J. Inst. Math. Jussieu (2023), 22(4), 1871-1930 1871

doi:10.1017/S1474748021000530  (©) The Author(s), 2021. Published by Cambridge University Press.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution
and reproduction, provided the original article is properly cited.

GEOMETRIC WEIGHT-SHIFTING OPERATORS ON HILBERT
MODULAR FORMS IN CHARACTERISTIC p

FRED DIAMOND

Department of Mathematics, King’s College London, WC2R 2LS, UK
(fred.diamond@kcl.ac.uk)

(Received 4 December 2020; revised 18 September 2021; accepted 22 September 2021;
first published online 15 November 2021)

Abstract We carry out a thorough study of weight-shifting operators on Hilbert modular forms in
characteristic p, generalising the author’s prior work with Sasaki to the case where p is ramified
in the totally real field. In particular, we use the partial Hasse invariants and Kodaira—Spencer
filtrations defined by Reduzzi and Xiao to improve on Andreatta and Goren’s construction of partial
©-operators, obtaining ones whose effect on weights is optimal from the point of view of geometric Serre
weight conjectures. Furthermore, we describe the kernels of partial ©-operators in terms of images of
geometrically constructed partial Frobenius operators. Finally, we apply our results to prove a partial
positivity result for minimal weights of mod p Hilbert modular forms.
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1. Introduction

The study of weight-shifting operations on modular forms has a rich and fruitful history.
Besides those naively obtained from the graded algebra structure on the space of classical
modular forms of all weights, there is a deeper construction due to Ramanujan [30]
which shifts the weight by two using differentiation, leading to a more general theory
of Maass—Shimura operators. Analogous weight-shifting operations in characteristic p,
first studied by Swinnerton-Dyer and Serre [34], take on special significance in the
context of congruences between modular forms and the implications for associated Galois
representations. In particular, one has the following linear maps from the space of mod p
modular forms of weight £ and some fixed level N prime to p:

e multiplication by a Hasse invariant H, to forms of weight k+p—1;
e a differential operator ©, to forms of weight k+p+1;
e a linearised p-power map V, to forms of weight pk.

These maps all have simple descriptions in terms of associated g¢-expansions: if f has
g-expansion »_a,q", then that of Hf (respectively ©f, Vf) is > a,q™ (respectively
> nanq"™, > anqP™). Following the work of Swinnerton-Dyer and Serre, there were further
significant developments to the theory due to Katz [23, 24] (interpreting the constructions
more geometrically), Jochnowitz [21, 22] (on the weight filtration and Tate’s ©-cycles) and
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Gross [20] (in the study of companion forms), providing crucial ingredients for Edixhoven’s
proof of the weight part of Serre’s conjecture in [14].

Suppose now that F' is a totally real field of degree d = [F': Q] and consider spaces
of Hilbert modular forms of weight k € Z* and fixed level prime to p, where ¥ denotes
the set of embeddings {0 : F — @p}. For such spaces of p-adic modular forms, Katz
[25] constructed a family of commuting differential operators ©,, indexed by the d-
embeddings o € ¥. The theory was further developed by Andreatta and Goren [1], who,
building on Katz’s work and Goren’s definition of partial Hasse invariants in [18, 19] (if p is
unramified in F'), defined partial ©-operators on spaces of mod p Hilbert modular forms.

Under the assumption that p is unramified in F, some aspects of the construction
of partial ©-operators in [1] were simplified in [12], which also went on to define partial
Frobenius operators (generalising V') geometrically and use their image to describe kernels
of partial ©-operators. When p is ramified in F, the effectiveness of the approach in [1]
was limited by the singularities of the available (Deligne—Pappas) model for the Hilbert
modular variety. Since then, however, a smooth integral model was constructed by Pappas
and Rapoport [29], and the theory of partial Hasse invariants was further developed in
this context by Reduzzi and Xiao in [32]. The theory of partial @-operators was revisited
in that light by Deo, Dimitrov and Wiese in [8], where they closely follow [1]. Here we
instead exploit the observations and techniques introduced in [12], applying them directly
to the special fibre of the Pappas—Rapoport model to construct and relate partial © and
Frobenius operators. In particular, this eliminates extraneous multiples of partial Hasse
invariants that appear in [8] and yields results whose implications for minimal weights are
motivated by the forthcoming generalisation to the ramified case of the geometric Serre
weight conjectures of [12]. The main contributions of this article may be summarised as
follows:

e a construction of operators ©, with optimal effect on weight (Theorem 5.2.1);

e a geometric construction of partial Frobenius operators V, (see Subsection 6.2);
e a description of the kernel of ©; in terms of the image of V}, (see Subsection 9.1);
e an application to positivity of minimal weights (Theorem 9.2.1).

We should emphasise that the focus of this article is entirely on Hilbert modular forms
in characteristic p. There is also a rich theory of ©®-operators on p-adic automorphic
forms which has seen major progress recently in the work of de Shalit and Goren [7] and
Eischen, Fintzen et al. [15], which in turn has implications in the characteristic p setting
[6, 7, 16, 17]. Another advance in characteristic p has been Yamauchi’s construction [36]
of ©-operators for mod p Siegel modular forms of degree 2. We remark, however, that all
of the work just mentioned only considers automorphic forms on reductive groups which
are unramified at p; the novelty of this article is largely in the treatment of ramification
at p.

We now describe the contents in more detail.

We first set out some basic notation and constructions in Subsection 2.1. In particular,
we fix a prime p, a totally real field F of degree! d = [F: Q] > 1, and let Op denote the

1Including the case F' = Q would introduce different complications in the treatment of cusps
and provide no new results.
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ring of integers of F' and S, the set of prime ideals of OF dividing p. For each p € S,
let ¥, ¢ denote the set of f, embeddings Or/p — F, and X, the set of e, f, embeddings
F, — @w where f,, (respectively e,) is the residual (respectively ramification) degree of

p. We let
Yo=1Ilyes, Zp.o ={mpilp € Spi € Z/foZ}
and Y =Tl,cq Xp ={0pijlpE€Spi€Z/foZj=1,....¢p},
where each 1, ¢ € Xy o is chosen arbitrarily, and 7, ; = Tgio and 0p;1,...,0p ¢, are any

ordering of the lifts of 7, ; to ¥,. We also define a ‘right-shift’ permutation o of ¥ by

N 9P7i,j+17 lf] < €p;
o(0p.is) = {ep,i+1,1; if j = ep.

In Subsection 2.2 we recall the definition of the Pappas—Rapoport model Yy for the
Hilbert modular variety of level U, where U is any sufficiently small open compact
subgroup of GLa(Ap ¢) of level prime to p. This may be viewed as a coarse moduli space
for Hilbert—Blumenthal abelian varieties with additional structure, where this additional
structure includes a suitable collection of filtrations on direct summands of its sheaf of
invariant differentials. The scheme Yy is then smooth of relative dimension d over O,
where O is the ring of integers of a finite extension of Q, in @p. Since the main results of
the article concern Hilbert modular forms in characteristic p, we will restrict our attention
to this setting for the remainder of the Introduction and let Y = Yy, r where I is the
residue field of O.

In Subsections 3.1-3.2 we construct the automorphic line bundles ZkJ on Yy for all
k, 1 € Z* and sufficiently small U (of level prime to p) and define the space of Hilbert
modular forms of weight (k,1) and level U over F to be

My 1(U;F) = H (Y17, A 1).
The spaces are equipped with a natural Hecke action making

My 1(F) := lim M1 (U F)
U

a smooth admissible representation of GLa(Ap ¢) over F. A key point, as already observed
in [12] in the unramified case, is that the parity condition on k imposed in the definition
of Hilbert modular forms in characteristic zero (for the group Resp,q GLz2) disappears in
characteristic p. We remark also that the effect of the weight parameter 1 (in characteristic
p) is to introduce twists by torsion bundles that make various constructions, in particular,
that of partial ©-operators, compatible with the natural Hecke action.

In Subsections 3.3—4.2 we recall results of Reduzzi and Xiao [32] that will underpin our
construction of partial @-operators. Firstly, there is a natural Kodaira—Spencer filtration
on direct summands of Q%U JF whose graded pieces are isomorphic to the automorphic

line bundles Z2307_ee (where ey denotes the basis element of 7% indexed by 0). Secondly,
for each 6 =0, ; ; € X, there is a partial Hasse invariant

Hy € My,,0(U;F), where hg =nge, 19 —eg
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with ng =p if 0 ; 1 for some p,¢, and ng = 1 otherwise. Multiplication by the partial Hasse
invariant Hy thus defines a map

-H9 : Mk’l(U;F) — Mk+h9}l(U;F)

which is easily seen to be Hecke-equivariant. We also analogously define invariants Gg €
Mo, n, (U;F) which trivialise the bundles Ag p,. The partial Hasse invariants Hy refine
the ones defined by Andreatta and Goren in [1] and give rise to a natural stratification on
Yy and a notion of minimal weight ki, (f) for nonzero f € My 1(U;F), which the main
result of [10] shows lies in a certain cone =™ C ZZ (see (10)).

We then follow the approach of [12, §8] to define partial ©-operators in Section 5. For
each 7 =7, ; € X, this gives a Hecke-equivariant operator

Or : My 1(U;F) — Myyng+2ep,1-e0 (U3 F)

where 6 =0y ; .,. Note in particular that if p is ramified, then the shift? in the weight
parameter k is by e,—19+eg. The idea of the construction, inspired by the one in [1, §12],
is to divide by fundamental Hasse invariants to get a rational function on the Igusa cover
of Yy, differentiate, project to the top graded piece of the 7-component of the Kodaira—
Spencer filtration and, finally, multiply by fundamental Hasse invariants to descend to
Yy and eliminate poles. The argument also gives a direct (albeit local) definition of the
©-operator without reference to the Igusa cover in (12) and establishes the following
result (Theorem 5.2.1) generalising [12, Thm. 8.2.2].

Theorem A. Let 7 =1, and 0 =0y ;.,. Then ©.(f) is divisible by Hy if and only if
either f is divisible by Hy or plke.

We turn to the construction of partial Frobenius operators Vj in Section 6. This
essentially generalises a definition in [12, §9.8] but requires significantly more work to
actualise if p is ramified. We do this using Dieudonné theory to define a partial Frobenius
endomorphism @, of Yy and an isomorphism ®5 Ay = Ay v, where

kK"=k+ Y kehg and 1”7=1+ ) Ishy,
0ex, pes,
in order to obtain, for p € S,, commuting Hecke-equivariant operators
‘/vp : MkJ(U;F) — Mku,lu(U;F).

We will use g-expansions to relate the kernel of ©, to the image of V, for 7 € ¥, g, so
we recall the theory in Section 7. This is a straightforward adaptation to our setting of
results and methods developed in [31, 4, 13, 5]. In Section 8 we compute the (constant)
g-expansions of the invariants Hy and Gy at each cusp of Y7, and we obtain formulas
generalising the classical ones for the effect of the operators ©, and V,, on all g-expansions.
In particular, this shows that the operators ©, for varying 7 commute.

2This precise shift is predictable from the point of view of forthcoming work with Sasaki
generalising the geometric Serre weight conjectures of [12] to the ramified case.
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In Subsection 9.1 we turn our attention to the description of the kernel of ©.. The
g-expansion formulas also show that ©,0V, =0if 7 € £, ¢ and that ker(0,) is the same
for all 7€ X, 0. Theorem A then reduces the study of the kernel to the case of weights
of the form (k”,1”) where k”,1” are as in the definition of V}, for which the argument
proving [12, Thm. 9.8.2] gives the following.?

Theorem B. Ifk1€Z* and 7 =71,; and 6 =0, ; ., , then the sequence

Vi o,
0 — Mkvl(UﬂF) —ﬂ) Mk//’l//(U;F) — Mk”+1’19+2€9,1”799 (U,]F)
s ezact.

Before discussing the application to positivity of minimal weights, we remark that a
less precise relation among the weight-shifting operations can be neatly encapsulated in
terms of the algebra of modular forms of all weights

Mot (U;F) = @) Mia(UsF),
k,1ez>

or even its direct limit Mot (F) := lim, Mot (U;TF) (over all sufficiently small levels prime
to p). It follows from its definition that the operator Vj, (respectively ©.) on the direct
sum is an F-algebra endomorphism (respectively F-derivation) of M (F). One also finds
that V,, maps the ideal

J=(Hy—1,Gy—1)ges

to itself.? Furthermore, O, (Hj) =0, (G}) =0 for all § € , so V, (respectively ©) induces
an F-algebra endomorphism (respectively F-derivation) of the quotient M. (F)/J. We
then have the following consequence of Theorem B (see Theorem 9.3.4).

Theorem C. If T €3, 0, then the sequence

Vi ~ 97’
00— Mtot (F)/j —F> Mtot (F)/J — Mtot (]F)/j
15 exact.

In Subsection 9.2 we apply our results to refine the main result of [10], which we
recall states that minimal weights of nonzero forms always lie in =™, The geometric
Serre weight conjectures of [12] (and its forthcoming generalisation to the ramified case)
predict that if f is a mod p Hecke eigenform which is non-Eisenstein (in the sense that the
associated Galois representation is irreducible), then k., (f) should be totally positive.
We use Theorems A and B to prove a partial result in this direction (Theorem 9.2.1).

Theorem D. Suppose that p € S, is such that F, # Q, and pfe > 3. Suppose that f €
My 1(U;F) is nonzero and k =Kkmin(f). If ko =0 for some 8 € £,,, then k=0.

3This is a slight reformulation of Theorem 9.1.1.

4The Hj and Gj, are slight modifications of the Hy and Gy obtained by rescaling those for
which j = 1; see Subsection 9.3.
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Since the Hecke action on forms of weight (0,1) is Eisenstein (see Proposition 3.2.2), the
theorem implies the total positivity of minimal weights of non-Eisenstein eigenforms in
many situations—for example, if p > 3 and there are no primes p € .S}, such that F, =Q,,.
We remark that the hypothesis F, # @, cannot be removed from Theorem D: if 3, = {6},
then there are nonzero forms whose minimal weight k satisfies kg =0 and kg > 0 for some
0’ # 6. However, forthcoming work with Kassaei will show that the Hecke action on such
forms is Eisenstein; like in [9, 10], the case of split primes seems to require a completely
different method. Unfortunately, the case of p <3, f, =1, e, > 1 slips through the crack
between the two methods. We do not know whether Theorem D should hold in this case,
but we still at least conjecture that the failure is Eisenstein.

2. Preliminaries

2.1. Embeddings and decompositions

We first set out notation and conventions for various constructions associated to the
set of embeddings of a totally real field F, which together with a prime p will be fixed
throughout the article.

We assume that F' has degree d = [F : Q] > 1, let Op denote its ring of integers, 0 its
different and ¥ the set of embeddings F' — Q, where Q is the algebraic closure of Q in C.

We also fix an embedding Q — @p. We let S, denote the set of primes of Op dividing
p and identify ¥ with [ Y, under the natural bijection, where ¥, denotes the set of
embeddings F, — @p.

For each p € S}, we let F}, o denote the maximal unramified subextension of F},, which
we identify with the field of fractions of W (Op/p). We also let f,, denote the residue degree
[Fy,0:Qpl, ep the ramification index [F} : Fy o], and X, ¢ the set of embeddings F, o —
@p, which we may identify with the set of embeddings Op/p — Fp or homomorphisms
W(Op/p) = W(F,). For each p € Sp,, we fix a choice of embedding 7, ¢ € £, o, and for
i € Z] foZ, we let Ty, ; = ¢' o1y, o where ¢ is the Frobenius automorphism of F,, (or W (F,,)
or its field of fractions), so that Xy 0 ={7,1,7p,2,-.-,7p,5, }. We also let 3o =J[,cg Ep,o0-
Letting q = Hpesp p denote the radical of p in O, note that ¥y may also be identified

peES,

with the set of ring homomorphisms Op/q — F,, (or, indeed, Op — F,).
For each 7 =7, ; € Yo, we let ¥, C ¥, denote the set of embeddings restricting to 7,
for which we choose an ordering 0y ;1,0;.:,2, - - 70p,i,ep7 so that
S=J] Sr={0pijlp€Spi€Z/fZ1<j<ey}.

TEX)

We also define a permutation o of ¥ whose restriction to each X, is the ey fy-cycle
corresponding to the right shift of indices with respect to the lexicographic ordering;

that is,
(L) = (1,2) = - = (ley)
(2,1) = (22) = - = (2e)
(fpal) = (fP’Q) — = (fpaep) — (171)'
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Let £ C Q be a number field containing the image of # for all # € £, let O be the
completion of O at the prime determined by the choice of Q — @p and let IF be its residue
field. For any O , = O ® Z,-module M, we write M =P M, for the decomposition
obtained from that of

pes,

Orp= [] Or.-
pes,

Similarly, for any W (OF /p) ®z, O-module N, we have a decomposition N =
obtained from

TEZpYO NT

W(Op/p) ez, 0= [] 0.

TEZPYO

In particular, for any O ® O-module M, we have the decomposition

M= M= M,

peES), TEYD

where we simply write M, for M, .. We also write M, ; for M, if 7 =7, ;; thus, M, ; is
the summand of the O , ®z, O-module M, on which W(Or/p) acts via 7 ;.

We also fix a choice of uniformiser w, for each p € S,. We let f,(u) denote the minimal
polynomial of @, over W(Op/p) and let f, denote its image in O[u] for each 7 € 3, o;
thus, v+ @y, ® 1 induces an isomorphism

Olu]/(fr(u)) — OFr,p QW (Or/p),r 0.

Furthermore, we have f;(u)=[[ycy (u—0(wyp)), and we define elements

St = (u—0p,i,1(p)) -+ (u—0p,, () (1)
and tr; = (u—bpij+1(@p)) - (u—0bpic, (@p))

of Olu]/(fr(u)) for j =0,...,e, (with the obvious convention that s ¢ = t;., = 1).
Note that each of the ideals (s, ;) and (t- ;) is the other’s annihilator; furthermore, the
quotients of Ofu]/(f-(u)) by these ideals are free over O, and the corresponding ideals in
OF,p @w(0p/p),» O may be described as kernels of projection maps to products of copies
of O, and hence depend only on j and the ordering of embeddings and not on the choice
of uniformiser w,,.

For an invertible Op-module L and an embedding 6 =6, ; ; € ¥, we define Lg to be
the free rank 1 O-module

Ly =t7—7j(L®O)T ®O[u]79 O. (2)

Note that Ly is not to be identified with L ®¢, ¢ O; rather, there is a canonical map
Ly — L®o,,¢ O which is an isomorphism if and only if j =e,. If L and L’ are invertible
Op-modules, we will write LL' for L®p, L' and L~ for Hom o, (L,OF). Note that there
are natural maps Ly ®o Lj — (LL')p and (L™')g — Hom(Le,O) but, again, these are
isomorphisms if and only if j =e,.
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2.2. Pappas—Rapoport models

In this section we recall the description of the Hilbert modular variety as a coarse moduli
space for abelian varieties with additional structure, along with the construction by
Pappas and Rapoport of a smooth integral model (see [29] and [33]).

