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Abstract  

An analytical expression for the focal intensity is derived for arbitrary surface profiles and arbitrary 
groove patterns of compressor gratings. The expression is valid for different compressor designs: 
plane and out-of-plane compressors, symmetric and asymmetric compressors (compressors 
composed by two not-identical pairs of grating), and a two-grating compressor. It is shown that 
the quality requirements for the optics used to write a grating are higher than for the grating. The 
focal intensity can be maximized by rotating each grating around its normal by 180 degrees. 
Moreover, it may be increased to maximum by interchanging any two gratings in the compressor, 
because imperfections of an individual grating do not additively affect the focal intensity. The 
intensity decrease is proportional to the squared pulse spectrum width and the squared total 
distortions of the second and third gratings of the four-grating compressor and the total distortions 
of two gratings of the two-grating compressor. 

1. Introduction 

The compressor in chirped pulse amplification lasers is one of the key elements of all high-power 
femtosecond lasers [1, 2]. Its main function is to compress the pulse to the Fourier limit, i.e. to 
obtain a pulse with a constant spectral phase at the output. In practice, an inevitable residual 
spectral phase is still crucial. To approach the Fourier limit, an acousto-optic programmable 
dispersive filter (AOPDF) [3] is used. The shortest pulse is a key goal, because it provides the 
highest pulse power for a given pulse energy. Nevertheless, the most important parameter is the 
focal intensity, which strongly depends on beam focusability. The highest focusability is provided 
by a diffraction limited beam, i.e. a beam with a plane wavefront (a flat spatial phase). To approach 
the diffraction limited beam, adaptive mirrors (AM) are widely employed [4]. AOPDF and AM 
efficiently correct temporal and spectral phase distortions separately, but they are not able to 
compensate for space-time coupling; therefore, the focal intensity is less than the diffraction limit. 
Besides the reduction of focal intensity (which is the subject of the present paper), the space-time 
coupling affects the pulse contrast ratio. The contrast degradation due to imperfect surface quality 
of stretcher and compressor optics was studied analytically [5-7], numerically [8-11] and 
experimentally [7, 10, 11]. 

Compressor diffraction gratings introduce two types of space-time coupling: amplitude and 
phase ones. The amplitude coupling is related to the spatial dependence of the reflection coefficient 
[12], as well as to the beam clipping on the gratings [12, 13], if any. In this paper, we will restrict 
our study to the phase space-time coupling caused by two reasons. The first one is an imperfectly 
flat grating surface. This effect was numerically studied in [12, 14-20], and an analytical 
expression for the focal intensity for arbitrary compressor grating surface profiles was obtained in 
[21]. 
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The second, much less studied reason for the phase space-time coupling is the groove 
pattern imperfection: non-equidistance and non-parallelism. In this case, the wavefront of the wave 
reflected from the grating is no longer flat, even for a perfectly flat surface, and the wavefront 
distortions are different for different frequencies, which results in space-time coupling. Methods 
for measuring groove imperfection of the grating were proposed in [22, 23]. For holographic 
gratings, groove imperfection is determined exclusively by the imperfect wavefronts of the waves 
used for writing the grating [24, 25]. The impact of groove imperfection on the compressor of 
femtosecond laser pulses was studied in [24], where only a particular case of period-chirped 
gratings was considered. The simplest case in which only the fourth grating of the classical Treacy 
compressor (TC) [26] is non-ideal was studied analytically in [23]. The TC consists of two 
identical pairs of diffraction gratings, where the gratings in each pair are parallel and the pairs are 
mirror images of each other, i.e. the TC is a plane symmetric compressor. 

Recently, two routes of TC modification have been discussed in the literature. The first one – an 
asymmetric compressor – is based on abandoning symmetry, and the second – an out-of-plane 
compressor (OC) – is based on abandoning flat geometry. In the asymmetric compressor proposed 
in [27] two pairs of parallel diffraction gratings differ from each other by grating distance and/or 
incident angle. An important property of the asymmetric compressor is smoothing of fluence 
fluctuations, which allows a significant reduction of the probability of optical breakdown of the 
fourth grating. In [28], an analytical theory was constructed, which showed that no compressor 
asymmetry reduces focal intensity. This conclusion is also true for a compressor consisting of one 
pair of gratings, which is a special (maximum asymmetric) case [12, 29, 30]. In the OC [31-38], 
the angle of incidence in the plane normal to the diffraction plane is nonzero. In [39] it was shown 
that effective smoothing of the output beam is also possible in the OC, which was confirmed 
experimentally [40]. In [41] it was proposed to use the OC to increase the output power by reducing 
the angle of incidence. 

In Section 2, the focal intensity will be found analytically for an arbitrary symmetric OC 
and a maximum asymmetric OC consisting of one pair of gratings. The influence of the grating 
surface profile imperfection will be compared with the impact of the groove pattern imperfection, 
and the symmetric compressor will be compared with the asymmetric one and the plane 
compressor with the OC in Section 3. 

