest three mean RMPE in the fourth column. The Welch test results provide evidence that
these three models perform in a statistically identical manner for out-of-sample prediction (see the
SEM model (7’) in Table 5). Interestingly, all three are FE models. The first two are the SEM
specification. Considering that Equation (4’) from Schlenker and Roberts (2009) is the most pop-
ular specification in the literature, this result empirically suggests that the inclusion of spatial cor-
relation in the error terms of crop yield response functions will enhance prediction capability in
econometric models of crop yield response.

5. Conclusion and Discussion
Due to the enhanced accessibility and ability to manage weather, climate, and soil data, climate
econometrics (Hsiang, 2016) has become one of the most widely used tools to forecast the impact
of climate change on agriculture. In the literature, the Ricardian approach and crop yield response
function estimation are the two most popular approaches to climate econometrics. This study
provides a counterpart study to previous Ricardian analyses by accounting for spatial correlations
using spatial econometric models of crop yield response functions. To this end, this study first
demonstrates the possible conceptual explanations and empirical applications of modeling spatial
correlation in econometrics to specify 14 competing models. Using county-level corn yield
response to weather and time-invariant location characteristics in panel regressions, we perform
in-sample, out-of-sample, and bootstrapping out-of-sample predictions. Based on these predic-
tion performance comparisons, four major implications emerge.

First, spatial aggregation bias could be a significant source of spatial correlation between error
terms in empirical specifications of crop yield response functions. This study carefully discussed
the possible spatial correlation in common functional forms and models and compared the pre-
diction performance in various ways. The models with spatially dependent error structures—the
SEM specification of FE models in Equation (7) and (7’)—demonstrated generally powerful pre-
diction performance among 14 competing models studied. In spatial econometrics, omitted vari-
able bias has been emphasized as a motivation to use the SEM model (LeSage and Pace, 2009).
Using three propositions and empirical examples, we discuss how spatial aggregation of weather
variables can generate spatial correlation in the error terms of econometric models of crop yield
response functions as well. Fezzi and Bateman (2015) also found that spatial aggregation could
lead to estimation bias by comparing the estimates of Ricardian models using field and county
data. It is worth noting that nonspatial FE in Equation (2) and (2’) exhibit almost equivalent pre-
diction capability to SEM with FE. Because the estimated spatial weights matrix parameter is sta-
tistically significant and strongly positive (about 0.8), however, the SEM specification of the FE
model that controls for spatial correlations in the error terms is expected to achieve more accurate
statistical inference compared to FE. The relatively better prediction performance and statistical
inference benefits of the SEMmodel in this study, therefore, theoretically and empirically supports
the use of FE model specifications with nonparametric error structures used in Schlenker and
Roberts (2009) and the SEM model specification in Schlenker et al. (2006).

Second, the spatial lag specification known as SAR should be used cautiously for prediction
performance. Despite the SAR specification being one of the most popular models used in spatial
econometrics, our Welch test for out-of-sample prediction accuracy demonstrated that the
RMPEs of Equations (10) and (10’) deviate seriously from the best-performing prediction models.
This result illustrates that the SAR specification may perform poorly when used for prediction. As
mentioned earlier, a crop yield response function is generally used as a base model to predict
weather or climate impacts on crop yields. The SAR-based predicted responses may overempha-
size the impact of climate change on crop yields compared to an unknown counterfactual. The
SAR specification is not applicable for prediction of future crop yields because
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neighbors’ future yields are unknown, potentially resulting in misleading the direct and indirect
marginal effects. The SAR model, however, outperforms all other models when it comes to in-
sample prediction. This best performance suggests the possibility of using SAR as a predictor
of missing contemporaneous crop yields described in Johansson et al. (2017). In this setting,
the SAR specification would need to prove its empirical prediction capability compared to alter-
natives like the Bayesian kriging in Park et al. (2019).