Let G = Resp)gGL2 and let U be an open compact subgroup of GLQ(@F) C
GLa(Ap.¢) = G(As) of the form U,UP, where U, = GLy(Op,,) and UP C GLy(A'%)) is
sufficiently small, in a sense to be specified below. 7

We consider the functor which associates, to a locally Noetherian O-scheme S, the set
of isomorphism classes of data (A,¢,A,n,F*), where:

e s:A— S isan abelian scheme of relative dimension d;

t:Op - Endg(A) is an embedding such that (S*Qh/s)p is, locally on S, free of

rank e, over W(OF/p) ®z, Os for each p € Sp;

e )\ is an Op-linear quasi-polarisation of A such that for each connected component
S; of S, A induces an isomorphism ¢,0 ®p, As, — Agi for some fractional ideal ¢;
of F prime to p; '

e 7 is a level UP structure on A; that is, for a choice of geometric point 5; on
each connected component S; of S, the data of a m(.5;,5;)-invariant UP-orbit of

5;{’) =0r® 7P _linear isomorphisms®
i ((5;?))2 —®0, T (4s,),

where TP) denotes the product over £ # p of the f-adic Tate modules and g € U?
acts on 7; by pre-composing with right multiplication by g~!;
e F* is a collection of Pappas—Rapoport filtrations; that is, for each 7 =7, ; € X,

an increasing filtration of Op , @w (0, /p),+ Os-modules
0=FOcrFVc...cFo D cFl) = (5.0
such that for j =1,...,ep, the quotient
Lyiji=FD |FI~Y
is a line bundle on S on which Op acts via 0, ; ;.

The proof of [12, Lemma 2.4.1] does not assume p is unramified in F' and shows that
if UP is sufficiently small and « is an automorphism of a triple (A,:,n) over a connected
scheme S, then a = ¢(u) for some p € UNQOF. If we assume further that —1 ¢ UNOF,
then it follows from standard arguments that the functor above is representable by an
infinite disjoint union of quasi-projective schemes over O, which we denote by Yy, and
the argument in the proof of [33, Prop. 6] shows that Yy is smooth of relative dimension
d over O. Furthermore, defining an action of O} on Yy by

F.(p),+
V'(A7L7Aa777f.) = (AaLvy)‘a’m]:.)

®Note the conventions in place with respect to the different, which are motivated by the point of
view that we wish to systematically trivialise modules defined by cohomological constructions.
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(asin [11, §2.1.3]), we see that the resulting action of O;’ (p)’+/(Uﬂ(91§)2 is free and the
quotient is representable by a smooth quasi-projective scheme over O, which we denote
by YU—

We also have a natural right action of GLo (Agg)f) on the inverse system of schemes Yy
induced by pre-composing the level structure n with right multiplication by ¢g—'. More
precisely, suppose that U; and Us are as above (with UF and U} sufficiently small) and
ge GLQ(Ag)f) is such that g~ U, g C Us. Letting (A,1,\,n,F*) denote the universal object
over f’Ul, there is a prime-to-p quasi-isogeny A — A’ of abelian varieties with Op-action
inducing isomorphisms d®p,, T (Af) = 771-(((/9\1(;,?))2 g~ 1) for each i, from which we obtain
a level Us-structure  =nor,-1 on A’ (where r,-1 denotes right multiplication by g~').
Together with the other data inherited from A, we obtain an object (A’,J,N,n/,F'®)
corresponding to a morphism py : 57U1 — }7U2 and descending to a morphism Yz, — Yy,
which we denote p,. These morphisms satisfy the evident compatibility pg, 0 pg, = Pg1 g,
whenever gl_lUlgl C Uy and g2_1U2g2 C Us.

Finally, we remark that the schemes Yy define smooth integral models over O for the
Hilbert modular varieties associated to the group G (with the usual choice of Shimura
datum), and their generic fibres and resulting GLQ(AE,f)f)—action may be identified with
those obtained from a system of canonical models. In pz’irticular, for any O — C, we have
isomorphisms

Yo (C) 2 GLo(F): \(H % GLa(Ap,¢) /U) = GLa(Op, ()4 \(H x GLa(AL) /UP)

compatible with the right action of GLQ(A%) on the inverse system and inducing a
bijection between the set of geometric components of Yy and

Afp/FY det(U) = (ARY)* /OF ), det(UP).

These isomorphisms arise in turn from ones of the form

¥ir(C) = 8La (O ) \(9% x GLa(AL ) /U7),
under which the set of geometric components of Yy is described by (Ag)f)x / det(UP).

3. Automorphic bundles

3.1. Pairings and duality

Before introducing the line bundles whose sections define the automorphic forms of
interest in the article, we present a plethora of perfect pairings provided by Poincaré
duality.

We fix a sufficiently small U as in Subsection 2.2 and consider the de Rham cohomology
sheaves H}r(A/S) = RIS*Q;‘/S on the universal abelian scheme A over S = Yy. Recall
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that these sheaves are locally free of rank 2 over Op ® Og. Furthermore, Poincaré duality
and the polarisation A induce an Op ® Og-linear isomorphism

Hig(A/S) = Homos(Hig(AY/S),0s) «— Homos(Hig(d®0, A)/S),0s)
|
’Homos(a_l(@oF’HéR(A/S),Os)

(where ¢ depends on the connected component of S and disappears from the last
expression since it is prime to p). This in turn induces Op p @w (0, /p),r Os-linear
isomorphisms

Har(A/S)- = Homo, (0, @0, , Har(4/S)7,05s) 3)

which we view as defining a perfect Og-bilinear pairing (-,-)? between H, := Hlz (A/S),
and D;l ®0y., Hr for 7 € ¥y o. Furthermore, the pairing is alternating in the sense that
(r,c2y)? = —{y,c®x)? on sections. Alternatively, we may apply the canonical Or ® R-
linear isomorphism

Homo,gr(M,0r ® R) — Hom g0 ' ®0, M,R)

induced by the trace for any Op ® R-module M to obtain an Op ® Og-linear
isomorphism

Har(A/S) = Homo,eos (¢! ®o, Hir(A/S),0r @ Os), (4)

and hence a perfect alternating Or , @ (0, /p),» Os-bilinear pairing (-,-), on H,.

Note that H, is locally free of rank 2 over Op p ®w (0, /p),» Os and hence a vector
bundle of rank 2e, over Og. Furthermore, (S*Qk/S)T is a subbundle of H, of rank e,
but is not locally free over OF,p, ®w (0, /p),~ Os if e, > 1 (in which case the failure is on

a closed subscheme of codimension 1) and, more generally, fﬁj ) is a subbundle of rank Ji
for j=0,1,... ep.

Recall that for j =0,1,...,e,, we defined (see (1)) elements s, ; and ¢, ; of the ring
OF,p @w(0p/p), O = Olul/(fr(u)), where f, is the image under 7 of the Eisenstein
polynomial associated to our choice of uniformiser wy. In the following, we shall fix
7 and omit the subscripts 7, p and ¢ to disencumber the notation; we also write simply W
for W(Op/p). Note that since H is locally free over Op , @w Og and F () is annihilated
by s, we have that F() is in fact a subbundle of ¢;H.

For a subsheaf & C H of Op,, ®w Og-submodules, we define &+ to be its orthogonal
complement under the pairing (-,-); that is, the kernel of the morphism

H = 'HomoF,p@WoS (H,Op’p Qw Os) — Hom(gﬂp@Wos (5,OF,|J Qw Os)

or, equivalently, the orthogonal complement of 0;1 @0, € under the pairing (-,)°. Note
from the latter description that if £ is an @g-subbundle of A, then so is EL.

Lemma 3.1.1. We have the equality (F))+ = tj_l}"(j) forj=0,1,... e, where tj_l]:(j) =
ker(H N tiH — t;H/FD) is the pre-image sheaf of F) under t;.

Proof. We prove the lemma by induction on j, the case of j =0 being obvious.
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Suppose then that 1 < j <e and that (FU~D)L = t;_ll}'(jfl). Note that (FU))+ and
tj_l]-" () are both kernels of surjective morphisms from # to vector bundles of rank j

on S, so each is a subbundle of rank 2e — j, and hence it suffices to prove the inclusion
t;l}"(j) C (FU)L. To do so, we may work locally on S and assume that FU)(V) =

FU=Y(V)& Rz; where V = Spec R is a Noetherian open subscheme of Yy such that H|y
is free over O , @w Oy and z; € H (V) satisfies (u—0;(w))x; € FU~Y(V). In particular,
xj = t;y; for some y; € tjill]:(j_l)(V), so that
tFOWV) =" FUD(V)@eRy; and (FO(V): = (FUD (V)N (Rx))*.
Note that if w € tj_l}'(j)(V), then
ti—1w = (u—0;(w))tjw € (u—6;(w))FV (V) c FU=D(V),
so that w € t;_ll}"(j_l)(V) = (FU=D)(V))*. Furthermore, if w € t;l}"(j_l)(V), then

(w,zj) = (w,t;y;) = (tjw,y;)

since tjw € FU~ and y; € tjf_ll]-'(jfl)(V) = (FU=D(V))*. Finally, since the pairing is
alternating, we have
(Wi x5) = (Wi ty5) = (t95:95) = (25,95) = —(¥5,25),

which implies that (y;,2;) =0 (since Yy is flat over Zs if p=2).

We have now shown that t;l]-'(j)(V) C (FUDWVNE N (Ra))t = (FOV)L, as
required. O

We now define G = (u—60;(w))"*FU=Y for j =1,...,e. Thus, GU) is a rank j+1
subbundle of H, and we have inclusions of subbundles FU—1 ¢ FU) c GU, so that
L;:=FW/FU=D is a rank 1 subbundle of the rank 2 vector bundle P; := G\ /FU—1),
Furthermore, all of the inclusions are morphisms of Op , ®w Og-modules, and Of acts
on P; via ;.

Note that G is annihilated by s;, so that gWw t;H, and we have t;lg(j) =
t7 1, FU= = (Fi=1)+ by Lemma 3.1.1, from which it follows also that

—1(=1) _ 4=1p—1pGL _ ()L
t A FUTD =1 (151G = (6D)
(The last equality can be seen by arguing locally on sections or by noting that the diagram
7[ - 'Homop’p@gwos ('H,Op,p Qw Os) _— ’Homopyp(gwos (g(j),ORp Qw 05)
H —— Homo,. ,ow 05 (H,0r,p @w Os) —— Homo,. ,ewos(t; 'GY),0r , @w Og)

commutes, where the left horizontal morphisms are defined by the pairing, the right by
restriction and all of the vertical morphisms by ¢;. The kernel of the composite along
the top is (GY)*, whereas t;l(t;lg(j))l is the kernel of the composite along the left

and bottom. Since t; :t;lg(j) -G is a surjective morphism of vector bundles, the
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leftmost vertical arrow is injective, so these kernels coincide.) Therefore, multiplication by
t; defines an isomorphism (FU—D)L /(GO =5 G /FU=D  and composing its inverse
with the isomorphism
(FOTHNGD) 5 Homoy yowos (GV/FUY, 08 p @w Os)
induced by the pairing on 7, we obtain an alternating (OF,p @w Og)-valued pairing (-,-);
on P, :=GU) /FU=1 whose description on sections is given in terms of (4) by
(tjz,ty); = (@,ty) = (t;z,y).
Note that since Of , acts via 7; on P;, we in fact have the identification
Homoy, w05 (Pj,Or,p @w Os) = Homos (P;,1;)

where Z; is the sheaf of ideals, and trivial rank 1 Og-subbundle, of OF , @ Og generated
by the global section [[;;(u—7j(wy)). We thus obtain a trivialisation of Ao, Pj
corresponding to a perfect Og-valued pairing (-,-)g,

shows is given in terms of the original pairing (-,-)* of (3) by the formula

<tj:r”y>§') = <‘T7f/(w7rp)71 ®y>0

on sections (where f’ is the derivative of the Eisenstein polynomial f).

which an unravelling of definitions

3.2. Automorphic line bundles

Recall that the Pappas—Rapoport model ?U is equipped with line bundles® L;, which we
described in Subsection 3.1 as subbundles of the rank 2 vector bundles P;. It is natural
and convenient to consider also the twists of £; by powers of the determinant bundle
of Pj:
Nj =N P2 Lj®os M,

where M is the line bundle P;/L;. Note that the pairing (-,-)9 defines an isomorphism
M; =5 £ and a trivialisation Og — Nj (which depends on the choice of ).

As we will now consider these bundles for varying 7, we resume writing the indicative
subscripts; thus, for 7 = 7, ;, we will denote G by giﬂ ), Pj by Py,s,; and similarly for
M; and N;. We also freely replace the subscript ‘p,7,j” by 6, where 6 =0, ; ;, so that for

each 0 € %, we have now defined a rank 2 vector bundle Py and line bundles Lg, My, Ny
on S =Yy, along with exact sequences

0— Ly — Py — Myp—0 (5)

and a trivialisation of Ny = A% Po = L @0 M. Furthermore, the bundles Py, L and
My are O ® Og-subquotients of Hy (A/S) on which OF acts via 6.

Recall that we have an action of Oy (p),+ O1 Yy defined by multiplication on the quasi-

+
polarisation. In particular, if v € O ()4 then the identification of v* A with A induces an

Or ® Og-linear isomorphism v*H}s (A4/5) = Hlg (A4/S) under which v* F*® corresponds to

6For the moment, we continue to suppress the fixed 7 =7, ; € £ from the notation.
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F*, and we thus obtain isomorphisms «, : v*Py —— Py compatible with (5) and satisfying

oy, = o, ov* () (for v,/ € OF . Recall also that the action of O3 on Yy
F,(p),+ F,(p),+

factors through Op, , , /(UNO})?, the isomorphism A = v* A being defined by «(u1)
if v=p? for p e UNOjp, and one finds that the automorphism of Py obtained from a,

is multiplication by 6(u), so the natural action of O} (p),+ On the bundles fails to define

descent data with respect to the cover 17U — Yy. We do, however, obtain descent data
after taking suitable tensor products or base changes of these bundles, which we now
consider.

For any O-algebra R, we will use -g to denote the base change to R of an O-scheme X,
as well as the pullback to Xr of a quasi-coherent sheaf on X. Let {eg|6 € ¥} denote the
standard basis of Z*. For k =" kgey and 1= " lpey € Z*, we define the line bundle

A =@ (£5% o NF) = @ (£55 1 @ M5")

0ex oex

on S = ?U, where all tensor products are over Og. For n = > ngpey € 7>, we let xn :
O) — O* denote the character defined by xn(p) =[1,0(1)", and we let xn r denote
the associated R*-valued character. If k, 1, R and U are such that xxio1 g is trivial on

OxNU, then the action of (9}< (p),+ OB .Zk,l, r (over its action on )7& r) factors through

(s (o)t /(UNOF)?* and hence defines descent data, in which case we denote the resulting
line bundle on Yy g by Ak 1 g

Definition 3.2.1. For k, 1, U and R as above, we call Ay 1 g the automorphic line bundle
of weight (k,1) on Yy g, and we define the space of Hilbert modular forms of weight (k,1)
and level U with coefficients in R to be

M 1(U; R) == H°(Yy, g, Ax 1, R)-
We note some general situations in which this space is defined:

e The paritious setting: if w = kg + 2lp is independent of 6, then xyxio1(p) =
Nmp/g(p)®” =1 for all € UNO}; (assuming only U is small enough that UNOF
has no elements of norm —1 if w is odd).

e The mod p setting: if R is any F = O/me-algebra and U is sufficiently small that
p=1modp for all pe UNOF and p € Sy, then §(u) =1 mod me for all € X, so
Xk+21,F 1s trivial on U N (’);, and hence so is xk+21, Rr-

e The torsion setting: if R is an O/p"NO-algebra and U is sufficiently small that
1 =1mod pN Op for all € UNOF, then xiio,0/pvo is trivial on UNO}, and
hence so is xk+21, r-

We also have a natural left action of GLo (Ag)f) on the direct limit over U of the spaces

My 1(U; R). More precisely, suppose that U; and U are as above and g € GLg(Ag)f)
is such that ¢~ 'U;g C Us, in which case recall that in Subsection 2.2 we defined a
morphism gy : f/Ul — }7U2 descending to a morphism pg : Y5, — Yy,. Furthermore, the
morphism p, is obtained from a prime-to-p quasi-isogeny A — A’ where A is the universal
abelian scheme over }N/Ul and A’ is the pullback of the universal abelian scheme. We

https://doi.org/10.1017/51474748021000530 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000530

1884 F. Diamond

thus obtain isomorphisms ,52739,2 — Py,1 compatible with (5) and the action of O; () +

(augmenting the notation for the automorphic bundles on ?Ui and Yy, p with the
subscript 7). Note that Uy NOX C Uy NOY, so if Ay r 2 descends to Yy, g, then Aw1 g1
descends to Yy, r, and we obtain an isomorphism p;AkJ’ Rr2 = Ak 1 r1. We then define
l9] = l9luy, U, : M1 (Ua; R) = My 1(Ur; R) as the composite

g % ~
H®(Yu,, A r,2) — HO(Yu,, 05 Ax r2) — HO (Yo, Ak 1)
These maps satisfy the obvious compatibility, namely, that

[91]0,, 0, 0 [92]vs, 05 = [9192) U4, U5

whenever g7 N g1 CUsz and g5 1U292 C Uz, and hence define an action of GLQ(Agg)f) on

My (R) := ling,l(U;R) (6)
U

(where the limit is over sufficiently small open compact U with respect to the maps
[1]v,,v,)- For paritious k, 1 and any choice of O — C, we may identify the spaces My 1(U;C)
with those of holomorphic Hilbert modular forms, compatibly with the usual action (up
to normalisation by a factor of ||det g|| depending on conventions).

Finally, we remark that the action of v € OfX’,(p), 4 on the trivialisation of Ny is given
by multiplication by 6(v), so their products do not descend to trivialisations of line
bundles on Yy r. However, since the stabiliser of each geometric connected component
of Yy is Of , Ndet(U), we can obtain a (noncanonical) trivialisation of Ag1 r as in
[12, Prop. 3.6.1], provided xi g is trivial on O;Hr Ndet(U) and the geometric connected
components of Yy are defined over R. Furthermore, the same argument as in the proof
of [12, Lemma 4.5.1] shows the following.

Proposition 3.2.2. IfpV R=0, then the action OfGLQ(AS;Z?’)f) on Mo 1(R) factors through
det : GLQ(A;I?)f) — (Agf)f)x; Furthermore, as a representation of (Ag’)f)x, Mo 1(R) is
isomorphic t(; the smo;)th induction of the character 0;,(p),+ — R* 7 defined by o —
[Ts0(c)'.