2. Dependence of focal intensity on out-of-plane compressor parameters  

Let the compressor consist of gratings with groove density N and distance between the gratings 
along the normal L. We will consider the OC with the angle of incidence on the first grating α in 
the diffraction plane and γ in the non-diffraction plane. Most labs use a compressor consisting of 
two identical pairs of gratings: the parameters 𝑎, 𝛾, 𝑁, and 𝐿 are the same for the two pairs. Such 
a compressor is referred to as a symmetric one (Fig. 1a). In an asymmetric compressor [27, 28, 39, 
42] the grating pairs differ from each other; they have at least one of the parameters 𝑎, 𝛾, 𝑁, or 𝐿 
that differs from the others. The asymmetric compressor smooths small-scale fluence fluctuations 
and, hence, reduces the probability of laser induced damage. A special case of the asymmetric 
compressor is a compressor consisting of just one pair of gratings – a two-grating compressor (Fig. 
1b) [13, 27, 30]. It has some additional advantages: smoothing of large-scale fluence fluctuations, 
simplicity, and lower cost. From the point of view of compressor (a)symmetry, we will restrict 
ourselves to two most interesting cases – a symmetric compressor and an asymmetric two-grating 
compressor (Fig. 1,a,b). They will be designated as 4OС (4-grating out-of-plane compressor) and 
2OС (2-grating out-of-plane compressor). A plane Treacy compressor is a particular case of the 
OC at 𝛾 = 0, so it will be designated as 4TC and 2TC. Another interesting special case is the 
Littrow compressor, in which 𝛼 = 𝛼௅, where 𝛼௅ is the Littrow angle; the abbreviations 4LC and 
2LC will be used for this compressor. The LC has a number of additional advantages [21, 33, 41]. 
We assume that the beam size and the size of gratings G2 and G3 are such that all frequencies fall 
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into the aperture of G2 and G3, i.e. there are no beams that “miss” the grating. This is not the case 
for the so-called full-aperture compressor [13, 30, 43], which is not considered in this paper. 

  

Fig. 1. 4OС (symmetric) (a) and 2ОС (maximum asymmetric) (b). G1…G4 – gratings. OAP – off-axis 
parabola; 𝑚 = −1; the angle of reflection from the first grating is negative. Angle 𝛾 is not shown as it is 
outside the plane of the figure, 𝛾 is the same for all gratings.  

 

In the case of a perfect grating, the incident plane wave after reflection remains plane, i.e. 
its spatial phase ∆(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡, and the angle of reflection 𝜃(𝜔) is determined by the expression 
for the grating  

𝑠𝑖𝑛𝜃(𝜔) = 𝑚
ଶగ௖

ఠ

ே

௖௢௦ఊ
+ 𝑠𝑖𝑛𝛼,    (1) 

where 𝑚  is the diffraction order. A perfect grating is understood as a grating with a perfectly flat 
substrate surface and perfectly parallel and equidistant grooves. As a result of an imperfect (out-
of-plane) surface and imperfect (non-equidistant and non-parallel) grooves the wavefront of the 
reflected wave is no longer flat and ∆(𝑥, 𝑦) ≠ 𝑐𝑜𝑛𝑠𝑡. Adaptive mirrors AM1,2 can compensate for 
distortions only at one (central) frequency 𝜔଴. Since ∆ depends on frequency 𝜔 (space-time 
coupling), this compensation cannot be complete, which leads to a decrease in the focal intensity. 
In [23], an expression was found for the spatial phase ∆(𝑥′, 𝑦′, 𝜔) of a plane monochromatic wave 
after reflection from the grating: 

∆(𝑥′, 𝑦′, 𝜔) = −
ఠ

௖
ቆ𝐻௚௥ℎ௚௥ ቀ

௫ᇱ

௖௢௦ఏ(ఠ)
,

௬ᇱ

௖௢௦ఊ
ቁ + 𝐻௪௥ℎ௪௥ ቀ

௫ᇱ௖௢௦

௖௢௦ఏ(ఠ)
,

௬ᇱ

௖௢௦ఊ
ቁቇ,    (2) 

where  

𝐻௚௥(𝜔) = 𝑐𝑜𝑠𝛾൫𝑐𝑜𝑠𝛼 + 𝑐𝑜𝑠𝜃(𝜔)൯ ,    𝐻௪௥(𝜔) = 2
ఠೢೝ

ఠ
 , (3) 