Third, we argued that the counterpart of the FE model of crop yield response is the RE model
with time-invariant soil variables. The FE term in a crop yield response function controls for
location-specific soil characteristics and all other variables that are generally assumed to be
time-invariant. If the RE specification is motivated by a suspected omitted weather variable,
the soil characteristics should stay in the RE model argued in Equation (5). It is well known, how-
ever, that soil attributes like organic matter are dynamic and may vary across time based on man-
agement and cropping history. If the dynamic soil variables were available to researcher, then the
FE model should include soils in addition to the FE terms as a counterpart to RE. Unfortunately,
because those soil variables are unavailable in general, we cannot use the standard statistical test to
choose between the FE and RE models such as the Hausman test or spatial Hausman test between
Equation (4) and (5).

Lastly, the selection of prediction models requires careful performance comparisons. Our
results demonstrate that the FE or SEM with FE better predicts crop yield response among 14
competing models based on three different prediction performance metrics. Even though this
study considered the most common specifications of crop yield response functions, an extensive
set of spatial panel specifications are also available. Elhorst (2014) suggested the use of model
specification trees starting from the general nesting spatial model, including the spatial Durbin
specification. It is of course possible that an empirical specification test could end up selecting
alternative models (not FE or SEM with FE). Also, we can consider more flexible model speci-
fications through variable transformations, for example, inverse hyperbolic sine transformation.7

In reality, it is difficult to consider all combinations of model specifications and possible selection
criteria, and given so many possible options, it may be hard to know where to start for a given
application. This study provides an example of specification and selection strategies, emphasizing
the necessity of prediction performance comparisons with extensive competing models to reduce
the bias from model specification and selection criterion.

Despite our efforts on specification and performance analysis, we acknowledge that there are at
least three issues we have not addressed that require additional study. First, our study focuses on
finding the best predictive model rather than the most precise parameter estimates. Having good
estimates is essential for causal inference, but identification strategies or their implications are
beyond the scope of the current study. Second, well-balanced yield data are required to apply spa-
tial econometric estimation methods, and spatial econometric models for unbalanced panel data
are needed. Because of the lack of balanced data that conforms to the requirements of existing
estimation methods, it is not surprising that spatial econometric analysis of crop yield response
remains uncommon despite spatial Ricardian models having appeared regularly in the literature
for some time. Lastly, more extensive research is necessary to generalize the findings in this study.
Our results are valid for the given data that are commonly available for crop yields. To go beyond
the practical implications here, to provide general implications, crop yield response functions need
to be studied over various spatial units, regions, and performance criteria.

Supplementary Material. For supplementary material for this article, please visit https://doi.org/10.1017/aae.2021.29

7The authors are grateful to an anonymous referee for pointing out that there are more flexible specifications available for
the dependent variable transformation (e.g., Burgidge et al., 1988) or explanatory variable transformation (e.g., Cooper et al.,
2017) that ultimately are outside the scope of the current study focus on spatial econometric models.
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Appendix
A1. Specification of nonlinear heat exposure in Equations (3’)–(10’)

Schlenker and Roberts (2009) adopted three different specifications on the heat integrals: step
function, mth order Chebycheb polynomials, and piecewise linear. Because of the smoothness
in heat exposure, we use the Chebyshev polynomial approximation. The mth order Chebyshev
polynomial representation of

R
h
h g�h�ϕitdh is:

h
h
g�h�φitdh �

Xm
k�1

ωk

X30
i�	1

Tk�h� 0:5��it�h� 1� 	 it�h�� �
Xm
k�1

ωkxit;k

where Tk(⋅) is an mth order Chebyshev polynomial node and ωk is its coefficient. Because
Schlenker and Roberts (2009) proved the eighth-order polynomial worked the best, this study
also adopts the eighth-order specification.
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A2. Corn yield data

East of the 100th Meridian line, there were 2,471 counties covered by the 2012 Agricultural
Census. Figure A1 is the histogram of corn yield frequencies for 1981–2012. The number of
county-years that corn was grown in at least 1 year was 58,468 for 1981–2012 is given by the
sum of all frequencies in Figure A1. Among them, 1,042 counties have records for all 32 years.
The proportion of county-years used in the estimation, therefore, is 57% (1,042 counties × 32
years / 58,468).

Figure A1. Histogram of corn yield frequencies by number of total counties reported by USDA-NASS, 1981–2012.
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