3.3. The Kodaira—Spencer filtration

In this section we define a filtration on Q%,U /0 whose pieces are described by automorphic
bundles with weight components kg = 2, l[9 = —1. The construction of the filtration is
due to Reduzzi and Xiao (see [32, §2.8]), but their presentation is complicated by the
fact that they wish to prove smoothness simultaneously, and it obscures the fact that the
bundles we denoted GU) automatically satisfy the orthogonality condition appearing in
the definition of their counterparts in [32]. We will show below that, with smoothness
already established, one can give a more direct conceptual description of the filtration
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and its properties.” Furthermore, in the case p = 2, the argument in [32] appeals to a very
general flatness assertion for divided power envelopes for which we could not find a proof
or reference, so it is not used here.

Theorem 3.3.1 (Reduzzi-Xiao). There exists a decomposition

2%,0= D @QYU/O pi

peS, i=1
together with an increasing filtration
0=Fil’(Q}, 0, C Fil (Qly[]l/opl) c o 1 1
c Fil®r (QYU/Opz) Cc Fil®r (QY /Opz) QYU/O pi
for each py € S, and i =1,...,f,, such that for each j =1,... ey, grj(QYU/O,p,i) 1
isomorphic to the automorphic bundle Ase, —e, 0, where 6 =0, ; ;.

Proof. As usual, we first prove the analogous result for S := }N/U and then descend to Y.

We let 8 : S —+ A < Zy denote the first infinitesimal thickening of the diagonal
embedding, and we view Q}g /o 8 0L, where Z denotes the sheaf of ideals defining A in
Zy. Letting s : A — S denote the universal abelian scheme, the transition maps for the
crystal R'scris «Oa sz, and canonical isomorphisms with de Rham cohomology yield an
Or ® Ogz,-linear isomorphism

a:piHar(A/S) — gy Har(A/S)

extending the identity on S = A, where py,qo : Zg — S are the two projection maps Zg — S.
Since a is Op-linear, it follows from the definition of P, ; = gﬁ” that « restricts to an
isomorphism

or 1 poPr — 5P
for each p € S, and 7 € X 9. Furthermore, since the composite
PoLr1 = poPra = qoPr1 — gg M1
has trivial pullback to S = A, it factors through a morphism
60,+Lr1 =PoLr1®0,, (0z,/T) — ggMr1®0,, L = 60,:Mr1®0,, T
and hence induces a morphism

BT,l : 60,*([:7',1 ®(95 M;ll) — 7.

"The simultaneous treatment in [32] seems natural in view of the inherent overlap in the analysis
of deformations needed for both results. However, the decision not to appeal to the results in
[35] and [33] also makes reference to a perceived minor gap in the proof of [35, Prop 2.11];
we found no such gap, nor is that result even needed, but we remark that we made implicit
use of [35, Cor. 2.10] when invoking the proof of [33, Prop. 6] to conclude that Yy is smooth
over O.
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We then define the sheaf of ideals Z, ; on Z; to be the image of 3,1, and we let Z, ;
denote the subscheme of Z; defined by Z. 1, and p, 1 and ¢, the resulting projection
maps Z,1 — S. By construction, the pullback of 8, to Z; 1 is trivial, and hence so
is that of the morphism p§L. 1 — ¢5M 1, which implies that the pullback of o maps
Pra1lsa :p;l]-'r(l) isomorphically to g7 1 £71=¢; 1.741). It follows from Op-linearity that
o induces an isomorphism p;lgﬁ?) AN q;i)lgg) (if e, > 1), and hence an isomorphism

Q7,2 ip:,lprﬂ - (I:,1Pﬂ2~
The same argument as above now yields a morphism

Br.2:80,4(Lr 2 ®0s M7 5) — T/ T 1,

whose image is that of a sheaf of ideals on Zy we denote by Z; ».
Iterating the above construction thus yields, for each 7 € ¥, o, a chain of sheaves of
ideals

0 :IT,O CIT,l [@EERR CI7—7ep
on Zg such that o induces

e isomorphisms p; j]-'ﬁj ) >, qr, j]:T(j )

e and surjections 0 «(Lr j ®0g M;;) L i/Tr -1,

for j=1,...,ep,, where Z; ; denotes the closed subscheme of Z; defined by Z, ; and p; j,
gr,; are the projections Z, ; — §.
Furthermore, we claim that the map

b P 1.1

PES,TEX 0

is surjective. Indeed, let J denote the image and let T denote the corresponding closed
subscheme of Zy, so T is the scheme-theoretic intersection of the Z, ., , and let® p,
q:T — S denote the projection maps. By constructlon « pulls back to an isomorphism

p*HI(A/S) = q*HdR(A/S) under which p* 7Y =% ¢* FY9) for all 7 and j. In particular,
t Qp car =0 (s QA/S) — q*(s QA/S) u*Qq*A/T (where t: p*A — T and u: ¢*A —
T are the structure morphisms), which the Grothendieck—Messing theorem implies is
induced by an isomorphism p*A = ¢*A of abelian schemes lifting the identity over S.
Since the isomorphism respects the filtrations F* and the lifts of the universal auxiliary
structures ¢, A and n over T are unique, it follows that p*A = ¢* A, which means that
p=qeS(T),soT=A.

Now defining Qs/o pi and Fil’ (QS/O n ) =060L, 5 forpe S, 1<i<f,
1 < j <ep, we obtain surjective morphisms

Lr, . ®0s M; g 8T (QS/O p,i i) and @Q}S‘/O,p,i - le/o-
Pt

=05Z

Tp,is€p

Since the L, . j ®og M;;m are line bundles and Q,IS'/O is locally free of rank d, it follows

that all of the maps are isomorphisms.

8With apologies for the temporary dual use of p.
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Finally, the constructions above are independent of the polarisation A and hence are
compatible with the action of v € O}X,’(p)’ LonS= Y. More precisely, the pullback of «
via the diagonal map (v,v) is compatible with the canonical isomorphism v*H}z (4/5) =
HLir(A/S) induced by the identification of v*A with A, from which it follows easily that
the morphisms in the construction of the filtration are invariant under the action of
O;, o)+ and hence descend to give the decomposition, filtrations and isomorphisms in
the statement of the theorem. O

Let us also note the interpretation of the Kodaira—Spencer filtration in terms of tangent
spaces. For a closed point y of S corresponding to the data Ay, = (Ao, 0, 0,70, F3) Over
a finite extension k of the residue field of O, the fibre T (S) of Homoey (le/o,(?g) is
canonically identified with the set of isomorphism classes of data A; over k[e] lifting
A,, and the decomposition and filtrations of the theorem yield dual decompositions of
T,(S) into components T},(S), with decreasing filtrations Fil? (T} (S),). From the proof
of the theorem one sees immediately that @ Fil?"(T,(S),) corresponds to the set of
(A1,e1,A1,m,F7) such that .7:1(2 ‘
canonical isomorphism

Hgp (A1 /kle]) = Heyo(Ao/Kle]) 22 Hg (Ao/k) @1 kle].

We note also that the theorem yields a canonical (Kodaira—Spencer) isomorphism

is the image of FéfT) ®y; kle] for all 7 and j < j, under the

d ~ad ol e~
Qy, 0 = Noy, vy 0 = Az,-1,0

(writing > meg as m for m € Z). Furthermore, the decomposition, filtrations and
isomorphisms of the theorem (and hence also the Kodaira—Spencer isomorphism) are
Hecke-equivariant in the obvious sense. More precisely, the same argument as for the

compatibility with the O; ®) -action, but using the quasi-isogeny in the construction

of pg, shows that if Uy, Uz and g € GLQ(AE;Iv))f) are such that g~ 'U,g C Uy, then

p;Filj(Q%/U J0.p,i) corresponds to Filj(Q%/U Jo.p,i) for all p,ij under the canonical
2/ %P /5P,

isomorphism p} Q3. /o A Qy, Jo+ and the resulting diagrams
2 1
p;AQQG,feg,O,2 N4> AQEQ,*EQ,O,l
*grd (Ol ~ (L
P8’ (QYUQ/O,p’i) > gt (QYUl/O»p,i)
commute (where the top arrow is defined in the discussion preceding (6)).

4. Partial Hasse invariants

4.1. Construction of Hy and Gy

We now recall the definition, due to Reduzzi and Xiao [32], of generalised partial
Hasse invariants on Pappas—-Rapoport models. These will be, for each 0 =0, ;; € &,
a Hilbert modular form Hy of weight (hy,0) with coefficients in F = O/mep, where
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hy :=nge,—1g — ey, with ng =p if j =1 and np =1 if j > 1. We also define below a(n
in)variant Gy of weight (0,hy).

We will now be working in the mod p setting, so until further notice S will denote ?U,[F,
and s: A— S the universal abelian scheme over it. Thus, H}z (A/S) is a locally free sheaf

of rank 2 over
Ore0s= @ P Oslul/(u

PES,TEX 0

where u acts via ¢(wp)* on the p-component of

Hir(A/S) =P H, =P P #-

peESH peES,TES, 0

We will also now be working with a fixed p and omit the subscript from the notation,
so that

H=Hi(4/9)y = P H-= D i

TE€Sp 0 i€Z) {7

with each H; locally free of rank 2 over Og[u]/(u¢) (where we have also abbreviated the
subscript 7, ; by ). Furthermore, for each ¢ € Z/ f7Z, we have a filtration

0=F" cFV . cFVcFI = (5.9 )

by sheaves of Og[u]/(u®)-modules such that the quotients £, ; = fi(j)/fi(jfl) are line
bundles annihilated by w.

Firstly, note that if 7 > 1, then «: ]:i(j) — ]-"i(jfl) induces a morphism £; ; = L£; ;1.
On the other hand, if j =1, then the Verschiebung morphism ¢§A — A over S induces
Oslu]/(u®)-linear morphisms

Ver;( M= H‘Fi — HcliR((bg(A)/s)ﬂ = ¢E(Hﬂ71) = qsg(HZ*l)

with image ¢% (.E(f)l) (where ¢s denotes the absolute Frobenius on §). Note that £, 1 =

]:i(l) C u®"'H;, so that u¢~! defines an isomorphism
l—ep. .~ (1)
u ﬁiyl/u?'-ll — ‘Fi

and that Ver] (uM;) = uqﬁf‘g(fi(i)l) C qb’g(fi(iIl)L so we obtain a well-defined Og-linear

morphism ‘Ver} ou!~¢’

£i71 (L ulieﬁul/’Uin — ¢g(£i—1,e) £®p

i—1l,e"

We have now defined a morphism Ly —> £®f199 for all @ and hence a section of /Nlhg’(),]}r

over S. Furthermore, it is straightforward to check that the section is invariant under the

action of O3 Fo(p)+ and therefore descends to an element

Hy € M, ,o(U;F) = H°(Yy 5, An,,0.7),
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which we call the partial Hasse invariant (indexed by 6). Furthermore, the partial Hasse
invariants are stable under the Hecke action, in the sense that if Uy, Us and g € GLo (Ag’,)f)
are such that ¢~'U;g C Us, then [g]Hp2 = Hp1. (Note also that the partial Hasse
invariants are dependent on the choice of uniformiser w = w, only up to a scalar in
F*: if w is replaced by aw for some a € O o then Hy is replaced by 7(a)Hy if j > 1 and
by 7(a)!=¢Hy if j = 1.)

We remark also that the line bundles Ag 1, # have canonical trivialisations. Indeed, for
each i € Z/fZ and j =2,... e, we have the exact sequence

0 — gi(j_l)/]:i(j_l) SN ggj)/fZ.(j—l) N Fi(j_l)/Fi(j_2) =0
over S; that is, 0 = M, ;_1 — P; ; = N; j—1 — 0, inducing an isomorphism

2
Nij—1=Lij-1®0s Mij—1 = No Pij=Nij

) )

and hence Og ~ ./\/Z_j{1 Rog Nij = -Zo,he,IF for 6 = 6, ; j, which it is straightforward to

check descends to Yy r. Similarly, we have the exact sequence

FrobA ) VerA ut

* e 1 —c * e e—1
0— ¢5(9; G\ )/]:( ) — g( ¢S(]:¢(—)1/fi(—1 ))_>0
inducing an isomorphism ¢§(N;—1,c) = N;1 and hence Og ~ /To’hg’]y for § = 0,1
descending to Yy r. Furthermore, these isomorphisms are Hecke-equivariant in the usual
sense, but note that they depend via v on the choice of w,. For each 6, we let

Go € Mo n, (U;F) denote the canonical trivialising section.

4.2. Stratification

We also recall how the partial Hasse invariants define a stratification of the Hilbert
modular variety in characteristic p. For any 6 € ©, we define Ze (respectively Zp) to be
the closed subscheme of S = )N’UJF (respectively Yy p) defined by the vanishing of Hy, and
for any subset T' C X, we let

Ir = ﬂ% and  Zr = () Zp.
0eT 0eT

Note that the schemes Zp are stable under the Hecke action, in the strong sense that
Zr,1 is the pullback of Zr o under pg: Yy, — Yy,.

We then have the following consequence ([32, Thm. 3.10]) of the description of the
Kodaira—Spencer filtration on tangent spaces at closed points; we give a proof here as
some of the details are relevant to the construction of ©-operators in Subsection 5.2.

Proposition 4.2.1. The schemes Zr and Zg are smooth over F of dimension |X —T|.

Proof. We prove the result for ZT7 from which the result for Zr is immediate.
Let y be a closed point of S with local ring R = Og,,,, maximal ideal m and residue field
k= R/m. For each 6 € 3, choose a basis bg for Ly, over R and write Hy ,by = 29b"° Jaape

Thus, if y € Zg, then 29 € m, and we let Ty denote its image in m/m?.
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Identifying m/m? with the fibre of Q% /0 at y and writing Fil?(m/m?), for the
U

subspaces obtained from the Kodaira—Spencer filtration, we claim that if y € Zy, then
Fil/ (m/m?), = kZp + Fil’ ! (m/m?),, (7)

where 7 = 7, ; and 0 = 0, ; ;. Comparing dimensions, we see it suffices to prove the
inclusion of the left-hand side in the right or, equivalently, that if

veTy(S)= @ T, (S)+

T'EXg

is such that its 7-component v, lies in Fil’ 71Ty(S)T and v is orthogonal to Ty, then
in fact v, € Fil/(T,(S),) (using the notation of the discussion following the proof of
Theorem 3.3.1).

Let Ay = (Ao, 0, 0,M0,F3) denote the data corresponding to the point y € S(k) and
A, = (Aq,01,A1,m, Fr) that of its lift v € S(kle]). With 7 =7, ; fixed for now, we will
suppress p from the notation and replace the subscript 7, by ¢’ (for ' =1, —1). Recall
the assumption that v; € Fil?~(T,(S);) means that .7-'1(’];) corresponds to ]:éj;) Qy, k€] for
j'=1,...,7—1 under the canonical isomorphism

H g (A1/k[€]) = Heyio(Ao/kle]) = Har (Ao /k) @y, k[e]. (8)
For v; to be orthogonal to Ty means that the morphism
£1,9 — ,Ciejzs,le (9)

induced by Hpy vanishes, and we need to show this implies that ]—'1(7]2 is the image of

Fol) @ klel.
Suppose first that j > 1. Then (9) is simply

w: ffﬂ)/fl(ﬂ*l) —>f1(7i71)/f1(7i72)’
whose vanishing means }—1(,]2 = u_lfl(’j;m. Since (8) sends .7-"1(’]‘;2) to ]:é?fQ) ®y kle] and is
compatible with u, it follows that it also sends ]-"1(72 to féfi) ®y kle].
On the other hand, if j =1, then the vanishing of (9) means that ul’e]-'l(}i) is the pre-
image of ¢} (fl(fiill)) under Ver] (where ¢, is the absolute Frobenius on k[e], and ¢¢ will

denote the absolute Frobenius on k). Since the diagram

H g (A1/kle]) —— Hgg (Ao/k) @x k€]

| J

¢1Hig (A1/kle]) —— ¢ Hap (Ao/k) @y k€]

commutes, where the vertical maps are induced by Verschiebung, the top arrow is (8) and
the bottom one is given by the identification of ¢ A; with ¢fAo ®y k€], so in particular
identifies ¢f (.7:1(761-__11)) with ¢ (}“é;__ll)) @ kle], it follows that the top arrow sends ulfe}"l(yli)
to ul’efé}i) ®y k[€], and hence -7:1(,11') to -7:(5,17:) ®y, k[€e]. This completes the proof of the claim.
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Now note that if y € ZT, then (7) implies that the elements Ty for § € T can be extended
to a basis for m/m? over k and hence are linearly independent. Since R is regular of

dimension d = [X], it follows that Oy = R/(x¢)ecr is regular of dimension of d—|T|
and hence that Zp is smooth over F of dimension d— |T7. O

Finally, we recall the definition of the minimal weight of a nonzero mod p Hilbert
modular form. If f € My (U;F), then kpyin(f) is defined to be k—3",mghy where
> ¢Meeg is the unique maximal element of the set

{ ngee S Z§O
0

By the main result of [10], the minimal weight of f always lies in the cone

Emin ::{ E kGeH

0

f=g H Hy" for some g € M5~ myny1(U;F) } .
0ex

ngkg > ky—19 for all € & } . (10)

Note that the result stated in [10] applies to forms on a finite étale cover of Yy r, from
which the analogous result for forms on Yy r is immediate.

5. Partial Theta operators

5.1. Fundamental Hasse invariants

In order to define the partial ©-operators (in Subsection 5.2), we first define a canonical
factorisation of the partial Hasse invariants over a finite flat (Igusa) cover of the Hilbert
modular variety over F.

We fix a sufficiently small U that the line bundles £y, My, Ny (and hence ./ZkJJF) on
?UJF descend to Yy g for all § € ¥ (and all k,1 € Z*), and we write simply Y for Yy p and
L, M. j and N, ; for the line bundles on Y. For each p € S, and 7 € 5, o, we let

€p
= -1 —=®
Hy=][H.; € H'Y.,L, ., ®0y Ly 10r.c,)-

j=1
Viewing each H, as a morphism (Z;lonep)@p — Z;lep and Hp := Hrezv JH- as a
morphism ®T€Epvo(z;ip)®(pfl) — Og, we define the Igusa cover” of Y (of level q=[]p)

to be
Y8 = Spec <Symoy( @ C;ip)/l) ,
TEY)

where 7 is the sheaf of ideals generated by the Oy--submodules

(H. ~1)L,,, for 7€ Lo, and (Hy —1) | Q) (L,.,)°" V| forpes,

T,€ T,€p
TEE‘,,O

9The cover has a natural moduli-theoretic interpretation in terms of A[q], but we will not need
this here.
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(where all tensor products are over Os7). We then define an action of (Or/q)* on Y& over
Y by letting a € (Or/q)* act on the structure sheaf by the automorphism of sheaves of

Os~algebras induced by multiplication by 7(a) ™! on Z;le for each 7. We then see, exactly

= a
as in the proof of parts (1) and (2) of [12, Prop. 8.1.1], that the projection 7 : Y8 —Y
is finite flat, generically étale and identifies Y with the quotient of Y& by the action of
(Or/a)*.