ℎ௚௥(𝑥′′, 𝑦′′) is the profile of the grating surface;  ℎ௪௥(𝑥′′, 𝑦′′) characterizes groove pattern 
imperfection and has the sense of the difference of the total surface profiles of the optical elements 
on the path of two waves writing the holographic grating (Fig. 2); 𝜔௪௥ = 2𝜋𝑐/𝜆௪௥ is the frequency 
of the writing waves; and Φ is the angle of incidence of the writing waves on the grating substrate 
𝑠𝑖𝑛Φ = 𝑁𝜆௪௥/2. Here, (𝑥′′, 𝑦′′) are the coordinates of the grating surface and (𝑥′, 𝑦′)  are the 
coordinates in the plane normal to the wave vector of the beam between the first and second 
gratings shown in Fig.1. On reflection from the second grating, the beam changes its size, i.e. to 

pass to the laboratory reference frame, (𝑥, 𝑦), 𝑥′ in (2) must be replaced by 
௖௢௦ఏ(ఠ)

௖௢௦ఈ
𝑥. Thus, the 

phase introduced into the beam upon reflection from the first grating has a form:  
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∆ଵ(𝑥, 𝑦, 𝜔) = −
ఠ

௖
ቆ𝐻௚௥ℎ௚௥,ଵ ቀ

௫

௖௢௦ఈ
,

௬

௖௢௦ఊ
ቁ + 𝐻௪௥ℎ௪௥,ଵ ቀ

௫௖௢

௖௢௦ఈ
,

௬

௖௢௦ఊ
ቁቇ              (4) 

 

Fig. 2. Scheme of writing a holographic grating. BS – beamsplitter, M1…M3 – mirrors; 𝜓ଵ,ଶ − phase of 
the beams writing the grating; 𝜓ଵ − 𝜓ଶ = 2𝑘௪௥ℎ௪௥.  

 

To find the phase for the remaining gratings, we fix the coordinate system (𝑥′′, 𝑦′′) on each 
grating (Fig. 1) so that, in the case of identical gratings, the functions ℎ௚௥(𝑥′′, 𝑦′′) and ℎ ௪௥(𝑥′′, 𝑦′′) 
should be identical for all gratings: ℎ௚௥ = ℎ௚௥,௡;  ℎ௪௥ = ℎ௪௥,௡; 𝑛 = 1,2,3,4 is the grating number.  

As can be seen from Fig. 1, for even gratings the angle between the 𝑥′′ and 𝑥 axes is obtuse; 
therefore, the sign of the first argument in ℎ௚௥ and ℎ௪௥ for them should be changed: 𝑥 → −𝑥. 
Accordingly, for a grating with number 𝑛, the substitution 𝑥 → (−1)௡ାଵ𝑥 should be made in the 
right-hand side of (4). As shown in [23], the expression (2) is valid if the wave vector of the 
incident wave makes an acute angle with the 𝑥′′ axis. If this angle is obtuse, then the plus sign in 
front of 𝐻௪௥ should be replaced with the minus sign. From Fig. 1 it is clear that G3 and G4 must 

have the minus sign. Therefore, in front of 𝐻௪௥ the factor (−1)ቂ
೙షభ

మ
ቃ should be used, where […] 

denotes the integer part. In addition, for the second and fourth gratings in (2), obvious substitutions 
𝛼 → −𝜃(𝜔) and 𝜃(𝜔) → −𝛼 should be made. Taking all this into account, the phase introduced 
by the reflection from the grating with number 𝑛 takes on the form 

∆௡(𝑥, 𝑦, 𝜔) = −
ఠ

௖
ቆ𝐻௚௥ℎ௚௥,௡ ቀ(−1)௡ାଵ ௫

௖௢௦ఈ
,

௬

௖௢௦ఊ
ቁ + (−1)ቂ

೙షభ

మ
ቃ
𝐻௪௥ℎ௪௥,௡ ቀ(−1)௡ାଵ ௫௖௢௦஍

௖௢௦ఈ
,

௬

௖௢௦ఊ
ቁቇ  

(5) 

Let the input field have the form  

𝐸଴(𝜔, 𝒓) = 𝑒௜ఝ೔೙(ன)ା௜ఝವ(ன)𝑒
ିቀ

ഘషഘబ
౴ഘ

ቁ
మഋ

𝑒௜௬
ഘ

с
௦௜௡ఊ|𝐸଴(𝒓)| ,   (6) 

where 𝜑௜௡(ω) is the spectral phase without allowance for the phase introduced by the AOPDF 
𝜑஽(ω). Here we assume that the wavefront of 𝐸଴(𝒓) is plane, i.e. 𝐸଴(𝒓) = |𝐸଴(𝒓)|. If this is not 
the case, the first adaptive mirror AM1 can fix it. The Strehl ratio is defined by  

 𝑆𝑡 =
ூ೑

ூ೑൫௛೒ೝୀ௛ೢೝୀ଴൯
,      (7) 

where 𝐼௙ is focal intensity. According to (7), the Strehl ratio shows the reduction of the focal 
intensity compared to the case of compressor gratings with perfectly plane surface and perfectly 
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parallel and equidistant grooves. We assume that АМ2 provides a plane wavefront at central 
frequency 𝜔଴, and AOPDF ensures a constant spectral phase at zero spatial frequency 𝜅 = 0, as 
under these conditions 𝐼௙ is maximal [21]. Following the procedure described in [21], in the 

ቀ
୼ఠ

ఠబ
ቁ

ଶ
Ψସ,ଶ

ଶതതതതത ≪ 2 approximation for 4OС and 2OС we find 𝑆𝑡ଶ and 𝑆𝑡ସ:   

𝑆𝑡ସ,ଶ = 1 − 𝑀(𝜇) ቀ
୼ఠ

ఠబ
ቁ

ଶ

Ψସ,ଶ
ଶ (𝑥, 𝑦)തതതതതതതതതതതത ,      (8) 

where 𝑀(𝜇) = Γ ቀ
ଷ

ଶఓ
ቁ /Γ ቀ

ଵ

ଶఓ
ቁ, Γ is the gamma function, (… )തതതതത denotes averaging over the grating 

surface with the weight of the laser field module: 

(… )തതതതത ≡
∫|ாబ(௫௖௢௦ఈ,௬௖௢௦ )|(… )ௗ௫ௗ௬

∫|ாబ(௫௖௢ ,௬௖௢ )|ௗ௫ௗ௬
      (9) 

Ψସ(𝑥, 𝑦) =
ఠబ

с
൫𝑓𝑔ସ(𝑥, 𝑦) + 𝑢𝑤ସ(𝑥𝑐𝑜𝑠Φ, 𝑦) − 𝐅𝐆(𝑥, 𝑦) − 𝐔𝐖(𝑥𝑐𝑜𝑠Φ, 𝑦)൯     (10) 

Ψଶ(𝑥, 𝑦) =
ఠబ

с
൫𝑓𝑔(𝑥, 𝑦) + 𝑢𝑤(𝑥𝑐𝑜𝑠Φ, 𝑦)൯     (11) 

𝑔ସ(𝑥, 𝑦) = ∑ ℎ௚௥,௡൫(−1)𝑛+1𝑥, 𝑦൯ସ
௡ୀଵ        𝑤ସ(𝑥, 𝑦) = ∑ (−1)ቂ

𝑛−1
2

ቃ
ℎ௪௥,௡൫(−1)𝑛+1𝑥, 𝑦൯ସ

௡ୀଵ    (12) 

   𝑔(𝑥, 𝑦) = ℎ௚௥,ଵ(𝑥, 𝑦) + ℎ௚௥,ଶ(−𝑥, 𝑦)       𝑤(𝑥, 𝑦) = ℎ௪௥,ଵ(𝑥, 𝑦) + ℎ௪௥,ଶ(−𝑥, 𝑦)    (13) 

𝐆(𝑥, 𝑦) = 𝛁ℎ௚௥,ଶ(−𝑥, 𝑦) + 𝛁ℎ௚௥,ଷ(𝑥, 𝑦) 𝐖(𝑥, 𝑦) = −𝛁ℎ௪௥,ଶ(−𝑥, 𝑦) − 𝛁ℎ௪௥,ଷ(𝑥, 𝑦)    (14) 

𝑓 = 2𝜋𝑁𝑡𝑔𝛽       𝑢 =
ସగ

ఒೢೝ
       𝐅 = 2𝜋𝑁𝐿

௖௢௦ఈା௖௢௦ఉ

௖௢௦ఊ௖௢௦యఉ
ቀ

𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛾
𝜆଴𝑁𝑡𝑔𝛾 ቁ     𝐔 = 2

௧௚ቀ
ഀషഁ

మ
ቁ

ேఒೢೝ
𝐅 (15) 

𝛁ℎ(−𝑥, 𝑦) ≜ 𝛁ℎ(𝑥, 𝑦)|௫ୀି௫   ,    (16) 

𝛽 = 𝜃(𝜔଴). Hereafter, the sub-indices “2” and “4” correspond to the two-grating (Fig. 1b) and the 
four-grating (Fig. 1a) compressors. The sub-index “4,2” denotes either the four-grating or the two-
grating compressor. Without loss of generality, hereinafter we assume that 𝑔̅ = 𝑤ഥ = 𝑔ସതതത = 𝑤ସതതതത =
𝑮ഥ = 𝐖ഥ = 0. In addition, the functions ℎ௚௥,௡ and ℎ௪௥,௡ do not contain components linear with 
respect to 𝑥 and 𝑦 (wedges) that are equivalent to the rotation of the grating as a whole for ℎ௚௥,௡ 
and to the changes in the groove density N uniformly over the entire grating surface for ℎ௪௥,௡. As 
shown in [21], all the components in 𝛁ℎ௚௥,௡(𝑥, 𝑦)  linear with respect to 𝑥 and 𝑦 can be effectively 
compensated for by rotating one grating, for example, G4. The same is true for 𝛁ℎ௪௥,௡(𝑥, 𝑦). If 
this is done, then the terms linear with respect to 𝑥 and 𝑦 should be subtracted from 
𝛁ℎ௚௥,௡(𝑥, 𝑦) and 𝛁ℎ௪௥,௡(𝑥, 𝑦) in (14). These terms correspond to the aberrations of ℎ௚௥,௡(𝑥, 𝑦) 
and  ℎ௪௥,௡(𝑥, 𝑦) quadratic with respect to 𝑥 and 𝑦, i.e. to defocus, vertical astigmatism, and oblique 
astigmatism. 