For each 7 € 3, o, we let h, ., denote the tautological section of 7T*Z7—7ep induced by

. . ——1 .
the inclusion £, < m,Oy1:. We also define the section
hej=m"(Hr ji1- Hre,)hre,

of 7* L, jfor j=1,...,e, — 1. Note that since Y'® is reduced (or since [, s, | 2L =7 H,
by construction), the sections h: e, are injective, and hence so are the h., 4 for all 7 and
J. We write simply hg for the section h,; of 7*Ly = 7*L; ;, and we call the hy the

fundamental Hasse invariant (indexed by ).

5.2. Construction of O,

We now explain how the construction of ©-operators in [12] directly generalises to the
case where p is ramified in F, yielding an operator that shifts the weight k by (1,1) in
the final two components corresponding to embeddings with the same reduction; that is,
Op,i,e,—15 Op,i,e, (and hence, by composing with multiplication by partial Hasse invariants,
one can shift weights by +1 for any pair of embeddings with the same reduction).

Indeed, for each 7 € X, we define the operator ©, ezxactly as in [12, §8] but using the
morphism

—1
T,ep

KS, : Q%/F — gr(Q %Z-ﬂep ®07ﬂ

1
?/F)T
provided by Theorem 3.3.1 via projection to the top graded piece of the filtration of the

T-component of Q%,/F. More precisely, fix pg € S, and 79 = 73,5, let 0g = O, and
consider the morphism

L,€pq

KS}% : Q%/Ig/]F ®O,1q Fle o L X0, 1q Fle 5 n <A2990»7990¢F) Ko Fl&

Y /F vlg

induced by KS,,, where F& is the sheaf of total fractions on Y'8. Suppose now that
f € My\(U;F), and write h* =[] ,c, h’g" and g' =Tpes gég for any choice of trivialisations
go of the line bundles Ny on Y. We then define the section

OF(f) = h¥n*(g' Hoy ) K SE(d(h™ 7" (97" ),
where
k’:k+n90e67130+e90 and l/:1+ego. (11)

Furthermore, the section is independent of the choices of gy and invariant under the action
of (Or/q)* and hence descends to a section of Ay 1/ F ®o,- F, where F is the sheaf of

total fractions on Y. Denoting the section ©,,(f), we have the following generalisation
of [12, Thm. 8.2.2].
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Theorem 5.2.1. If f € My (U;F), then O, (f) € My v(U;F). Moreover, ©,,(f) is
divisible by Hy, if and only if either f is divisible by Hg, or plk, .

Proof. We see exactly as in [12] that ©,,(f) is regular on the ordinary locus of Y; that
is, the complement of the divisor UpexZy (where Zy was defined in Subsection 4.2), so
the theorem reduces to proving that if z is the generic point of an irreducible component
of Zy, for some 0, € 3, then

o ord,(©.(f)) >0,
o if 61 =6y, then ord,(O,,(f)) > 0 if and only if p|ke, or ord,(f) > 0.

Let R denote the discrete valuation ring Os ,, and for each 7 € X, ¢ and 0 € 3., let

Yo = Yr,; be a basis for the stalk Ly, =L, ;. over R (for j =1,...,ep). For each § € X,
we may then write

n
Hoyg =10y,

for some 79 =7, ; € R, and we let r, = H;"erT,j. By construction, we have T :=
(m:Oy1s) . = R[x;]rex, /I, where I is the ideal generated by

—1 —1
Z,IOT —ryx, for T €Y, and H ™ — H r2=! for p € S,

TGEp,o TGEp,o

T

where each z; is the dual basis of y; .,. We then have h; ., = 2,yr ¢, (in (m.7"Lr e, )-),
from which it follows that
hT;j =Trj+1Tr 542 " Tr e, LrYr,j

for j=1,...,e, — 1, and hence that h* = ¢y y¥, where y* =[], 5 y4¢ and

€p ep

P = H H (TT-’ET)ZQEZT ko HTT_,J‘Z:j,=j oy o

pPES,TES 0 Jj=1

(writing k-, , ; for ke, , ; as usual and working over the field of fractions of T).
Writing f = apfykgl, we see that

O (f) = K5 (roypxd (5 0i ))ay Yor,4 9"

Since r,z, =z we have d(r,z,) =0 and

P
¢—lor?

dro \ _
Or, () = KSr, | roodios +70008 Y ko= | U5 Y% g, y*0", (12)
To 0
ges
where ky =k, j+ k- jq1+- ~k776p if T=1p; and 0 =0, ; ;. We are therefore reduced to
showing that ord, K S;, (dre,) > 0 if and only if 6, = 6. However, the proof of Proposition
4.2.1 shows that if y is a closed point of Zy,, then KS; (drg,) vanishes at y if and only
if 61 =6y. O

Remark 5.2.2. The Kodaira—Spencer isomorphism is defined in [12] using the Gauss—
Manin connection. Much of the work in [12, §8.2] amounts to an explicit translation of
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this to the context of deformation theory. Here, however, we defined the morphism K S,
more directly using deformation theory, so the analogue of [12, Lem. 8.2.3] was not needed
here.

Remark 5.2.3. It is straightforward to check directly that the right-hand side of (12) is
independent of the choice of local trivialisations y, and g, and can therefore be used to
define the partial ©-operator without reference to the Igusa cover Y'8.

We call ©,, the partial ©-operator (indexed by 7). It is immediate from its definition
that the resulting map on F-algebras

@ Mk,l(U;F)—> @ Mk,l(U;F)a

Kk 1€Z% K 127

given by the direct sum over all weights of the operators ©,,, is an F-linear derivation;
that is, that

O, (f1f2) = 105, (f2) +Or, (f1) f2

for all f1, fo in @My 1(U;F). It is also clear that ©,,(Hp) =0 for all # € ¥, and hence that
O, commutes with multiplication by partial Hasse invariants.
It is also straightforward to check that the operator ©,, commutes with the Hecke

action in the obvious sense and hence induces a GLy (Ag’)f)—equivariant map
@7— . Mk’l(F) — Mk’,l’ (IF)

where My 1(F) (and My 1 (F), with their GLQ(AEf)f) actions) is defined in (6) as direct
limits over suitable open compact U. 7

Let us also make the effect of ©, on the weight k more explicit. Note that if k=", koeqy
and 7y = Ty, then k' =" kyeqy, where

ko+p+1, if9:60=9p071,1,
ko, otherwise;
ko+1, if9:90:9p0,i011,
o ifey,, =1and fy, >1, then k=< ko+p, if0=0"100="0p,i0—1,1,
ko, otherwise;
ko+1, if60=0p= GPO,iO,epO or 6= 0’_190 = 9p07i0gep0717
ko, otherwise.

o if ey, = fp, =1, then k’g:{

o ifey, >1, then ké:{

Remark 5.2.4. Considerations from the theory of Serre weights from the point of
[12] suggest that the above weight shifts are in a certain sense optimal. One can also
define cruder partial ©-operators by composing with multiplication by (products of)
partial Hasse invariants. For example, the operator H, 1 Hy, 2" --HTO,SFO,1®TO is the one
constructed in [8], and for any j =1,...,e,,, the operator

HTo,ngo,j+1"'H2 H‘ro,em@‘ro

To,€p—1

shifts the weight k by eg +n,-19€,-19, where 0 =0, i, ;-
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6. Partial Frobenius operators

6.1. Partial Frobenius endomorphisms

In order to define partial Frobenius operators on Hilbert modular forms (in Subsection
6.2), we first need to define partial Frobenius endomorphisms of Hilbert modular varieties
over F.

Fix a prime p dividing p and a level U, assumed as usual to be sufficiently small and
prime to p. We will draw on ideas from [11, §7.1] to construct an isogeny on the universal
abelian variety s: A — S, where S = ?U,]F'

We begin by associating Raynaud data to the line bundles L, ;., over S, which we
write simply as £; for i € Z/fZ = 7/ f,Z (omitting the subscripts for the fixed p and
j=e=ey). We define f; : E;@p — L;11 to be zero, and we define v; : L;11 — L';@p to be
the morphism induced by the restriction of

Veryy : H = HcliR(A/S)P - HéR((¢§A)/S)p = ¢§H31R(A/S)p =¢sH

to F\9 = (s:Q} /)i (abbreviating subscripts 7,,; by i). Note that since the image of
;41 under Ver’y is ¢%(F ?), the inclusions ]-"i(frfl) Cuti1 and uF? ¢ FY ensure
that Verjg(}'i(j_zl)) C ¢§(}'i(e_1)), so the morphism v; is well-defined. We then let H
denote the finite flat (Op/p)-vector space scheme over S associated to the Raynaud
data (ﬂi,fi,’l}i)iez/fz.

Recall that the Dieudonné crystal of ker(Frob,) is canonically isomorphic to
@*(S*Q}q/s), with ' =0 and V induced by ®*(Ver}) (in the notation of [2, §4.4.3]).
On the other hand, the Dieudonné crystal of H is identified with ®*(®;L;) with
F =®*(®;f;) =0 and V = ®*(d,;v;) (as a simple special case of [11, Prop. 7.1.3]).
Therefore, the canonical projection s*Q}4 g — ®:L; induces a surjective morphism
of Dieudonné crystals D(ker(Froba)) — D(H). As the base S is smooth over F, the
exact contravariant functor D is fully faithful on finite flat p-group schemes over S ([3,
Thm. 4.1.1]), so the surjection arises from a closed immersion H < ker(Frob,), and

we let
a:A— A':=A/H

denote the resulting isogeny of abelian varieties over S. Note that A’ naturally inherits
an Op-action ¢/ from the action ¢ on A.

Let Z denote the image of the morphism o™ : HéR(A'/?U,]F)p — H. By construction, we
have the exact sequence

D(Al[p])s — ]D)(A[p])s — D(H)S — 0
12 R [ 2
a” Ver’, * e e—
Hin(A'/S) = Hig(4/5) =3 @e5(F/FTY) — o,
showing that Z = §;Z;, where Z; is the pre-image of gb?;«(}"i(f)l) under Ver”;\,i cH; —
¢&(Hi—1). Note in particular that wH; C Z; for all 4, so that H C Alp] and there is a

unique isogeny 3 :p®o, A’ — A such that a o is the canonical isogeny p ®o, A" — A'.
We now equip A’ with auxiliary data corresponding to an element of Yy r(S).
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Since o induces isomorphisms 7P (Ag) -~ T(®)(AL) for all geometric points 3 of S, we
immediately have a level UP structure ' on A’ inherited from A.

Next we claim that the quasi-polarisation A on A induces an isomorphism'" pcd ®0,.
A" — (A")Y or, equivalently, A’ — p~ e 107 ®0, (A")Y, which amounts to the claim that
H corresponds to the kernel of

o lesY e, AY s p i e, (A)Y

under the isomorphism induced by A. Denoting this kernel by I, we have that H and
I are finite flat group schemes over S of the same rank, so it suffices to prove that the
composite

I— @0, AV [p] = Alp] — A'[p]

is trivial. Taking Dieudonné modules, this in turn amounts to the vanishing of the
composite

D(A'[p])s — D(A[p])s — D(e"07 @0, A" [p])s — D(I)s.

We have already noted that the image of the first map has p-component @;Z;; on the
other hand, the kernel of the last map is the image of the map

D(p~ T @0 (A)Y[p])s — D(eT0 7 @0, AV[p])s
corresponding to the adjoint of
B Har(A/S) = Har((p@or A')/S) 2 p~! @0, Har(A'/5)
under the canonical isomorphisms

D™ @0, AV[p))s = Hap (7107 ®0, AY/S)
=Homos (D_l Qor /HéR(A/S),OS) =Homopeos (,HglR(A/SLOF ®Os)

and, similarly,
D(p_lc_la_l Xor (A/)v[p])s = HomOF®Os (p_l Xor H}iR(A//S)voF ® OS)

obtained from duality. We are therefore reduced to proving that Z; is orthogonal to the
kernel of 8 for each i € Z/ fZ under the pairing (-,-); defined by (4). Note, however, that
the kernel of 37 is u¢~1Z;, as can be seen, for example, from the commutative diagram

Hclrys(Ag/W(?p))lC—> (p_l Rop Hclrys(A/E/W(Fp)))l
HéR(Ag/Fp))i — (p_l Qop Hle(A%/Fp»i

of W(F,)u]-modules for 5 € S(F,). Finally, the orthogonality of Z; and u®'Z; is
immediate from that of fi(le) and u ' F .(fIl) provided by Lemma 3.1.1, completing

K2

the proof of the claim. We may then define the quasi-polarisation on A" by a*(\') = A

10Here ¢ depends on the connected component of S.
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for any totally positive generator § = d, of pOp (), so that A" induces an isomorphism
Vo, A — (A")Y where ¢ =46 !pc.

Finally, we define a Pappas—Rapoport filtration on F. := (8;9}4, / g)r for all 7€ %.

First, note that if 7 ¢ ¥, o, then o* induces an isomorphism F, =~ fT(e), and we define
(F2)U) as the pre-image of FD,

Suppose now that 7 = 7,,;. Recall from the construction of A’ = A/H that
VerZ(}'l-(e*l)) C qﬁg(fi(le)), so we have fi(efl) C Z;. It follows that (a;‘)_l(fi(efl)) is a
subbundle of H} := Hig (A"); of the same rank as F/, namely, e. Furthermore, we have

P5(a* (F) = (¢%5(a)* (F) = (¢%(a))* (Verky, (Hi 1))
= Verh(a®(His)) = Verh(Tis) < 05(F )

so in fact F] C (af )_1(]:1.(671)), and hence equality holds. We thus obtain an exact
sequence

0 — ker(a)) — F/ iR ]—'i(e_l) —0.

We may thus define a Pappas—Rapoport filtration on F, by setting
(F)Y = (@) F)

for j=1,...,e, so, in particular, (]—'i’l(l) =ker(af).
We now define @, : Yy r =S5 — Yy,r to be the endomorphism corresponding to the
data (A’,/,N,n’,(F')*). Note that ®, depends on the choice of ¢ in the definition of X’;

X
F,(p),+

on S and descends to an endomorphism ®, of Yy which is independent of this choice.

however, it is straightforward to check that &)p is compatible with the O -action
We call <T>p (r@pectively ®,) the partial Frobenius endomorphism (indexed by p) of ?UJF
(respectively Y7); the terminology is justified by the next proposition.

For the statement of the proposition, we also define the endomorphism ®of §= }N/U’]F
corresponding to the data ¢%(A4) = (¢5A,05L, PN 0EN, (PEF)®), where (¢p5F)® is the
collection of filtrations on the vector bundles

((055)+ (Qgyay/5))r = (D5 (5: Q)7 = 05((5: Q4 /5)9-10r)

given by (¢§]—')(Tj) = qbg(féj,)lw). Note that ® is not the absolute Frobenius ¢g on S

(unless F=T,), but we may write ¢g = ® o¢ where € is the isomorphism defined by the
commutative diagram

SpecF %) SpecF
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where the square is Cartesian and e is the inverse of the isomorphism associated to
¢*A = Axy 4 F with the evident auxiliary data. We thus have an isomorphism €*A = A
compatible with ¢, A and n and inducing E*fT(j) = ]-"éJO)T for all 7 and j. (Note also that d
may be viewed as the base change of the absolute Frobenius on the descent of S to F),
defined by the diagram.)

The endomorphism @ is compatible with the Op (), +—act10n on S = YU r, and we
let ® denote the resulting endomorphism of Yy . Similarly, € descends to a ¢-linear
automorphism e of Y such that the absolute Frobenius on Y7 is ®oe.

Proposition 6.1.1. The morphisms ®, are finite flat of (constant) degree Nmp, q(p),
commute with each other and satisfy the formula

H@epf

pPES,

Proof. We first prove the commutativity and analogous formula for the maps 513,, on
S = ?U,F, from which the corresponding assertions for ®, follow. To that end, it suffices
to consider the maps on geometric closed points 5 € S(F,), which we will do in order to
facilitate computations on Dieudonné modules.

Let A, denote the data corresponding to 5 € S(F,) and Aj = Aj, denote the data
corresponding to ép( ). Let D = H},  (Ao/W(F,)) and D’ = Crys(Ag/VV( p)), SO We
may decompose the Or @ W (F p)-modules D = @,cx,D; and D' = &,¢x D, where D,
and D/ are free W (F,)[u]/(f7 (u))-modules of rank 2. Furthermore, the canonical isogeny
a: Ag — Af, induces an injective W (F,)[u]/(f7 (u))-linear map « : D, — D, for each 7,
compatible in the obvious sense with the maps

Froby, - :¢"(Dg-10,) = Dr and  Frobly, . :¢"(Dj-r,) = D7,
as well as Ver’y = p(Frob% ,)~" and Veryy, . :p(Frobzg’T)_l. Letting £/ ¢ D, denote
the pre-image of .FT(j ) under the canonical surjection
D; — (D/pD); = H&R(AO/EP)W
we have o (D.) =D, if T ¢ ¥, o and

a%(Dy) = (Ver’y, )~ (0" (FS, D))

if 7 € ¥, ¢ (by the construction of ®,). Furthermore, writing FY) for the submodules of

D! similarly defined by the Pappas—Rapoport filtration on H?(Aj,Q! A JF, )r, we have

o ai(F)=FY if g%,
o ar(FY=FY for j=2,...,e, if T € Sy,
o and i (F\V) = pD, = Frob}y, (¢"(F\™%), ) if 7€ .

Thus, if p; and po are distinct elements of S),, then &)p1(5p2 (3)) corresponds to the
data Af for which we have an isogeny o' : Ag — A{j such that if 7 ¢ £,, ¢ UX,, o then
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(a)5(D!)= D, and (') (F”(j)) FY (with the obvious notation), but if 7 € ¥, ¢ for
1 =1 or 2, then

(/)2(DY) = (Ver’y, )~ (¢ (FL%i ),

(a) (F”(l)) =pD, and (/)% (F"(j)) = FY™Y for Jj=2,...,ep,. Furthermore, we have
n" =a'on and (/)" (N\") = 0p,0p, A, from which it follows that the isomorphism class of
the data A{ also corresponds to ®y,(®y, (3)).