Taking into account that |𝛁ℎ௡(𝑥, 𝑦)| ≈
௛೙(௫,௬)

ௗ
, where 𝑑 <

௅೒

ଶ
 is a typical transverse scale 

of ℎ௜(𝑥, 𝑦) variation, and that 𝐿௚ < 𝐿, we obtain  

௙௚ర(௫,௬)

𝐅𝐆(௫,௬)
≼

௦௜௡ఉ௖௢௦మఉ

ଶ(௖௢௦ఈା௖௢௦ఉ)௖௢௦ఈ

௅೒

௅
≪ 1       

௨௪ర

𝐔𝐖
≼

௖௧௚ቀ
ഀషഁ

మ
ቁ௖௢௦యఉ

ଶ(௖௢௦ఈା௖௢௦ఉ)௖௢௦ఈ

௅೒

௅
≪ 1  (17) 

and the expression (10) reduces to 

Ψସ(𝑥, 𝑦) = −
ఠబ

с
൫𝐅𝐆(𝑥, 𝑦) + 𝐔𝐖(𝑥𝑐𝑜𝑠Φ, 𝑦)൯    (18) 

Let us now consider this case and use (18) for 4OC. It should be noted, however, that the above 
approximation is violated if the quadratic components in ℎ௚௥,௡(𝑥, 𝑦) and ℎ௪௥,௡(𝑥, 𝑦) are 
significantly larger than all the others taken together. Then, if the quadratic distortions are 
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compensated for by rotating the fourth grating [21], the approximation |𝛁ℎ௡(𝑥, 𝑦)| ≈
௛೙(௫,௬)

ௗ
 is 

invalid and (10) must be used instead of (18). 

As seen from (18), the focal intensity for 4OС is determined by the total value of the ℎ௚௥  
and ℎ௪௥ gradients (functions  𝐆(𝑥, 𝑦) and 𝐖(𝑥, 𝑦)), where only gratings G2 and G3 are 
significant, whereas the contribution of G1 and G4 is negligible. Contrariwise, for 2OC, according 
to (11), the gradients are of no importance, and the focal intensity is determined only by the total 
value of ℎ௚௥ and ℎ௪௥ (functions 𝑔(𝑥, 𝑦) and 𝑤(𝑥, 𝑦)).  

Analogously to (17), we obtain 𝑓𝑔(𝑥, 𝑦) ≪ 𝐅𝐆(𝑥, 𝑦) and 𝑢𝑤(𝑥, 𝑦) ≪ 𝐔𝑾(𝑥, 𝑦). With 
allowance for (11) and (18), from this follows that a decrease in the Strehl ratio in 2OС is much 
smaller than in 4OС: (1 − 𝑆𝑡ଶ) ≪ (1 − 𝑆𝑡ଶ), which is a significant advantage of the two-grating 
compressor along with its other merits [21, 33, 41]. 

 

3. Discussion of results 

As can be seen from (8), one function Ψସ,ଶ(𝑥, 𝑦) is responsible for all distortions of all compressor 
gratings. It has the meaning of the effective phase (effective wavefront), which characterizes all 
imperfections of all compressor gratings. The decrease in the Strehl ratio ൫1 − 𝑆𝑡ସ,ଶ൯ is 
proportional to the squared rms of this phase and to the squared Δ𝜔. Therefore, a decrease/increase 
in Δ𝜔 proportionally reduces/increases the requirements for the rms of both, the surface of the 
gratings and the surfaces of the optics used for their writing. To determine the Strehl ratio it is 
sufficient to know only Ψସ,ଶ

ଶ (𝑥, 𝑦)തതതതതതതതതതതത, i.e. the dispersion (rms squared) of the function Ψସ,ଶ(𝑥, 𝑦), with 
averaging being performed according to (9). The laser beam profile 𝐸଴(𝑥, 𝑦) affects 𝑆𝑡ସ,ଶ only 
through this averaging. It is obvious that the flat-top profile is better than the Gaussian one, 
especially in the presence in Ψସ,ଶ(𝑥, 𝑦)  of Zernike polynomials with large radial indices. The pulse 
spectrum profile has a similar effect: for a Gaussian spectrum 𝑀(𝜇 = 1) = 0.5  and for 𝜇 ≥ 6,
𝑀 ≈ 0.32, i.e. for a super-Gaussian spectrum 𝑆𝑡ସ,ଶ is larger than for a Gaussian one. 