Now consider the data A(T) associated to <I>’”( ) for r=1,...,e,, and write D, = &D, ,
for H. (A A JW(F,)), F,., for the submodule of D, , determined as above by the
Pappas—Rapoport filtration, and «, for the composite isogeny Ag — Aél) == A(()r).
By induction on r, we find that if 7 ¢ 3y, o, then a; (D, ;) = D, and aiT(F,ET)) =FY,
but if 7 € X, o, then

b a:’,T(Dr,T) = (Ver*AO,T) L™ ( ;plo:)))’
o o AFIN=F9™ for j=r+1,. 1 Eps
o ap (F))=Froby, (¢ (F, %1~ ) for j— e

In particular, taking r = e, gives

oy +(Deyr) = (Ver’y, )~ (06" (Dy-107)) = Froby, (6" (Dy-107)

and o (Fe(g) ) = FrobZO,T(gb*(F(;])lOT)) for j =1,...,e, and 7 € ¥, 0. It then fol-

lows that [lyes, © p(E) corresponds to Ay with o : Ag — Afj satisfying (o/)%(DY) =
Frob}, . (¢*(Dg-10,)) and (a’)j(Fl(])) = Frob2077(¢*(F;J)lo )) for all 7 and j. Further-
more, we have 1" = a’on and (a/)*(X") =], 6 6" A, from which it follows that Aj is
isomorphic to (¢*Ag,@*t,vd* N, (¢*F)®) with v = 71 I1,6p 5P € OF (p),+- This proves that

H CT):" :1/~<f>,

peSs,

which in turn implies the desired formula.

Since @ is finite (and Y is separated), it follows that ®, is finite and therefore also
flat since Y; regular. Note furthermore that ®, is therefore bijective on closed points
and induces isomorphisms on their residue fields, so the degree of ®, in a neighbourhood
of any closed point z of Y is that of the extension of completed regular local rings

: (9A , (9A , where y = @, (z). Since ® factors through ®,, so does the absolute
Frobemus on Yy, and hence the absolute Frobenius on OAU factors through @7
Therefore, it follows from [26, Cor. 2] that deg(®}, ,) =p" where n =n, is the dlmensmn
of the kernel of the induced map on tangent spaces Tx(YU) — T,(Yy). Furthermore,
since Hpesp (IDS" = ® has degree plf"@ = Hpesp p® /v it suffices to prove that n, > f, =
Nmp/q(p) for each p. Note also that we may replace Yy by S= ?U,F, z by any point in
its pre-image in S and ®, by ép.
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Suppose then that z corresponds to the data (Ag,to,Ao,70,F3) over the residue field
k and its image y = &)p(z) corresponds to the data (Af,th,A\,10:Fo")- Recall that the
Kodaira—Spencer filtration on the fibre of Q}; 7, at z is dual to one on T, (S) which was
described using Grothendieck—Messing deformation theory (see the discussion following
the proof of Theorem 3.3.1). In particular, we have a decomposition T, (S) = @rex,Tx(5) -
and a decreasing filtration of length e, on T, (S), for each 7 € ¥,/ ¢ (where p’ € S,) such
that

P Fil-7.(S),

TEYX)

corresponds to the set of lifts of A, to A; = (A1,t1,A1,m,F7) € S(kle]) such that .7-"1(]2 is

the image of ]-'éfT) ®y, k€] for all 7 and j < j, under the canonical isomorphism
Hig(A1/k[e]) = Heyi (Ao /kle)) = Hag (Ao/k) @1 k[e].

We claim that the f,-dimensional subspace @TegpﬁoFile”_lTx(S)T is contained in the
kernel of T,,(S) — T,(S). Indeed, if A, is alift corresponding to an element of this subspace
and A] is its image in T,(S) and «; : A; — A} are the specialisations of the universal
isogeny o : A — A’, then the commutativity of the diagram

Hig (A4 /k[e]) — s Bl (Ay/k[e])

apr®1

Hp (Ay/k) ®1 kle] —— Hig(Ao/k) @4 kle]

and the definition of (I)p imply that f{fi) corresponds to .7:651) ®p k€] for all 7 and j. (Note
in particular that fl(lT) =ker(aj ) for all 7 € ¥y o and that H°(A},Q4; /x(q)+ corresponds
to HO(AO,QAU;C)T ® k[e] for all T € %g.) It follows that A] is the trivial deformation of

Aj, so the kernel of T;(S) — T, (S) has dimension n > f, as required. O

Remark 6.1.2. The final part of the proof of the proposition shows that the kernel of

the pullback map @;Qlﬁj i 917U . is precisely

* .11 1
0 (Dres, JF1 (O o)r ).

Furthermore, a similar argument shows that the map preserves the Kodaira—Spencer
decomposition and filtration, in the obvious sense, and induces isomorphisms

* 1701 910!

®; (Fll QL )-/FI (S

)T) SHFVTNQL ), €S0 =1, e,
o; (FV(QL)r) = Fi/ (0L

Yu/F
U/]F)T7 lf T € Ep,O~
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6.2. Construction of V,
In this section we generalise the construction'! of [12, §9.8] to define partial Frobenius
operators, similar to the Vj-operator on classical modular forms.

We maintain the notation of Subsection 6.1, so that ZIv>p is an endomorphism of S = }N’U’]F
corresponding to the data (A',//,\,n/,(F')*), where A’ = A/H for a certain finite flat
subgroup scheme H C A[p], and « is the projection A — A’.

It is immediate from the definition of 72/ that ; induces an isomorphism £/, =L,
for all j if 7 ¢ Xy 0, as well as

L= FlO)  pra=b 2 gV =D =

for j=2,...,e, if 7 € ¥y 0. To describe L] ; for 7 € ¥}, o, note that since H C ker(Froba),
there is an isogeny 7 : A’ — ¢5 A such that oo = Frobs. We thus obtain a surjection
yE (bg(]:(;e_"l)w) = ker(Frobs); — ker(af) =L ;.

Furthermore, qbg(fé(i"l(:i)) = ker(y}), as can be seen on closed points, so we obtain a

surjection, and hence an isomorphism, of line bundles

~ * e % ep—1)\ Vr
L, o 2 05(Lorone,) = 05 (Fyt, )/ 65(Far D) =5 L1 1.

/
7,37

LE™ i 0 e Ny,

Ik ~ o—1¢7
®pLo = { Lo, if ¢,

By construction, we have ®3L; ; = L7 ;, so we have now defined isomorphisms

Similarly, we find that if 7 € X 0, then v* induces ¢§(Py-10r.,) = Py ; and o induces
PL ;2 Pr oy for j=2,... e, so0 that DFNp XN if 0 € %, while ®rNy 2N if 0 ¢ 5.
Taking tensor products, we thus obtain isomorphisms

(I);«kaF = A o §
for all k,1€ Z*, where

o ky=kyandly=1pif ¢, and
g =ngs9ks9 and lle/ =ngglyg if 6 € Ep.

Furthermore, it is straightforward to check that the isomorphisms are compatible with
the descent data relative to S =Yy r — Yy r, so we obtain isomorphisms

Qo Ak 1LF = Ak 1R (13)
for all k,1€ Z* and sufficiently small U. Note that
K"=k+ Y kghy and 1"=1+ > Ighy. (14)
0es, 0es,

HThe operators defined here differ slightly from the ones defined in [12] in the unramified case.
The construction there is tailored to be compatible with the classical case and to be simply
interpreted on g-expansions at cusps at co. Doing this in the general ramified case would
introduce complications that make it seem not worthwhile.
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Remark 6.2.1. One can check that the resulting isomorphisms ®;Aze, —e,F =
Ase ey (for 0 ¢ 5,) and

(I);A2697—97-11F = AZea—lgy_ed—lgaF
(for =6y, ,, j =2,...,ep) are compatible via the Kodaira—Spencer isomorphisms of
Theorem 3.3.1 with the corresponding isomorphisms

(e (O, o)) el (O )

given by Remark 6.1.2, where j' =j if 7 ¢ X, o and j'=j—1if 7 € ¥ 0.

We are now ready to define the partial Frobenius operator (indexed by p)
‘/P : MkJ(U,F) — Mk”,l”(U7F)

as the composite

o ~
H°(Yy r, A r) — HO(Yu 5, @5 A r) — HO(Yu 5, Ak v),

where the second map is the isomorphism (13). It is immediate from the definition
that V, is injective and that taking the direct sum over all weights yields an F-algebra

homomorphism
P M(U;F) — @ M (UsF)
k lezZ® k,1€Z*

for all sufficiently small U containing GL2(Op ,). It is also straightforward to check that

Vp is compatible with the Hecke action in the usual sense and hence defines a GL3 (Ag))f)—
equivariant map

My (F) — Moy (F),

where the spaces are defined in (6) as direct limits over sufficiently small U containing

GL2(OF,p).
It will also be convenient at times to consider instead the operator
V) My, 1(U;JF) — My 1 (U,F) (15)
defined by V)(f) =V, (f )ngz , where G is the trivialisation of Ag n, r defined at

the end of Subsection 4.1. Thus, VO is also Hecke-equivariant but depends on the choice
of uniformiser wy.

We also record the relation between the partial Frobenius operators and the p-power
map. First note that the identification &)*(}'ﬁj)) = ¢% (}"(J) ) arising from the definition

¢~ lor

of & yields isomorphisms

(I)* Tj—¢5(£¢ 107]) £®p

¢lor,j
for all 7 and j. We similarly have ®*N; ; NprloT ., and taking tensor products
and descending to Y yields isomorphisms ®*Ay;p = Apke o p for all k1, where
kgp,i,j = ko, .., , and hence an operator V,, : My 1(U;F) — Mxs ,16(U;F). Similarly, the
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510 = F9) yield € Ly-10, ;= Ly j and € Ny-14, ; =N j whose tensor
products descend to isomorphisms €* Ays 16 p — Ai 17, yielding a ¢-linear isomorphism
My 16 (U;F) — My (U;F) which we denote €y ). Furthermore, the above isomorphisms
of line bundles on S are compatible in the sense that the resulting diagram

isomorphisms €* F ()

FOL, L

* ~ [
(ZSS'CTJ ‘CT,I])'
commutes, as does its analogue for the Ny, from which it follows that the composite
Vp €pk,
Mic1(U;F) =2 Mo s (U3 F) 28" My 1 (U F)

is the p-power map. B
Returning to the partial Frobenius operators, the isomorphisms between ®7L, and
?ﬁ’fa (respectively Lg) for 6 € X, (respectively 0 ¢ 3,) for different p € S, are compatible

with each other in the obvious sense and taken together with the formula [ ], s, 5;‘“ ST

and the canonical isomorphism v*Ly = Ly yield the isomorphisms &Y%T’ = Cfﬂoﬂj

defined above. A similar assertion holds for the line bundles Ny, and it follows that the
operators V}, for p € S, commute with each other and that Hp Vpe" =V, so that

€pk, pl H vaep (f) = fp (16)

peES)H

7. Compactifications and g-expansions

7.1. Toroidal compactifications

We next recall how ¢-expansions of Hilbert modular forms are obtained using compacti-
fications of Hilbert modular varieties. In this section we review properties of the toroidal
compactification constructed by Rapoport [31] (see also [4] and [13]). We will consider
toroidal compactifications only in the case U = U(N), but we first describe the set of
cusps adelically for any U of level prime to p.

For an arbitrary open compact subgroup U of GLa(Ap ¢) containing GLy(OF,,), we
define the set of cusps of Yy to be

Y = B(OF, ())+\GL2(A%}) /U = B(F).\ GLa(Ape) /U,

where B denotes the subgroup of GLgy consisting of upper-triangular matrices. Similarly,
we define the set of cusps of Yy to be

Y = B1(Op,())+\GL2(A%}) /U

Note that the natural surjection }75’" — Y%° identifies Y;7° with the quotient of }N/ﬁo by the
left action of B(Op,(y))+/B1(OF, ) = OF (p),+- Furthermore, the subgroup (OFNU)?

https://doi.org/10.1017/51474748021000530 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000530

1904 F. Diamond

X
F.(p
precisely, the stabiliser of the cusp By (OF, ())gU of Yy is the group det(gUg ™' NB(F)), C
Of. ., in which (O NU)? has finite index.

We also have a natural bijection between Y;7° and the set of isomorphism classes of

data (H,I,[\],[n]) where

acts trivially on Y;2°, but the quotient O )+ /(OFNU)? need not act freely; more

H is a projective Op-module of rank 2;
I is an invertible submodule of H such that J:= H/I is invertible;
[A] is a prime-to-p orientation of A%, H = 1®e, J =1J, by which we mean an

O

X . . .
F.(0), -orbit of isomorphisms

A /\?QF,(p)H(p) = OF,(p)-

e [n] is a level UP-structure on H; that is, a UP-orbit of (/Q\g')—linear isomorphisms
n: (0P 5 0% o, H.
The bijection is defined by associating the data (Hg, I, [Ag],[n4]) to the coset
B(Op, ())+9U?, where Hy = 029~ 1NF2, I, is its intersection with the subspace {0} x F,
Ay is induced by the determinant and 7, is induced by right pre-multiplication by g~*.
Note that to give a prime-to-p orientation of /\?DFH is equivalent to giving an F-
orbit of isomorphisms A%(Q® H) — F, but the integrality condition is imposed for
consistency with the fact that we have a bijection between 17(‘]’0 and the set of isomorphism
classes of data of the form (H,I,\ [n]), which is similarly defined, (’);7 ), ,-equivariant
and compatible in the obvious sense with the bijection describing Y;3°. In particular, if
U=U(1) = GLy(Op), then the map sending (H,1,[\],[7]) to the pair (AS, H,I) defines a
bijection between Y7 and C’;f x C'r, where Cl(f) denotes the (strict) class group of F. For
each such cusp we choose a polyhedral cone decomposition as in [31, Lemme 4.2] (with
U’ = U, in the notation there) for (M*®@R), U{0}, where

M =Homoe, ([,o"tJ)=0"t1"1J,

M* =Hom (M,Z) 2 Hom e, (J,1) =J I, (17)

and the positivity is induced by the orientation of I ®¢,. J.

Suppose now that U = U () for some N >3 (not divisible by p) and that O contains
the Nth roots of unity. The above choice of cone decomposition (for the image of each
cusp of )7[?" in Y[j’?l)) yields a toroidal compactification'? fo — 17[}‘“ such that the set of
(geometrically) connected components of its (reduced) closed subscheme Z{?r = f’f,or -Yu
is identified with }75" The construction of )7(}‘" identifies its completion along the

component corresponding to a cusp C represented by (H,I,\[n]) with the quotient

12C0mpactiﬁed in the sense that its (infinitely many) connected components are proper over

0.
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of a formal scheme'? §C~ by an action of V2, where Vy = ker(Of — (Op/NOFp)*).
Furthermore, this extends to an action of O} 4 on .S= S5z and we have an isomorphism

I(5,05) 2= Ollg™Jmen-1a1, Uf0) (18)

compatible with the obvious action of Oé, . on the target. (The isomorphism depends on
a choice of splitting of the exact sequence

0—-1—-H—J—=0

of Op-modules; modifying the splitting by an element § € J~'I = M* alters it by
composition with the automorphism defined by ¢ — C&ﬁ(m)qm for me N~'M.) We
let £ S — f@or denote the natural morphism of formal schemes, and we write Fg for the
field of fractions of I'(S, Og) and p, for the automorphism of S defined by v € O 4

The construction of the toroidal compactification also extends the universal abelian
scheme A to a semi-abelian scheme A'" whose pullback to S is identified with that of
the Tate semi-abelian scheme'* associated to a quotient of the form

Tr5 = (0_1I®Gm)/flﬂilja (19)

where ¢ : 071J — FX ®07!I is the homomorphism corresponding to the tautological
element under the canonical isomorphism

Hom (M, F3) = Homo, (071(]’0—1[@}75)'

Similarly, its dual AY extends to a Tate semi-abelian scheme (AY)'*" whose pullback via
¢ is associated to Ty -1 57-1, with the isomorphism @ ®p, A*" — (AY)*" defined by the
quasi-polarisation pulling back to the composite

ORop TLJ %D(IJ)_l Rop TLJ AN T3J71,3171,

where ¢ = {a € F|aA(IJ) C Or}, the first morphism is the isomorphism induced by A
and the second is the canonical one.

The subschemes Zy of f/U (defined in Subsection 4.2 by the vanishing of the partial
Hasse invariants Hy) are closed in ?ﬁor, and we let ~l§’rd (respectively ?&‘"d) denote
the complement of their union — that is, the ordinary locus, in }N/U (respectively }7}}“)

— and we use similar notation for the restrictions of A™* and (AY)™'. Since the sheaf
Lie(A%rd /yferd) is locally free over O ® Oy 1ora, the universal filtration F9) on
U

(5.2 3, )r = Homo, (Lie(A/Yy)r,05,)

1 ~
A/YU

13The formal scheme depends on the chosen cone decomposition {Jg} and is denoted
Sn({oS P in [4, Subsection 3.4.2].

M\ ore precisely, the formal scheme S has an open cover by affine formal subschemes Spf R,
(indexed by cones o) such that Spec R Xf’{r“ A ig identified with the semi-abelian scheme
T7, 5 over Spec R,. The compatibilities in the discussion that follows are then systematically
checked by verifying them over the open subschemes Spec RS = Spec R X sor Yu.
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extends canonically to one on Home Eie(Ator/?ﬁor)T,@ym) for each 7 € %.
U

Furthermore, its pullback to S is identified (in the notation of (1)) with

ytor (
Yy

0C t-,—,l(l_l ®O§)-,— C tT’Q(I_l ®O§) C--Clre, (I_l ®O§)T = (I_l ®O§>T
under the canonical isomorphism
Homo, (Lie(Tr,7/5),0g) 2 Hom (0 '1,05) 2 7' © 0.

We thus obtain extensions E’é"r of the line bundles Ly = Zp7i7 j to 57(}‘“ whose pullback to
S is identified with (I7!)g ®o Og, where (I7')g is defined by (2).
Similarly, Lie((AY)"*rd/ygerd) is locally free over Op ®O§7&0,d, but the line bundles

Mgy = Mvp,i, j over f’{}rd are canonically identified with
(R 5,0 gors) [ — 6(z,)] 2= Lie((AY)"™ /7). [u—6(a3y))-
It follows that cach My extends to a line bundle /\71;)“ on }7(}’“ such that the identification
Lie(Tyy101-1/5) =T ' ®@0g
induces an isomorphism
EMYPT = (I 0g) [u—0(wy)] 2 (077 ® Og)r @00 O.