The function Ψସ,ଶ(𝑥, 𝑦) is determined by the total distortions of gratings G2 and G3 for 
4OC (14) and G1 and G2 for 2OC (13). The rotation of one grating by 180 degrees around its 
normal changes the sign of the arguments of the functions ℎ௚௥(𝑥, 𝑦) and ℎ௪௥(𝑥, 𝑦). In addition, 
with such a rotation, the angle between the wave vector of the incident wave and the 𝑥′′ axis 
changes from the acute to the obtuse one or vice versa, i.e. ℎ௪௥,௡(𝑥, 𝑦) changes its sign [23]. Thus, 
the rotation corresponds to the replacements  

ℎ௚௥,௡(𝑥, 𝑦) → ℎ௚௥,௡(−𝑥, −𝑦)   and   ℎ௪௥,௡(𝑥, 𝑦) → −ℎ௪௥,௡(−𝑥, −𝑦)  (19) 

In 2OC the gratings may be arranged in four non-equivalent ways: each grating may be placed in 
two ways. There are significantly more options in 4OC. The values of Ψସ,ଶ

ଶ (𝑥, 𝑦)തതതതതതതതതതതത and, hence, of 
𝑆𝑡ସ,ଶ will be different for different variants. Knowing ℎ௚௥,௡(𝑥, 𝑦) and ℎ௪௥,௡(𝑥, 𝑦)  for each grating, 
for any compressor it is easy to choose the best option – the one that gives the smallest value of 
Ψସ,ଶ

ଶ (𝑥, 𝑦)തതതതതതതതതതതത.  

The grating surface profiles ℎ௚௥,௡(𝑥, 𝑦) are, as a rule, independent for different gratings. 
On the contrary, it is reasonable to conjecture that ℎ௪௥,௡(𝑥, 𝑦) = ℎ௪௥(𝑥, 𝑦), if the gratings are 
written by the same optics (see Fig. 2). Then, from (13, 14) we obtain  

𝑤(𝑥, 𝑦) = ℎ௪௥(𝑥, 𝑦) + ℎ௪௥(−𝑥, 𝑦),        𝐖(𝑥, 𝑦) = −𝛁ℎ௪௥(−𝑥, 𝑦) − 𝛁ℎ௪௥(𝑥, 𝑦),    (20) 
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i.e. the Zernike polynomials that are odd in 𝑥 will make a zero contribution to 𝑤(𝑥, 𝑦), and even 
ones a zero contribution to 𝐖(𝑥, 𝑦) (see (16)). If the second grating is rotated by 180 degrees 
around its normal, then  

𝑤(𝑥, 𝑦) = ℎ௪௥(𝑥, 𝑦) − ℎ௪௥(𝑥, −𝑦),        𝐖(𝑥, 𝑦) = −𝛁ℎ௪௥(−𝑥, 𝑦) + 𝛁ℎ௪௥(−𝑥, −𝑦)  (21) 

and the Zernike polynomials that are even in 𝑦 will make a zero contribution to 𝑤(𝑥, 𝑦), and the 
odd ones to 𝐖(𝑥, 𝑦). From this it is clear that identical gratings do not allow compensating for the 
imperfection of the grooves of each other, since in any case 𝑤(𝑥, 𝑦) ≠ 0 and 𝐖(𝑥, 𝑦) ≠ 0. 
However, 𝑤(𝑥, 𝑦) = 0 if any of the conditions  

ℎ௪௥,ଶ(𝑥, 𝑦) = −ℎ௪௥,ଵ(−𝑥, 𝑦)   or     ℎ௪௥,ଶ(𝑥, 𝑦) = ℎ௪௥,ଵ(𝑥, −𝑦)   (22) 

is met, and 𝐖(𝑥, 𝑦) = 0 if any of the conditions  

𝛁ℎ௪௥,ଶ(𝑥, 𝑦) = −𝛁ℎ௪௥,ଵ(−𝑥, 𝑦)   or   𝛁ℎ௪௥,ଶ(−𝑥, −𝑦) = 𝛁ℎ௪௥,ଵ(−𝑥, 𝑦)       (23) 

is fulfilled. Thus, to completely nullify the influence of an imperfect groove pattern for 2OC or 
4OC, a pair of grooves satisfying (22) or (23), respectively, should be written. By interchanging 
BS and M3, as well as M1 and M2 (Fig. 2), it is possible to change the sign of ℎ௪௥, but this is 
insufficient to fulfill (22, 23). 

The Strehl ratio 𝑆𝑡 depends on i) the total grating profile described by the functions 𝐆(𝑥, 𝑦) 
and 𝑔(𝑥, 𝑦), and ii) the total groove imperfection which, in its turn, is determined by the total 
profile of the optics used for writing the grooves that is described by the functions 𝐖(𝑥, 𝑦) and 
𝑤(𝑥, 𝑦). Compare the influence of these two reasons assuming that the profiles are uncorrelated, 
i.e. 𝑮𝑾തതതതത = 𝑔𝑤തതതത = 0. Then from (8, 11, 18) we find that the Strehl ratio 𝑆𝑡 is a product of the Strehl 
ratio caused by the grating surface imperfection 𝑆𝑡௚௥ and the Strehl ratio caused by the groove 
pattern imperfection 𝑆𝑡௪௥:  

𝑆𝑡ସ = 𝑆𝑡ସ,௚௥𝑆𝑡ସ,௪௥   𝑆𝑡ଶ = 𝑆𝑡ଶ,௚௥𝑆𝑡ଶ,௪௥        (24)    

  𝑆𝑡ସ,௚௥ = 1 − M ቀ
୼ఠ

ఠబ
ቁ

ଶ

൫𝐹௫
ଶ𝐺௫

ଶതതതത + 𝐹௬
ଶ𝐺௬

ଶതതതത൯       𝑆𝑡ସ,௪௥ = 1 − M ቀ
୼ఠ

ఠబ
ቁ

ଶ

൫𝑈௫
ଶ𝑊௫

ଶതതതതത + 𝑈௬
ଶ𝑊௬

ଶതതതതത൯      (25) 

𝑆𝑡ଶ,௚௥ = 1 − M ቀ
୼ఠ

ఠబ
ቁ

ଶ

𝑓ଶ𝑔ଶതതത    𝑆𝑡ଶ,௪௥ = 1 − M ቀ
୼ఠ

ఠబ
ቁ

ଶ

𝑢ଶ𝑤ଶതതതത      (26) 

Note that for the 𝑆𝑡 close to unity, the contribution of these two factors to the reduction of the 
Strehl ratio is additive: 1 − 𝑆𝑡 ≈ 1 − 𝑆𝑡௚௥ − 𝑆𝑡௪௥. Supposing that the quality of grating substrate 
polishing is the same as the quality of polishing the optics used for writing the grating, we have 
𝑔ଶതതത = 𝑤ଶതതതത = 𝜎ଶ and 𝐺௫

ଶതതതത = 𝑊௫
ଶതതതതത = 𝐺௬

ଶതതതത = 𝑊௬
ଶതതതതത = Σଶ. We also assume that 𝑥 and 𝑦 are equivalent. 

Then it is readily found that  

ଵିௌ௧మ,೒ೝ

ଵିௌ௧మ,ೢೝ
=

ଵ

ଶ
𝑡𝑔𝛽𝑁𝜆௪௥      

ଵିௌ௧ర,೒ೝ

ଵିௌ௧ర,ೢೝ
=

ଵ

ଶ
𝑐𝑡𝑔 ቀ

ఈିఉ

ଶ
ቁ 𝑁𝜆௪௥ 

For typical compressor parameters, both ratios are << 1, i.e. the imperfection of the optics used to 
write the grating exerts a greater influence. For example, for the 4TC and 4LC parameters proposed 
in [41] for the XCELS and SEL-100PW projects (Table 1), 𝑆𝑡ସ,௚௥(Σ) and 𝑆𝑡ସ,௪௥(Σ)  are plotted in 
Fig. 3, from which it is clear that 𝑆𝑡ସ,௚௥(Σ) ≈ 𝑆𝑡ସ,௪௥൫(2.5 … 3)Σ൯, i. e.  the requirements for the 
optics used to write the grating are approximately 2.5…3 times higher. The curves are plotted for 
𝜆௪௥ = 413 nm; for 𝜆௪௥ = 266 nm this coefficient will be even 1.55 times larger. 

Table 1. Compressor parameters    
XCELS 

910±75nm 

SEL-100PW 

925±100nm 
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4TC 4LC 4TC 4LC 

𝑁, mm-1 950 1000 1000 1100 
𝛼,  degree 36 27.4 38.5 31.3 
𝛾,  degree 0 11.2 0 14.8 
𝐿, cm 333 231 272 155 

   

a)     b)  

Fig. 3. 𝑆𝑡ସ,௚௥(Σ) (solid curves) and 𝑆𝑡ସ,௪௥(Σ) (dashed curves) plotted by (25) for 4TC (red) and 4LC (blue) 
for compressor parameters (see Table 1) proposed for XCELS (a) and SEL-100PW (b).   