We can thus identify the pullback 5*]\75“ of the line bundle ./\79“”r = Egor ®of,&m ﬂg“
with (3(IJ)~')s ®o Og, which the polarisation in turn identifies with (¢2)y ®o Og in
the notation of (2). Finally, it follows that the automorphic bundles .ZkJ extend to line
bundles /Tf{"{ on Yo" such that

£ AR = Dy @0 Og,  where Dy = (X) ((1-1);@’“9 ® (a(IJ)—l)E’le) (20)
fex

(the tensor products being over ). We refer to this isomorphism as the canonical

trivialisation of £* ALY

Nex~t we consider the completion of )N/(}OT along thie component corresponding to the
cusp C represented by (H,I,\[n]), which we denote (YUcox-)/Cl. We now describe the global
sections of the completions of the line bundles A} using the identification (Y(}‘“)él =
3 /VZ and taking invariants under the action of V2 on their trivialisations over S. Note
firstly that r((?gor)g,o ) =T(S, (9§)V13 corresponds to

(V)

{ Zrmqm € O[lq"lmen-1m, 010} | Ta2m = Tm Y € V,m € NM, } (21)

under the isomorphism of (18). One then finds that the descent data for £*A™" is
provided by the isomorphisms 17, ; AN w217, 5 induced by a®1 on I ®G,,, from
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which it follows that the descent data for {*/jgor is provided on the trivialisation by the
isomorphisms

(171)9 Ro ,LL2;2(9§ AN (171)9 Ko Og

induced by 6(a) on (I71)g. On the other hand, the descent data for §*./Wf9°r is similarly
induced on the canonical trivialisation by («)™", so that the resulting trivialisation of
E* N descends to (YUtor)é\v (in fact extending the one already defined over Yy via the
choice of generator t, ;(f'(wy) ®1) of (¢d)g). Since F((Yl}or) o f(of) ) =T(S, f*Ator)

we conclude the following.

Proposition 7.1.1. Suppose that U =U(N) and O contains the Nth roots of unity. Then
the isomorphism (18) and the canonical trivialisation (20) identify F((Ytor)c,( t"’f)é\v)
with

Z bRTmq™ | Tazm = Xx()rm Ya € Vyym € N"M, 3,

meN-1M,U{0}

where b is any choice of basis for D .

7.2. Minimal compactifications

We now recall the construction due to Chai [4] of minimal compactifications of Hilbert
modular varieties. The presentation in [4] is very concise with numerous typos, but a
more detailed treatment of the construction can be found in [13] in the case of Uy(n)
(with different conventions than ours) and of the descriptions of g-expansions in that
case in [5].

We continue to assume for the moment that U = U(N) for some sufficiently large N
prime to p. The minimal compactification f’U — }7{,‘““ is then constructed as in [4, §4] or
[13, §8]. More precisely, letting t =Y ey and taking the global sections of @kzojﬂfo over
each component of }7,}(“ yields a projective scheme over O containing the corresponding
component of the Deligne-Pappas model as an open subscheme. Gluing their ordinary
loci to YU along YOrd yields a scheme Ymm and a proper morphism 7 : Ytor ffmin
such that 7: Yy — Y““n is an open immersion. Furthermore, the (reduced) complement
Ymln Yy is an infinite disjoint union of copies of Spec O indexed by Y§°7 the pre-image
of each in Ytor being the corresponding connected component of Ztor, and the scheme
Ymm is independent of the choice of cone decomposition in the construction of f’,}or.

Now recall that the Koecher principle implies that Oymm = W*Oytor T*(’);U, so that
(9}/) &= ((Ytor) O(ytor)/\) is the ring described by (21), where we have written C

for the correspondlng point of Y"llrl Furthermore, the argument of [31, Prop. 4.9] shows
that 7, Ak = . ff{ (see the discussion following [31, Def. 6.10], or view Yy as a disjoint
union of PEL Shimura varieties and apply [28, Thm. 2.5]), so the theorem on formal

functions gives that (L*./Tk,l)g = F((f’Utor)~ (.Ator) %)) is the (’);\,mm zmodule described in

Proposition 7.1.1. (Note that Z*,Zk,l is coherent but not necessarily invertible.)

https://doi.org/10.1017/51474748021000530 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000530

1908 F. Diamond

Similarly, for any O-algebra R, we may identify (TR’*/Tk,l, R)/C\~ with

Z b@Tmq™ | Tazm = Xk R(Q)Tm Yo € Viyym € N™P M, (22)
meN—1MU{0}
as a module over Oymm & which the Koecher principle and (18) identify with

{ Zrmqm € R[[q"]lmeN-10,0{0} | Ta2m = Tm Yo € Vy,m € N~'M, }, (23)

where 1R : fo’ R— }7[}“}% is the base change of 7 to R, the completions are at the fibre over

C and b is any basis for Dy ;.

The compatibility of the choices of polyhedral cone decompositions ensures that the
natural action of O () 4+ on Yy extends (uniquely) to one on Yto‘" Furthermore, the
stabiliser of each component of Z,t}’r is Viv,4, and the action of Vi, 4 on each completion
(?Utor)é\« = §/V1\2, is induced by an action of Vi 4 on S such that the effect of v € VN, +
on global sections of Og is induced by multiplication by v~! on M. We see also that
the canonical isomorphism A — v*A extends to an isomorphism AT — v* A*" whose
pullback via ¢ is induced by the identity on 9711 ® G,,, from which it follows that the
action of v is compatible with the canonical trivialisation of the line bundle £{°* over S.
On the other hand, the induced isomorphisms V*Mvgor — M and 1/*./\79tor — J\~f9t°r pull
back to ones corresponding to multiplication by O(v).

Since Y“““ is a disjoint union of projective schemes over O on which O;’ )+ JVZ acts
with ﬁmte stabilisers, the quotient scheme exists, and we define this to be the minimal
compactification Y™ of Yy;. We thus obtain an open immersion ¢ : Yy — Y™ such
that Y/ is projective over O and the (reduced) complement of Yy is a disjoint union
of copies of SpecO in canonical bijection with the set of cusps Y;7°. Furthermore, we
again have that ¢, Oy, = Oymm, and its completion O at the cusp C represented by
(H,I,[A],[n]) is identified under (21) with

Ymm C

{ Zrmqm € Ollq™lmen-101,0{0} | Tvm =Tm Vv € Vv s, m € N™' M, }

(where the identification depends as in (18) on a choice of splitting of the exact sequence
0—1I— H— J—0). Now suppose that R is an O-algebra such that xito1 g is trivial on
V', so that the line bundle .ﬁk,l, r descends to one over Yy, p which we denote by Ax 1 r.
We then see that ¢, Ak 1 r is a coherent sheaf on Ym”f1 whose completion at the (base
change to R of the) cusp C is identified under (22) w1th

Z b@Tmq™ | Tyt = XLR(V)rm YV € Vv, m € N™1M,
meN=1M,U{0}

In particular, ¢, Ak 1 r is a line bundle if xj g is trivial on Vi 4.
Suppose now that U’ is any sufficiently small open compact subgroup of GL2(OF)
containing GL2(Op ). One can then carry out a construction similar to the one above
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to obtain the minimal compactification or choose an N prime to p such that U(N) C U’,
extend the natural (right) action of U’'/U(N) on Yy (n) to Y(}n(if\}) and take the quotient;
we do the latter (see [13] for the former in the case of U’ = U;(n)). Firstly, our choice
of polyhedral cone decompositions ensures that the natural right action of U’/U on ?U
extends to }7,}‘"7 where U = U(N) for some choice of N as above. Denoting the resulting
automorphism of }Nfl}or by pg for g € U’, the canonical identification of the universal A over
Yy with its pullback extends to an identification A%*T = ﬁ;Ator, giving rise to canonical
isomorphisms py Nz,%fo = .Z}C%fo, and hence to an action of U’/U on }N/'[}“i“ extending its
action on ?U. Moreover, the action commutes with the natural action of Of () 4, so
it descends to an action on Y™ extending the action on Yy. We denote the resulting
automorphisms of Y™ by p, and define Y™ to be the quotient of Y by the action
of U'/U (which we will soon see is independent of the choice of N in its definition).

Identifying the set of components of Y™ — Yy, with Y3°, the resulting action of g € U’
is given by pre-composing n with right multiplication by g~!, so the set of components of
Yg}}in —Yy may be identified with Y;59. For each cusp C’' € Y3, the completion O}A,,,;i,,’ cr
is identified with the subring of OQ;““, ¢ invariant under the stabiliser of CinU'/U, VL\JIhere
C is any cusp of Yy in the pre-image of C’. Choose such an (H,I,[\],[n]) representing C
and a splitting o : H — J x I and let

{3 1)

which we view as acting on J x I by right multiplication. The stabiliser of C is then the
set of classes Ug = gU € U’ /U such that

ae(’);,BGJ_lL(SEOzO;’JF} (24)

1

g=n 0_17077 mod N@F for some vy € I'¢,

and we let I'c v = Ie NonU'n~to~t. Thus, the stabiliser of C is the image of the

homomorphism s: ¢ v — U’ /U defined by v+ n~to~tyonU.
We claim that if g = s(v), then pj on OQmi,, = HO(S,Og)VN’+ is induced by an
U

automorphism ., of S whose effect on global sections corresponds to the map defined by
x . m - “IN atom
P g e (P e (25)

under (18) and the identification M* = J~1I of (17). Indeed, letting v denote ad (as well
as the automorphism of i/v'(}or defined by its effect on the universal polarisation), we see
that 6® 1 on T} ; defines an isomorphism §*p;1/*At°’ = w;g*AtOf compatible with all
auxiliary data, from which one deduces that vop,0& =&o01,. Note also that (25) defines
an action of I'¢c on I‘(§, Og) which factors through the surjection

I'c — (J‘1[®Z/NZ)><1(’)I§7+
o f o —1g -1
( 0 s ) — (—a™1B8,a719),

and the latter group acts on F(g, O§)VN -+ via its quotient
(JTHQLZ/NZ)x (OF /VN 1)
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We conclude that OQm;n o= HO(§7 (’)g)rciﬂ is identified with
min,

> rmq"

meN-1M, u{0}

_ -1
Ta*16m:CN6(a N”L)Tm VmEN71M+,(8‘§) EFC,U/ s

where we recall that the isomorphism may depend on the choice of the splitting o and
that we view ( as an element of M*. We note in particular that if U’ = U(N') for
some N’|N, then the resulting description of OXA’[}“,‘“, cr coincides with the one previously
obtained, from which it follows that the same holds for the scheme Yg,’}i“ and hence that
Y51 is independent of the choice of N in its definition (for any sufficiently small U’
containing GL2(Op ,).)

Suppose now that k1€ Z* and R is an (O-algebra such that Xk+2L, R is trivial on
U’'NOj and consider the automorphic bundle AL,I,R on Yy, g. Letting ¢/, denote the open
immersion of Y/ g in Y“}fr}%, similar considerations to those above show that LIR,*Ai(’L R is

a coherent sheaf on Y&niﬁ whose completion at C’ is identified with the (9{} o--module
’ uU’,Rr’

of I'¢,yr-invariants in (i +Ak,1,r)¢. Using that the isomorphism £* AT —= ¢*£* A™T is

induced by ®1 on the Tate semi-abelian scheme, we find that the resulting automorphism

multiplies the canonical trivialisation (20) of £* A% r by X1, (@) Xk+1,r(0). We therefore
conclude the following.

Proposition 7.2.1. If Xx21,r is trivial on U'NOg, then iy Ay | s a coherent sheaf
on Y“}frj% whose completion at (the fibre over) C' is identified by the Koecher principle and
Proposition 7.1.1 with

_ C;]ﬂ(alem)

Z b&@ryg™ | Tatom X1, R () Xx+1, R(0)Tm
meN-1M,U{0} for allme N'M,(§7) €Teur
Note that the description of (’)Qmin o= (tr *OyéninR )¢ may be viewed as a special case
UL R 3 ’

(with k =1=0), as can the prior formula for U = U (). Furthermore, the identifications
are compatible in the obvious senses with base changes R — R’, inclusions U"” C U’
(provided the splittings o are chosen compatibly) and the natural algebra structure on
@Dy 1Ak 1 (taking the direct sum over k,1 as in the statement).

Recall that the g-expansion principle allows one to characterise Hilbert modular forms
in terms of their g-expansions.

Proposition 7.2.2. If C C Y5 is any set of cusps containing at least one on each
component of Yy, then the natural map

My (U R) = HO(Y™, g A1 r) — €D (g oA r)E
c'eC

18 injective.

https://doi.org/10.1017/51474748021000530 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000530

Weight-shifting operators on Hilbert modular forms 1911

Note also that we may replace Dy ®p - with D1 r ®pr- in the description of ¢-
expansions over R. In particular, if R is an F-algebra, the identification

I VyRoF =(I"'® O)r B0, F = tr g (I B (Or (). O) Boluy0 F
= t‘r,j(l}; %W(Op/p)yf O)/(“’mo)tTij(%: Sw(©r /). O)
=u (I, @w(op/p),» F) /4TIy @w(0p/p),- F)

yields a canonical isomorphism
(I e®@oR=(p> 17 p» T ) @0, /p, - R (26)
The analogous formula holds for the factors (9(IJ)™')y appearing in the definition of
Dk71.
The condition on the g¢-expansion coefficients in the description of the completions
in Proposition 7.2.1 simplifies for certain standard level structures and cusps, as in [12,

Prop. 9.1.2]. Suppose that n is an ideal of O such that xko1, g is trivial on V;, = ker(Oj —
(Op/n)*). Letting U’ = U(n), we have

e={(3 )

for every cusp C of Yy;. Note that m € n=1 M if and only if B3(Nm) € NZ for all 3 € nM*
and that o,6 € V,, implies that x1 r(@)Xkt21(0) = x1,r(d 1), so we see that

aeVy,BenM* e aVML}

(Vr AR LR)C Z b@7mq™ | Ty—1m = X1, R(V)Tm for all v € V; 4
mé(n=1M),U{0}

for every cusp C’ of Yy .
Keep the same assumption on n but now let U "=U;(n) and suppose that C’ is a cusp
of Yy ‘at oo’ in the sense that 1(0,1) € I +nH®). We then find that

{5 5)

and we similarly conclude that

aeéO}é)Jr,ﬂeM*,éeVn},

(Vr Ak LR)E Z bRTmq™ | Ty-1 = X1, R(V)rm, for all v € OF 4
meM;U{0}

We remark that every component of Yy contains such cusps (in the obvious sense) and
that in this case the isomorphism is independent of the choice of splitting o.

7.3. Kodaira—Spencer filtration

We next explain how the Kodaira—Spencer filtration on differentials extends to compact-
ifications.
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We maintain the notation from the preceding section. In particular, we first assume
U =U(N) for some N prime to p before deducing results for more general level structures.
The construction of Yto’r via torus embeddings then yields a canonical isomorphism

5*(Qym/o(log2mr)) N'M®Og (27)

for each cusp C of fo under which the descent data relative to the quotient map S =
Sz — (Yﬁor)g corresponds to that induced by the obvious action of V2 on N='M and
the completion of the canonical derivation

d: O — QL. (log Zi%)

Ytor Ytor/o

pulls back to a derivation Og — N TM® Og whose effect on global sections corresponds
under (18) to the map defined by

Z rmq" Z mer,q"

meN 1M, U{0} meN—1M,U{0}
Recall also that
Q}Aord/yord = Homo, Fgrd (Ele(Aord/Yord) YOfd)

Il

and R'5,0 gora ﬁze((Aord) JYgr)

are locally free sheaves of O ® Og.o.a-modules over Yord and therefore so is
U

1 1
S*QAord/i}grd ®OF®O‘78rd S*Q(Aord)v/i}grd .

Decomposing this sheaf over embeddings 7 € ¥y and equipping it with the filtration
defined by the images of the endomorphisms ¢ ; defined by (1), we see that the successive
quotients

(S Q}qord/yord ®OF®O{/8rd S*Q:(lerd)v/i;Uord>T ®O[u]70 O
= Homog (Rl $+0 gora[u — 0(w)],; (S*QéAord)\//?&)rd)T Qolul,0 0)

(where 7=, t; =t; ; and § =0, ; ;) are canonically identified with the automorphic
bundles Age,,—e, Over Y{]’rd. Furthermore, the proof of Theorem 3.3.1 shows that the
natural map

S*QZord/i};}rd ®OF®O}78rd *Q(Aord) /Yord — Qyord/o (28)

arising from Grothendieck—Messing theory or, equivalently, the Gauss-Manin connection
on HYg(Ad/Ygd) (see 27, §2.1.7]) is an isomorphism. In particular, the Kodaira—

Spencer filtration on QYO! a0 corresponds under (28) to the one defined by the images of

the endomorphisms ¢, ;. Furthermore, (28) extends over ?Utord to an isomorphism
HOMOy 0 (D@0, Lie( A V(™) 80,00, Lie((A)Y /Y1), O p0ra)

= QL log Ztor)

Ytord /O (
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whose pullback via § = {5 for each cusp C of Yy is compatible with the canonical
isomorphisms of the pullback of each with M ® Og = N~'M ® Og (the latter via (27)).
Indeed, the existence of the extension and the claimed compatibility follow from the
analogous well-known result after base change to C. We therefore conclude that the

Kodaira—Spencer filtration on Q% /o extends over Y/ in the form of a decomposition
U

tr tor
U oloeZE) =D @ (2 oloeZE")

PESpIEL/ fo P

together with an increasing filtration of length e, on each component (Q% (log Z[t]"r))p’,

Ytor/o
and isomorphisms

g?ere,fes — g (Qytor/o(l thor))p .
Furthermore, for each cusp C of f’U and embeddings 7 =1, ; and 0 =0, ; ;, the pullback via

§=E5of FilJ(Q;m/ (log Z}“J‘“))p,i corresponds to t;(N"!M®0), ®0 Og=t;0 ' I J®
U

0); ®0 Og under (27), and the resulting isomorphism

CAR o, et (5*(Qymr/o(logZU )p ) =~ T2 0)00 O

coincides with the canonical trivialisation of (20).
We now interpret this in the context of minimal compactifications. First we note that

the argument of [31, Prop. 4.9] yields a Koecher principle for Qymr / O(log Z}“j’r), so that
T (Qytor/o (log Ztor)) - FLV* (Q%}U/O)

is an isomorphism of coherent sheaves on ?gﬁn whose completion at the cusp C is identified
. Ve
with (M®O[[qm”meN*1M+u{0}) N

= Z Cm @q™ | Com = Ve, Vz/e‘/ﬁ,,meN_lMJr
meN—1T My

(Note that ¢o € M Vi = 0.) Furthermore, the completion at C of the canonical derivation
(’)}75” — L*Q{, /0 is given by > rpng™ — Y mr,q™

We see also from the description of the extension of the Kodaira-Spencer filtration to
Q;mr / o(log Z;7") in terms of g-expansions that

. (Fil7 (QL (lothor)) D) =L(FiI QL )pi),

Ygor /0 Yy )O/P

~ 2
with completion at C given by (¢;(M ®0), ®o (9[[qm]]m€N71M+u{0})VN

= Z em@q™ | cym = (@), VWweVEme NP M,
meN—1My
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2
Furthermore, since VZ acts freely on N1 M, (and Mg/ N =0), the morphisms

L(FI QL)) = Tooeg, e,

are surjective on completions at cusps and hence surjective. It follows that the graded

pieces of (the obvious extension of) the Kodaira—Spencer filtration on '[*Q%, Jo are
U
canonically isomorphic to 7. Aze,, —e, -
The constructions above are compatible with the natural actions of (9; (p),+ ON Yier,

)7(}‘““ and M, so that the resulting descriptions carry over to Yé"in. More precisely,
Ls (Q%/U /o) is a coherent sheaf on Y™ whose completion at the cusp C is identified

. VN,
with (M@O[[qm]]meN_1M+U{0}) o

= Z Cm®qm Cum:VCmVVGVN,+amEN_1M+ s
meN—1TMy

in terms of which the canonical derivation is > 7,¢™ — Y. m & r,,¢™. Furthermore,

the completion at C of Filj(L*(Q%,U/O)M) = L*(Filj(Q%/U/o)pyi) is identified with

(t;(M®0), @0 (’)[[qm]]me[\;_1]\/1#1{0})VN’+7 and the natural maps

grj(L*(Q%/U/o)p,i) — L*(grj(ﬂ%fu/o)p,i) — LeA2eq, —eq (29)

are isomorphisms whose completions at the cusps are induced by the surjections ¢;(M ®
O)T — M.