 

From (15) it is clear that 𝑢 does not depend on N and the dependence of 𝐔 on N is very weak. 
Consequently, 𝑆𝑡௪௥,ସ weakly depends on N, and 𝑆𝑡௪௥,ଶ does not depend on it at all. Contrariwise, 
𝑓 and 𝐅 and, hence, 𝑆𝑡௚௥ depend on N. In Fig. 4, 𝑆𝑡௚௥(𝑁) and 𝑆𝑡௪௥(𝑁) are plotted for four 
compressor configurations: 4TC, 4LC, 2TC and 2LC. For the TC, 𝛾 = 0 and the value of |𝛼 − 𝛼௅| 
for each N was chosen to be minimal, ensuring decoupling (grating G2 does not overlap the beam 
incident on grating G1). Analogously, for LC the angle 𝛾 was chosen to be minimal and 𝛼 = 𝛼௅. 
For all points in Fig.4 the distance between the gratings 𝐿 corresponds to the group velocity 
dispersion of 4.4ps2. For identical Σ and 𝜎, the values of 𝑆𝑡௚௥(𝑁) differ little from unity. Therefore, 
for clarity, the curves for 𝑆𝑡௚௥(𝑁) are plotted a factor of 10 larger for Σ (Fig. 4a) and a factor of 5 
larger for  𝜎 (Fig. 4b) than for 𝑆𝑡௪௥(𝑁). This once again emphasizes that the contribution of ℎ௪௥ 
is much larger than that of ℎ௚௥ . As expected, 𝑆𝑡௪௥ (green symbols) is virtually independent of N, 
except for a small drop at large N in Fig. 4a. For the same quality of the optics, 𝑆𝑡௚௥(𝑁) ≈ 1 and 
𝑆𝑡(𝑁) ≈ 𝑆𝑡௪௥(𝑁). However, if (22) is met or quadratic components (defocus, vertical 
astigmatism, and oblique astigmatism) dominate in ℎ௪௥, then 𝑆𝑡௪௥(𝑁) ≈ 1 and 𝑆𝑡(𝑁) ≈ 𝑆𝑡௚௥(𝑁). 
In this case, as can be seen from Fig. 4, for 4TC and 4LC it is more advantageous to have large N, 
and for 2TC and 2LC small N. The comparison of TC and LC (triangles vs squares) shows that 𝑆𝑡 
is larger for TC, but the difference is insignificant, and for the two-grating compressor 𝑆𝑡௪௥ is the 
same for 2TC and 2LC (circles in Fig.4b). 

a)    b)   
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Fig. 4. 𝑆𝑡௚௥(𝑁) (red) and 𝑆𝑡௪௥(𝑁) (green) for 4TC and 4LC plotted by (25) (a) and for 4TC , 2TC plotted 
by (25) and 2LC plotted by (26) (b). The incidence angles 𝛼 and 𝛾 as well as the distance between the 
gratings 𝐿 are described in the text. For clarity, the curves for 𝑆𝑡௚௥(𝑁) are plotted for larger values of 
distortion than for 𝑆𝑡௪௥(𝑁): a factor of 10 for (а) and a factor of 5 for (b). 

 

4. Conclusion  

The focal intensity (Strehl ratio 𝑆𝑡) depends on the grating surface profile ℎ௚௥(𝑥, 𝑦) and on 
the groove pattern imperfection ℎ௪௥(𝑥, 𝑦) – the function which, in turn, is determined by the total 
surface profile of the optics used for writing the holographic gratings. In the majority of cases, the 
influence of ℎ௪௥(𝑥, 𝑦) is much more significant, i.e. the requirements for the quality of the surface 
of the optics used for inscribing the gratings are several times higher than for the quality of the 
grating surface.  

When the grating is rotated by 180 degrees around its normal, ℎ௪௥(𝑥, 𝑦) (unlike ℎ௚௥(𝑥, 𝑦)) 
changes its sign. By rotating the gratings and interchanging them it is possible to find an optimal 
variant for maximizing 𝑆𝑡.  

The influence of all imperfections of all compressor gratings on 𝑆𝑡 is described by one 
function Ψ(𝑥, 𝑦) that has the sense of the effective wavefront. The decrease in 𝑆𝑡 is proportional 
to the squared rms of this function. The Ψ(𝑥, 𝑦) function is determined by the total distortions of 
gratings G2 and G3 for the four-grating compressor (14) and of G1 and G2 for the two-grating 
compressor (13), with the 𝑆𝑡 decrease in the latter being much smaller, which is its undoubted 
advantage.  

The number of grooves 𝑁 almost does not affect the decrease in 𝑆𝑡 due to groove pattern 
imperfection, but it influences the 𝑆𝑡 decrease due to the imperfection of the grating surface. In 
four-grating compressors, 𝑆𝑡 increases with increasing 𝑁, while in two-grating compressors it 
decreases. The comparison of the Treacy and Littrow compressors demonstrated that 𝑆𝑡 is higher 
for the Treacy compressor but the difference is insignificant.  

In all cases the reduction of the pulse spectrum width Δ𝜔 proportionally reduces the 
requirements for the rms of both, the surface of the gratings and the surface of the optics used for 
their writing.  
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