Suppose now that U’ is an arbitrary sufficiently small open compact subgroup of
GLa(Ap.¢) of level prime to p, and choose N so that U(N) C U’. The constructions above
are then also compatible with the natural actions of U’, so we arrive at similar conclusions
with minor modifications to the descriptions of completions that result from taking
invariants under I'c . We omit the details, but we remark that letting L (respectively
V') denote the kernel (respectively image) of the homomorphism

Teu /(OFNU) = OF,

(g §>~((’)§HU’) - a1,

the coefficients r,, of g-expansions in @Qn:m’ o are indexed by m € (L*); U{0} (where
L is identified with a finite index subgrouUp of M). Since V acts freely on L* (twisting
g-expansion coefficients by a possibly nontrivial cocycle valued in L ® un(O)), we still
obtain the isomorphism of (29) with U replaced by U’, identifying the graded pieces of
the Kodaira—Spencer filtration on L*Q%, e with the sheaves ¢, Aze,, —e,-

The description of the extension of the Kodaira—Spencer filtration over compactifica-
tions also applies after base change to an arbitrary O-algebra R, with one significant
difference. If R is not flat over O, then the modules M ® R (and their subquotients) may
have invariants under the action of the unit groups Vi, 1 (or, more generally, the isotropy
groups I'c y/), so that g-expansions of meromorphic differentials on Yy g (and forms of
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weight (2eg, — ep)) may have nonzero constant terms and the morphism analogous to
(29) may fail to be an isomorphism. (Note that in this case the relevant base-change
morphisms (¢ F)r — tr,«(Fr) fail to be surjective at the cusps.)

We can, however, simplify matters by placing ourselves in the situation when this fails
in the extreme. Suppose then that p" R =0 for some n > 0 and that N is sufficiently
large that v =1 mod p"Op for all v € Vi, ;. Arguing exactly as above, we find that
L R7*(Q%/U,R / ) is now a vector bundle over Y(}’ji}%‘ whose completion at C is identified with

VN
(M®R[[qm”meN*1M+u{0}) T =MeO)

Yi.C

= Z Cmn @q™ | Cum = vem VI/EVN,JF,mEN_lMJr ,
meN 1M, U{0}

with the canonical derivation given by > 7,¢™ — > . m®r,,¢™. Furthermore, each

FﬂjQR,*(Q%fU,R/R)p,i) = LR,*(Fﬂj(Q%/U,R/R)p,i)
is a subbundle whose completion at C is identified with ¢;(M ® O), ®o O}A,mm o and the
U,R’
natural maps

grj(LRv*(Q%/UYR/R)pvi) - LRv*(grj(Q%/UyR/R)p»i) ; LR7*A2e9,—e97R

are isomorphisms of line bundles over Yg"i}% whose completions at the cusps are induced
by the surjections t;(M ® O); — My. We remark also that this carries over with U
replaced by arbitrary U’, provided U’ is sufficiently small that (in additional to the
a B
0 o
condition being independent of the choice of N and C in the definition of I'¢ ).

usual hypotheses) « =0 mod p"Op for all < > €T'c y and cusps C’ of Yy (the

8. Operators on g-expansions

8.1. Partial Hasse invariants

We next describe the effect of the various weight-shifting operators on g¢-expansions,
beginning with the simplest case of (multiplication by) partial Hasse invariants. We will
now only be working in the setting of R =T, and we will use ~ to denote base changes
from O to F. Since the formation of ¢-expansions is compatible in the obvious sense with
pullback under the projections Yy — Y, it will suffice to consider the case U = U(N).

Recall that in Subsection 4.1 we defined the partial Hasse invariants as certain elements

Hy € My, 0(U;F) = H*(Yy, Any,0),
where hy :=nge,—19 — ey, with ng =p if j =1 and ng =1 if j > 1. In particular, if 7 > 1,

then Hy is defined by the morphism v : £, ; — £, j_; induced by w, on the universal
abelian variety over Yy r, which evidently extends to the endomorphism w, of A™" over
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S .= }7,}"&5 Since its pullback via € is defined by wy on T, ;, the resulting morphism of
line bundles

€L,
is compatible with their canonical trivialisations and, more precisely, with the morphism

(I e®oF = (I7)g-1400F

induced by u =w®1 on (I"'®0),. It follows that Hy has constant g-expansion, where
the constant corresponds to the basis element @, under the identification

Dhyo 2 p®0,,0F

provided by (26).
For j =1 we use also that the morphism of line bundles
€L —E 5L )

¢7107'7€p

induced by the Verschiebung d)gTI, 7= TI, 7 is compatible via the canonical trivialisations
with the canonical isomorphism

(I ®F),; = ¢5(I ' @F) 4107

So in this case we again find that Hy has constant ¢-expansion, the constant now
corresponding to the basis element w;_e” under the identification

mn ~ al—
Dpyo=p  ®0p,0F

given by (26).
The g-expansions of the canonical sections Gy € Mo, n, (U;F) may be described similarly.
Indeed, for j > 1, the composites

u
Lrj — Prj — Lrja
and Mr,j—l — PT,j —>u MT,j

on ?gr{} are isomorphisms whose tensor product defines Ny = N, -14. Its unique extension
to 575?1§d, and hence to )N/Lt,‘?]ﬁ, is therefore the isomorphism whose pullback via £ is the

tensor product of the isomorphisms defined on canonical trivialisations by (I71)y @0 F =
(I71)-1p®o F and by the identity on (0J "' ®F), /u(0J ! ®F), and hence corresponds to

OUI) ™ HNe@oF L Q(IJ) ) s-1pR0F.

Therefore, Gy has constant g-expansion, with constant corresponding to the basis element
w, under the identification

Do hy 2pR0p0F

provided by the analogue of (26) for (0(1.J)~1).
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Similarly, if j = 1, we find that N7 1 = ¢§(Ny-107.c, ) Over S = }7{?[}1 is the tensor product
of the isomorphism

Lr1 = 05(Ly-10rc,)
defining the Hasse invariant and the isomorphism
(bz‘(Mzb*lor,ep) — MT,l

induced by Frobs. The extensions to }7[}‘7’]?‘1 are again compatible with the canonical
trivialisations, now corresponding to maps whose tensor product is the inverse of the
isomorphism

(O(T) o100 F)*" = (1) ") @0 F

induced by u®* ~1. So again G4 has constant g-expansion, with constant corresponding to
w;ﬂe” under the identification

N A l—
Don, =9~ ®0,,0F

given by (26) for (0(1J)™1)s.

8.2. Partial ©-operators

We now compute the effect of @-operators on g-expansions exactly as in [12]. Recall from
Subsection 5.2 that for each 9 = 7, ; € Yo, the associated partial ©-operator is a map

@7—0 : Mk71(U;F) — Mk/71/(U;F)

where k' =k +ng,e,-19, +-€g,, ' =1+eq, and Oy = 0, ; ¢, . It is defined for all sufficiently
small U of level prime to p and is Hecke-equivariant. In particular, it is compatible with
restriction for U C U’, so we may assume U = U(N) for some N sufficiently large that
v =1 mod pOr for all v € Vi 4.

Recall from the proof of Theorem 5.2.1 that ©,, is defined by a morphism Ay ir —
A 1.7 given locally on sections by formula (12). Our assumptions on U imply that

A AN
(tr,« Ak, 1F)¢ = Dk, F ®F 'Oy[}ngl’c

is free of rank 1 over Q7

Pmin o for all weights k,1 and cusps C, so the completion at C of
U,F >’

tF,+O7, is the map
(tr+ Ak P)e — (15, « A 1 F)C

defined by (12), where yg is any basis for (i .Lg)p and y* =], yge . In particular, we
may choose yp = by ® 1 where by is a basis for De, 0.r = (I7!)g @0 F. The fact that Hy
has (nonzero) constant g-expansion at C then means the same holds for the element
ry € OQI?)};,’C; that is, r¢g € F*. We can even select the bases by so that ry =1 for all ¢
by choosing any basis b, for (I, ®F), o over Flu]/u® for each p, letting b, ; correspond
to (¢")*(bp) under the canonical isomorphism (I, ® F), ; = (¢")* (I, ® F)p,0 and defining
by,i,; to be the image of u®» *jbpyi in (I7)g®eF.
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Recall also that ¢! = Hgglge in (12), where each gy is a trivialisation of Ny over Yy .
Therefore, gp trivialises up Ny over Y{}jﬁ“, from which it follows that g9 = cy ® 1 for some
basis ¢y of Do e, r = (0(1J)"1)g @0 F. The formula (12) therefore takes the form

O, (@ ps) = Ho b @ K S, (dps) =0l @ K S, (dpy),

for o5 € OQmm ¢ Finally, the descriptions in Subsection 7.3 of the canonical derivation,
U,F >

the Kodaira—Spencer filtration and the isomorphism (29) in terms of g-expansions yield

the formula

O, Yoo e | = Y. 0T dF(m)@rm)e™  (30)
meN—1 M, U{0} mEN—LM,

where T is the canonical projection

NM — (N'M&F), = (M&F),
- M ®OF7§0 F= (0_11_1J) ®OF,§() F= D2e90,—e90,]F

(writing 0 for the composite of O "o F). As noted above, it follows that (30) holds
with U = U(N) replaced by any sufficiently small open compact U’ of level prime to p
and C replaced by any cusp of Y. In this case, the g-expansions are necessarily invariant
under the natural action of I'c 7+ (whose compatibility with (30) is a consequence of the
construction but is straightforward to check directly).
We see immediately from (30) that the operators ©, for varying 7 commute. We see
also that
ep—1

07, () = Or, (N H, Ho, Gy T (Hos,Gly, ),
j=1

where 71 =190 =Ty ;11 and 6y =0 0y =0y ;1 1., . Indeed, this follows from (30) together
with the fact that the g-expansions of

€p €p
H, = HHajgo and G, = HG,,J-QO
Jj=1 Jj=1

are constants given by the canonical isomorphisms ((I71)y, ®o F)®? = (I71)y, ® F and
((O(IJ) g, 0 F)®P = (0(1J) 1)y, ®0 F, so we get a commutative diagram

D290177991 ,F

N—'M

%®p

®p
2eq,, —€g,F

where the downward arrow is multiplication by the (constant) g-expansion of Hfl G;ll.
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8.3. Partial Frobenius operators

Finally, we compute the effect on g-expansions of the partial Frobenius operators V,
defined in Subsection 6.2. We must first extend the partial Frobenius endomorphisms
&)p (and ®,) defined in Subsection 6.1 to compactifications. To that end, let h,
denote the matrix (39), viewed as an element of GLQ(Ag)f), where § € F* is as in
the definition fo <f>p. We let cigo : }7(?0 — 1750 be the permutation defined on double
cosets by B1(Op,(p))gU? — B1(Op, (p))hglgU” and, similarly, let ®p° denote the induced
permutation of Y3°. Then E)ﬁo translates to the map on corresponding data sending
(H,I,\[n]) to (H',I',X,[n]), where

I'=p '@, I=p7"1,

H' is the pushout of H with respect to I — I’,

N =6®A (identifying AL H =p ' ®o, NG, H) and

e 7 =7 (identifying (/9\;?) ®o, H = (/9\;?) Qor H).

Suppose now that U = U(N) for some sufficiently large N. One then checks that the
morphism @, : Yy p — Yy p extends to a morphism 5;‘“ : }7(}‘7]? — }Nfl}ofg (where the ’
indicates the choice of cone decomposition need not be the same) under which the
component corresponding to a cusp C represented by (H,I,\[n]) is sent to the one
corresponding to C = &)go(g) represented by (H',I’,),[n]), and the resulting map on

completions pulls back to a morphism §é}F — §5’,IF whose effect on global sections

corresponds under the isomorphisms of (18) to the homomorphism induced by the
canonical inclusion

M=o NI MT=po T TS0 T
Furthermore, the pullback of A’** = (5%‘”)*14“” to §é~]F is identified with the Tate semi-
abelian variety T,-17 7, and the isomorphisms defined in Subsection 6.2 relating the line
bundles ®% Ly to Ly or L,-14 extend to isomorphisms
p
(@I £l 22 L3 for 0 ¢ By, and (BL7) LY 2 (L7,)°™ for 6 € 3,
over 17[501? whose pullbacks are compatible via their canonical trivialisations with
isomorphisms induced by the canonical (O ®F),-equivariant maps
(pI'@F) — (pI ' ®F), — (I ' QF),.

More precisely, if 7 € £y, o, then the second map is an isomorphism identifying (pJ e
F with (I71)y®0F, and if 7 =7, ; and 6 =0, ; ;, then this map also induces the desired
isomorphisms

(P Ne@oF = ue”ﬂ:(ﬂ_l(@F)r@F[u]/uev]F
oy it (I_l ®F), QF[u] fucr F = (1_1)0—19 RoF

for j =2,...,ep,. On the other hand, if 7 =7, ; and 0 =0, ; 1, then the first map induces
an isomorphism

(pI ' ®TF), OF[u] /uer F us I (pI T @F), QF[u] fuer F = (pI M@0 F
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whose composite with the ones induced by
G (I @F) g1, 5 (1T @F), "5 (pI 1@ F),
yields the desired isomorphism
(I )o-10 @0 F)* = (I71)s @0 F.

The relations between the line bundles &):Ng and Ny or N, -14 extend similarly over

e / . . . .

Y% , so for k”,1” as in (14) we obtain isomorphisms
Ftory* ftor
(@) kl]F*-Ak” V', F

whose pullbacks to §é~]F are compatible via their canonical trivialisations with the
isomorphisms

bi{,l =~ bk”,l” (31)

obtained as the tensor products of the ones just defined (where ﬁ;,l is associated to the
data for the cusp C" and bk//’l// to the data for 5)

It follows from the above description of 5;‘“ that ®, extends to the morphism ffg‘i“ :
Y“““ — Y““n restricting to &)go on the set of cusps, with the induced maps on completed
local rings'® being the restriction to VZ-invariants of the canonical inclusion

Fllg" lmev-10), 050y — Flld™lmev-1010), 010} (32)
where M =9~'I~'J and M’ =pM. Furthermore, the commutativity of the diagram

(LF*Ale) <—F((Yr}°z§)cn( fc?i]l?)é\“/)4>(Dk1®FP(Scf]FvOs T

N

(i, B

3 e)E DIV (@ (AL )3) —— (D @e (5,05, )"

k,l,F)é c C,F’

l ¢ l

(T v Arer 1 ) 3 ———— T (V38 )5, (A8 £)3) —— (D1 @ r(sc 05, ))Vz%

(where the top vertical arrows are defined by pulling back via &)3‘1“, Ef)f)or and the map
SéF — §C~, ) shows that the resulting map on g-expansions is the restriction to V32-
invariants of the map

_, _
Dy @p Fl[q" lmev-1011),0g0y — Dxr 1 @ Fll¢™ |lme(v—1 a1, Uf0}

5Note that we have implicitly chosen different representatives (H,I,\[n]) for each cusp C
according to whether YU r is viewed as the source or target of <I>p, but the rings and modules
arising from the two different descriptions of completions at C are canonically isomorphic.

https://doi.org/10.1017/51474748021000530 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000530

Weight-shifting operators on Hilbert modular forms 1921

obtained as the tensor product of (31) and (32). (Note that the isomorphism (31) is
V2-equivariant, but we can also choose N sufficiently large that the action is trivial.)

The constructions above are all compatible with the natural action of O; (p),+7 SO the

morphism ZI;L““‘ induces a morphism q);“in :YZHH — Ygun extending ®, by the map ®3°
on cusps, and its effect on completed local rings is given by the Vi, i -invariants of (32).
Furthermore, the map V;, : My 1(U;F) — My 1+(U,F) is described on ¢-expansions by
taking the Vy, j-invariants of the tensor product of (31) and (32). (Note that ®" is
proper and quasi-finite, and hence finite, but not necessarily flat at the cusps.)

Similarly, for any sufficiently small U’, we may choose N so U =U(N) C U’ and take
invariants under the natural action of U’/U, with which the above constructions are also
easily seen to be compatible. We thus obtain the description of V,, on g-expansions (under
the identifications of Proposition 7.2.1) as the resulting map

Leours

— m FC/,U/ _ m
(Dk,1®FFHq Hme(NfleI')Jru{o}) H(Dk//,l” ®r Fllq HmE(N*ll\/I)JrU{O})
(33)

(Note that the maps (31) and (32) are in fact I'c-equivariant, where I'¢ is defined in (24)
and its action on the target is via the natural inclusion in I'¢/.)

Finally, we note that the effect of the operator V;? : My y(U;F) — My 1(U,F) on ¢-
expansions has the same description but with (31) replaced by its composite with the
isomorphism

Ek”,l” =~ EO,]*[” ®]F Ek”,l” = Ek”,l

given by choosing the basis element of Dg)_1» to be the (constant) g-expansion of

—1
[loes Go -

9. The kernel of ©

9.1. Determination of the kernel

In this section we analyze the kernel of the partial ©-operator O, : My 1(U;F) —
My v (U;F) for 7 € ¥, o and relate it to the image of a partial Frobenius operator.

We allow U to be any sufficiently small open compact subgroup of GLz(Ap ¢) of level
prime to p and (k,1) any weight such that yx4o1r is trivial on UNO}. First note that by
(30) and the g-expansion principle (Proposition 7.2.2), the kernel of ©, consists precisely
of those f whose g-expansions ZmEN—1M+u{0} (b%c' @7, )q™ at all cusps, or even a cusp on
each connected component, satisfy r,, =0 for all m ¢ pN ' M. (Recall that M =2"*1-1J
if the cusp C if represented by (H,I,[A],[n]), and note that the condition depends only on
the isomorphism class of (H,I,[)A],[n]) and, in particular, is independent of N prime to p
such that U(N) C U.) Note that the condition is the same for all 7 € 3, o, so that

ker(©,) =ker(0,/) foral 7,7 € Z, o.
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Note also that the condition is invariant under multiplication by the Hasse invariants Hy
(and, of course, the forms Gy) for all 0, so that ©,(f) =0 if and only if

o.(f [ Gy Hy) =0
oex
forallmeZ* ne ng if and only if O (f[Jpes Gy Hy?) =0 for some m € Z*, n € Zgo.
(Alternatively, note that this follows from the fact the partial ©-operators commute with
multiplication by the Gy and Hy, as can be seen directly from their definition.)

Suppose now that k = kpin(f), so that f is not divisible by any partial Hasse invariants
(see Subsection 4.2). Then if f € ker(©;), and hence f € ker(0,, ,) for all i € Z/ f,7Z, then
Theorem 5.2.1 implies that plke, , , ~for all i € Z/f,Z. Therefore, k is of the form kg for
some kg, where k{ is as in the definition of V}, in Subsection 6.2 or, equivalently, VPO.
Furthermore, it is immediate from the description of the effect of Vp0 on g-expansions
in (33) that its image is contained in the kernel of ©,. We now use the method of [12,
Thm. 9.8.2] to prove that the kernel is precisely the image of V;JO.

Theorem 9.1.1. Suppose that f € Myy 1(U;F) and T €5y 0. If ©,(f) =0, then f = Vpo(g)
for some g € My, 1(U;TF).

Proof. Let 7 denote the embedding Yy — Y?Jnn and choose a set of cusps & C V|°
consisting of precisely one on each connected component of Y. Note that since <I>f,“i“
(defined in Subsection 8.3) is bijective on cusps as well as connected components, the set
§' = ®p°(8) also includes exactly one cusp on each connected component.

Recall from Proposition 7.2.1 that the sheaves 7,.Ax, 1,r and Z*Akg’l’[ﬁ‘ are coherent, as
is 7@y Ay 15 = @ELHZ*Akg,LF since <I>‘pni“ is finite. For each C € S, let C' = ®°(C), so
that <I>Ipni“’* defines a finite extension (’)7?};“10 — O?!lljﬁnvc of local rings. We let Ngr =
(T+Ak,,1,7)c’ denote the stalk at C’ of 7, Ay, r and, similarly, let N7 = (7, Ak, 1F)c =
(24 Py« Axy 1,7)cr- The stalk at C’ of 7, of the adjoint of Ak 1 F = Ay 17 then defines
an injective homomorphism N¢» — N¢ of finitely generated (’)?x;an, o~modules, extending
Vp0 to a map

D Ne — PN
c'es’ ceS

Similarly, lgcalising at the generic poigts of Yy (or, equivalently, ??]nn) extends Vpo to
amap H°(Yu, Ak, 1r @y, Fu) = H'(Yu, Awy 1 r @y, Fu), so we obtain a commutative
diagram of injective maps

M, (U3 F) —— @pres Now —— H (Y, Ak 17 @y, Fu) (34)
Mk(/J/,l(U;F) R @CGS Né/ e HO(?U,.A%/,],]F v, Fu).

(Note that the horizontal maps, defined by localisation, are injective since S and S’ each
contain a unique cusp on each component of Y .)
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Let N{, denote the completion of N¢: with respect to the maximal ideal of Opmin 0,
U El
and, similarly, let N7” denote the completion of N/ with respect to the maximal ideal

of Ogmmin , or, equivalently, Ogmin ,,. Note that the map N2 — N¢” is the one described
u > U

by (33) or, more precisely, its variant for Vpo.
Recall from (30) that if f € ker©,, then for each C € S, the g-expansion of f,

S @)™ e NI,
meN—1M;U{0}
satisfies 7, =0 for all m ¢ pN~'M = N~* M/, where M’ =pM, and is therefore in the

image of N{,. Since the completion (9% o is faithfully flat over Ogmin ,, it follows that
U > v

the image of f in @, s N¢ is of the form V;)(g) for some g € @, cs Nev and hence that
its image in H°(Y v, Axy,1,r @y, Fu) is of the form V;(g) for some g € H(Yy, Awy 1r @y,
Fu)-

It just remains to prove that g € My, 1(U;F) or, equivalently, that ord,(g) > 0 for all
prime divisors z on Y. To that end, note that the operators V, for all p’ € S, and ex 1
for all k,1€ Z* (see Subsection 6.2)) similarly extend to maps on stalks at generic points
satisfying (16), so that V,(g) = fHeeszf and

e e ep—1
gp = | €pk,pl H Vq ! (g) = 5pk,p1 H Vo ‘/p ? (f)
p'ESy p'#p

Therefore, p-ord,(g) > 0, and hence ord,(g) > 0. O

For the following corollary, recall that Z™* is defined by (10) and that the main result
of [10] states that if f is a nonzero form in My 1(U;F), then kpy,(f) € Z™in.

Corollary 9.1.2. Suppose that f € My ((U;F) and 7 € £, 0. Then ©.(f) =0 if and only
if there exist kg € =™ n € Zgo and g € My, 1(U;F) such that k =k{+ > ,nehy and

F=v2o[[H"
6

Proof. We have already seen that if f =V;?(g)[]y Hy?, then ©.(f) =0.

For the converse, note that we may assume k = ky,i, (), so that k € =% and k = k{j for
some kg € Z*. Therefore, the theorem implies that f = V;Jo(g) for some g € My, 1(U;TF).
Finally, it is immediate from the definitions of Z™" and k{ that ko € 2™ if (and only
if) kjj € =min, O

9.2. Forms of partial weight 0

We now apply our results on partial ©-operators to prove a partial positivity result for
minimal weights of Hilbert modular forms. Recall the main result of [10] proves that
minimal weights k = > kgpey of Hilbert modular forms necessarily lie in the cone =™,
and hence satisfy kg > 0 for all 8, and that forms with k = 0 are easily described by
Proposition 3.2.2. We prove the following restriction on possible minimal weights k with
k¢ = 0 for some (but not all) § € X.
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Theorem 9.2.1. Suppose that p € Sy, is such that f, > 1, or e, > 1 and p > 3. Suppose
that f € My 1(U;F) is nonzero and k = Kmin(f). If ko =0 for some 0 € ¥,,, then k =0.

Proof. Writing simply f = f, and e = ¢, note that the hypotheses mean that ef > 1 and
p/ > 3. Choose any 7 =17, ; € X0 and let 6y = 0y, ; .. We will first prove that ©,(f) =0.

Note that since k € ™™ and kg = 0 for some 8 € Yy, we in fact have kg =0 for all 0 € X,,.
In particular, p|kg,, so Theorem 5.2.1 implies that Hp,|O.(f). Therefore, if ©,(f) # 0,
then kpyin (©7(f)) <ua k+2eg,; that is,

k+2eg, — Zmehg € Zmin
oex

for some integers my > 0. Letting m, = mgrg, for r =1,...,ef, this implies that

mp—mo <MmMog—m3z < - <Me1 —Me < Me — PMet1

< p(Meg1 —Mey2) < P(Meya —Meq3) < -0 < p(Moe—1 —Mae) < p(Mae — PMaey1)
< pITHm—ners —mp—1)er2) < o < PP H(mepo1 — meyp) < pP 24 mey —pma)
< pf(ml —mg)

(35)

(with the obvious collapsing here and in subsequent inequalities if e or f =1). In
particular, all of the expressions in (35) are nonnegative, so we have

-1 1
My > Mg > Mg > Petr > PMeta > >pl Tmep1 > pf lmey

and 2+m.y —pmy > 0, which implies that (p/ — 1)m.; < 2. Since p/ > 3, it follows that
mes = 0, so pmy < 2, which implies that either m; =0 or m; =1 and p =2. If m; =0,
then m, = 0 for all r, which contradicts the final inequality in (35). On the other hand, if
mi1 =1 and p = 2, then all of the expressions in (35) are zero, which in turn implies that
m1 = p’ ~lmes, which again yields a contradiction.

We have now shown that ©,(f) = 0. Note that k” =k since kg = 0 for all § € 3,,,
so Theorem 5.2.1 implies that f = V;Jo(fl) for some f; € My 1(U;F). We may therefore
iterate the above argument to conclude that f; = VpO (f2) for some fo € My 1(U;F) and,
by induction, that for all n > 1, we have f = (V;?)"(f,) for some f, € My (U;F). It
follows that for all n > 1, the g-expansion of f at every cusp of Y satisfies r,,, = 0 for all
m & p™ M, so in fact the g-expansion of f at every cusp is constant.

To prove that k = 0, recall that Z™® is contained in the cone spanned by the partial
Hasse invariants, so k =}, s, sghg for some sp € Q>¢. Furthermore, the denominators
are divisors of M = lem{pfs —1|q € S, }, so that Mk =3 myhy for some my € Z>.
Similarly, M1="nghy for some ny € Z. Since f has constant g-expansions, so does f™,
and therefore

M =n]]HgGy)

oex

for some h € HO(?U,O7U).
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For each 6 € 3, the assumption that k = ki, (f) means that f is not divisible by Hy,
so ord,(f) = 0 for some irreducible component z of Zy. On the other hand, we have
Mord, (f) = ord.(fM) > myg, so mg = 0. As this holds for all # € ¥, we conclude that
k=0. O

9.3. The kernel revisited

Finally, we present a cleaner, but less explicit, variant of Corollary 9.1.2 describing the
kernels of partial ©-operators.

We first record the effect of V, on the partial Hasse invariants Hy. For each prime p € 5),
we let B, =p 1wp € O . It is straightforward to check, directly from the definition of
V, or from the descrlptlon (33) of its effect on g-expansions (and those of the Hy in
Subsection 8.1), that if 6 ¢ ¥, then V;,(Hy) = Hy, but if § =6, ; ;, then

Hp—197 if ep =1;
5(6 ) 1H0' 19> if €p > 1 and ] = 1;
g(ﬁp) o106y lf ep > 1 and ] :27

H,-1g, otherwise.

Vo(Hp) =

Therefore, we define the modified partial Hasse invariant to be Hj = 0(8y)Hy if 0 =0 ; 1
for some p’ € S, and i € Z/ f,yZ and Hy = Hy otherwise, so that

H™ if 0 € X, 0;

N — o—10 p,05

V*’(He)_{ H) if 0¢Sy0.

Similarly, letting Gy = 0(By )Gy if € =0, ;1 and G}, = Gy otherwise, we have V,(Gj) =
G/U”fle if 0 €, and V,(G))) =Go if 0 € X,,.
Now for any sufficiently small U of level prime to p, consider the F-algebra

Mot (U;F) = EB My 1(U;F)
k,1€(Z%)2

of Hilbert modular forms of all weights and level U (where we let My 1(U;F) =0 if xkyo1F
is nontrivial on U NOF). We may then consider V,, (respectively ©.) as an F-algebra
homomorphism (respectively F-linear derivation) Mo (U;F) = Mot (U;F) for any p € S,
and 7 € ¥, ¢. Furthermore, letting J denote the ideal (Hj—1,Gj —1)gpex in Mo (U;TF)
and Ry = M*™%(U;F)/J, we see that V,,(J) CJ and ©,(J) C T, so we obtain an F-algebra
homomorphism V,, and derivation ©, such that the composite

vV, e,
RU —p> RU — RU

is zero for any p € Sp, 7 € Xy 0.

Let A denote the subgroup @y, Zhg of Z* = @y, Zey, so A is the image of the image
of the endomorphism of 7> defined by ZO meey — ZQ mghy. Writing hy = ZO’ ng, o' €q,
it is straightforward to check that the matrix (ng¢-) has determinant Hpesp (p’r —1), so
this is the index of A in Z*. On the other hand, let ¥ denote the group of characters
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Y (Op/q)* = ®pesp (Or/p)* — F* and consider the surjective homomorphism p :
7> — U defined by

o) =[]0 =@ (] &)

oes peES, 0€S,

Note that o(hy) is trivial for all § € 3, so A C ker(p). Since Z*¥/A and ¥ each have order
Hpesp (pfr —1), it follows that

fo ep
A =ker(p) = Zk‘ge@ ZZkewdpi =1mod (pv — 1)Vpe s,

i=1j=1

Remark 9.3.1. Recall that the Gy, and hence G}, are invertible in M***(U;F), so if I’ —

1=7>",mphg € A, then multiplication by [], G;mg defines an isomorphism My (U;F) =

My v(U;F). We may therefore write Ry as the quotient of @ My ,(U;F) by the
keZ= el

ideal (Hj—1)gex, where My o) (U;F) is canonically isomorphic to Mi1(U;F) for each

1 € Z*. Furthermore, the main result of [10] immediately implies that the natural map

B Mw(UF)— Ry
keE"‘i“,wE\I!

is surjective, so we may also replace Z*> by the submonoid Z™" + A as the index set for
k in the definition of Ry .

We will now describe the ideal J in terms of g-expansions. For each cusp C € Y|3°

we choose a representative (H,I,[\],[n]), and for each k,1¢€ Z*, we let Eil denote the
one-dimensional vector space F®p Dy 1 over F (where Dy is defined by (20)). We then
let ﬁot denote @, 1cz= D1 with its natural F-algebra structure. For each 6 € ¥, let
co € ﬁﬁ ,.0 denote the (constant) g-expansion of Hy at C. (Recall that the g-expansions
of Hy were explicitly described in Subsection 8.1, from which one gets a description of
cp by multiplying by 0(b,) if 6 =6, ;1.) Similarly, let dy € Eah , denote the (constant)
g-expansion of G at C, and define 3¢ to be the ideal (cy —1,dg — 1 )pex of Efot. We may
then view the quotient Etcot /3¢ as the space of A2-coinvariants of the free F[(Z*)?]-module
—C
D

ot and decompose

—C ~C —C
l)tot/J = @ Dx,w’
X, pew

. . —C —C . . .
so that the natural projection map Dy ; — D, o1 8 an isomorphism for all k,1 € Z*.
Now observe that the collection of ¢g-expansion maps

4C m
My 1(U;F) — Dy @ Fllg HmGN*le_U{O}
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(where M€ =0"'I71J and U(N) C U) induces an F-algebra homomorphism

7: M (U;F) — P P DX » CFFllg"lmen-1mut0y-
CEYE X, pew

Lemma 9.3.2. The kernel of g is J.

Proof. The inclusion J C ker(g) is clear from the definitions.

Suppose then that g(f) =0 and write f = ZkJeW fx,1 for some finite subset W of
Z*. For each y € U, choose k, € o~ 1(x) sufficiently large that k <y, k, for all k €
o '(x)NW. Thus, for each k € W, there is a unique my =Y ,mx g€y € ZZ such that
ko) =k+ > 5mi ehs. Now note that -

_ Z HlmkG/m]fk,le @ ka,kw(U;F)

k,lew X, eV

and that f —g € J (where H™x =[], Hy™™* and G"™ =[], Gy™*). Since J C ker(q), it
follows that g(g) = 0. However, g restricts to the g-expansion map

@ Mk)mkd U ]F @ @ D P ®FF ]]mGN*lMiu{O}v
X, YEY CeY® x, eV
which is injective by Proposition 7.2.2, so ¢ =0, and hence f= f—g € 7. O

We also extract the following observation from the proof of the lemma.
Lemma 9.3.3. If W C (Z%)? is such that (p,0) : W — U? is injective, then

in P Ma(U;F)=0
(k,hew

We are now ready to interpret the description of the kernel of the partial ©-operator
in terms of the algebra Ry .

Theorem 9.3.4. Ifpec Sy, T €Xy o and U is any sufficiently small open compact subgroup
of GLa(Ap.¢) containing GLa2(OF,p), then the sequence

O—)RU£>RU&>RU

is exact.
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Proof. The injectivity of V,, : Ry — Ry follows'® from Lemma 9.3.2 and the commuta-

tivity of the diagram

—/ ey m
Mot (U;F) <, @ @ DX,¢®IFF[[Q ]]meNflMEr'u{o}
CIEYER X, hEW

Ve d \
7 —C
M (U;F) 5 P P D,,or Fllg™ e n-1meu0y
CEYE x, eV

where the right downward arrow is the direct sum over (C,x,v) of the tensor product of the
isomorphism ﬁfw, — Efmp induced by (31) and the injective F-algebra homomorphism
(32). (Note that (o(k),o(l)) = (o(k”),0(1")), and recall that the data (H,I,[\],[n])
representing each cusp of Y5° were implicitly chosen differently for the source and target
of ®, to simplify the resulting description of V}, on g-expansions in Subsection 8.3.)

Since ©, 0V}, =0, it just remains to prove that ker(0,) Cim(V,). Suppose then that f €
Mot (U;F) is such that ©,(f) € 3. As in the proof of Lemma 9.3.2, write f = Zk,lew S
for some finite subset W of Z*, and for each y € ¥ choose k, € o7 !(x) so that k <, k
for all k € o~ 1(x)NW and consider

gi= > H™G™f, e P Mk, (U:F).
k,lew X, hew
Since f—g €3 and ©,(f) € J, we have ©.(g) € J. Note, however, that
O,(9) € @ My v, (U;F)
X, pevw
where k| =k, +ng,€,-19, +€g, and I}, =ky, —ey,, so Lemma 9.3.3 implies that ©(g) =0.
Writing g = Ex,ng,w with gy, € My, x,, this means that ©,(gy,) =0 for all x,% € V.
Corollary 9.1.2 now implies that for each y,1 € ¥, we have
Iy =G H™Vy (hy,y)

for some h, ., € My, 1,(U;F), where ko,lp,m € Z* and n € Zgo depend on x and . It
follows that gy,y — Vi (hy,y) €7, so setting h =3 by y, we conclude that f—V,(h) =
(f—9)+(g—Vp(h)) € 3, as required. O

Finally, consider R =1i U Ry, where the direct limit is over all sufficiently small open
compact subgroups U containing GL2(OF ;). (Note that this is the same as the quotient of

Mot (F) ¢=lithot(U;F)% @ (@Mk,l(UQF)> = @ My (F)
U

klez= \ U k,1€Z%

16Altelrnautively, one can appeal to Lemma 9.3.3 instead of Lemma 9.3.2 and argue similarly to
the forthcoming proof of the other exactness assertion.
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by the ideal (H)—1,G} —1)pex.) Since the maps V;, and ©, are Hecke-equivariant in the
obvious sense, we obtain an F-algebra endomorphism V,, of R and an F-linear derivation
O, on R, each of which is GLg (Ag) )-equivariant and such that the sequence

v
0—R->RESER
is exact.
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