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Unconfined three-dimensional gravity currents generated by lock exchange using a
small dividing gate in a sufficiently large tank are investigated by means of large
eddy simulations under the Boussinesq approximation, with Grashof numbers varying
over five orders of magnitudes. The study shows that, after an initial transient, the
flow can be separated into an axisymmetric expansion and a globally translating
motion. In particular, the circular frontline spreads like a constant-flow-rate, axially
symmetric gravity current about a virtual source translating along the symmetry
axis. The flow is characterised by the presence of lobe and cleft instabilities and
hydrodynamic shocks. Depending on the Grashof number, the shocks can either
be isolated or produced continuously. In the latter case a typical ring structure is
visible in the density and velocity fields. The analysis of the frontal spreading of
the axisymmetric part of the current indicates the presence of three regimes, namely,
a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy
equilibrium regime. The viscous–buoyancy phase is in good agreement with the
model of Huppert (J. Fluid Mech., vol. 121, 1982, pp. 43–58), while the inertial
phase is consistent with the experiments of Britter (Atmos. Environ., vol. 13, 1979,
pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity
currents. The adoption of the slumping model of Huppert & Simpson (J. Fluid
Mech., vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of
constant-flow-rate cylindrical currents, allows reconciling of the different theories
about the initial radial spreading in the context of different asymptotic regimes. As
expected, the slumping phase is governed by the Froude number at the lock’s gate,
whereas the transition to the viscous phase depends on both the Froude number at the
gate and the Grashof number. The identification of the inertial–buoyancy regime in
the presence of hydrodynamic shocks for this class of flows is important, due to the
lack of analytical solutions for the similarity problem in the framework of shallow
water theory. This fact has considerably slowed the research on variable-flow-rate
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axisymmetric gravity currents, as opposed to the rapid development of the knowledge
about cylindrical constant-volume and planar gravity currents, despite their own
environmental relevance.

Key words: gravity currents, shallow water flows, turbulence simulation

1. Introduction
The spreading of three-dimensional, unconfined gravity currents is a primary

concern in many environmental problems in hydraulics, coastal dynamics, oceano-
graphy and meteorology. Such currents may be found when positively buoyant
water plumes impinge on a level of stable stratification or when heavy fluids are
spilled on the sea bottom, e.g. in the case of turbid or cold river waters flowing
into lakes or coastal areas under calm wind conditions. The reader is referred
to the classical introduction of Simpson (1997) for a general review of the several
possible manifestations of gravity currents in nature and in laboratory, and to Meiburg,
Radhakrishnan & Nasr-Azadani (2015) for a comprehensive description of the methods
and models used to describe them. Most of the knowledge on axisymmetric currents,
(e.g. Hallworth, Huppert & Ungarish 2001; Huppert 2006; Ungarish 2009; Dai &
Wu 2016), refers to constant-volume flows, i.e. currents generated by the release
of a constant volume of a dense fluid. This is because of the relative feasibility
of field or laboratory experiments and the availability of numerical and analytical
similarity solutions for the associated initial value problem in the context of shallow
water theory (see e.g. Hallworth et al. 1996). Recent experiments described by
Cuthbertson et al. (2012, 2014) and Ottolenghi, Cenedese & Adduce (2017b) on
continuous-inflow gravity currents in rotating tanks illustrate the complexity of
the necessary experimental arrangement even in the case of planar flows. Direct
numerical simulations (DNS) have been used to shed light on the dynamics and
the instabilities of axisymmetric constant-volume gravity currents, as in Cantero
et al. (2007). Advanced numerical methods have been proposed to study planar
gravity currents in complex geometries or bathymetries, e.g. Ooi, Constantinescu &
Weber (2007, 2009), Gonzalez-Juez et al. (2010), Tokyay, Constantinescu & Meiburg
(2014), Dai (2015), Ottolenghi et al. (2017a, 2018). The potential of using large eddy
simulation (LES) and DNS in the simulation of Kelvin–Helmholtz and lobe and cleft
instabilities in planar gravity currents at high Reynolds number has also been recently
reviewed by Constantinescu (2014). Dai (2013) studied the properties of frontal
dynamics and mixing in plane gravity currents propagating on inclined bottoms.
Comparatively less is known for axially symmetric gravity currents generated by a
variable-volume flow of dense fluid even in the easiest case, i.e. constant inflow. This
particular type of flow has rarely been investigated because laboratory experiments
are often prone to being dominated by hydraulic shocks and, in fact, shallow water
theory does not provide continuous analytical solutions of the similarity equations
for the associated initial value problem (Grundy & Rottman 1986). Axisymmetric,
constant-flow-rate currents have been reproduced in the laboratory using long channels
restricted to form circular sectors by applying non-parallel separating walls (Britter
1979). In this case, only a relatively small portion of the current was generated,
corresponding to circular sectors with angles θ ∼ 10◦. The existence of characteristic
frontal spreading regimes governed by the dynamical balance of some of the terms in
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the shallow water equations was suggested by Fay (1969) and successively by Hoult
(1972) and Huppert & Simpson (1980). Indeed, dimensional analysis indicates that in
the initial part of the spreading the inertial acceleration prevails among the various
forces opposing buoyancy. This phase is consequently known as the inertial–buoyancy
equilibrium regime. The surface tension dominates the very end of the process, but
only where a large difference in density between the current and the ambient fluid
exists. The surface tension regime in fact does not appear in two-layer flows as is
the case at hand. In the case of axially symmetric, constant volume gravity currents,
the hydrostatic balance between the buoyancy and the inertial term can be expressed
as:

(ρ1 − ρ2)gh2
·πr= ρ1πr2hr̈, (1.1)

which, by using the volume conservation

Qt=πr2h, (1.2)

can be expressed as
r̈
g′
=

Qt
πr3

. (1.3)

Here, r(t) is the radial front position of the cylindrical current, h is the height of the
current, g is the gravity acceleration, the symbol g′= g(1ρ/ρ2) represents the reduced
gravity in the Boussinesq approximation; 1ρ is the difference between the density of
the ambient fluid, ρ2, and the density of the fluid released from the source, ρ1; Q
is the volume flux of dense fluid. In case of negligible mixing, the volume of the
cylindrical current is assumed equal to Qt.

Viscosity is the leading term at intermediate times, i.e. in the viscous–buoyancy
equilibrium regime (Didden & Maxworthy 1982; Huppert 1982), i.e. when time is too
short for the spreading to fall into the ultimate surface tension regime, but is too long
to be in the inertial regime. In this case

(ρ1 − ρ2)gh2
·πr= ρ1

νπr2ur

h
(1.4)

by substituting h from (1.2),

ur ·
ν

g′h2
=

h
r
. (1.5)

The symbol ν represents the kinematic viscosity. The existence of an additional
regime, the ‘slumping phase’, was proposed by Huppert & Simpson (1980). The
slumping, which dominates the short times prior to the onset of the inertial–buoyancy
equilibrium, has been investigated by several authors, e.g. Ungarish & Zemach (2005),
in the limited context of planar and fixed-volume axisymmetric gravity currents. The
concept of an asymptotic regime of spreading has been applied by several authors
in the past, e.g. to assess the spreading of oil by a constant-volume spill at sea (see
e.g. Hoult 1972; Huppert & Simpson 1980). In the context of axisymmetric gravity
currents, the rate of discharge plays a critical role in determining the asymptotic
spreading rate of the radial front. In fact, it has long been assumed (see Chen 1980,
for an exhaustive literature review) that, on dimensional grounds from (1.3) and (1.5),
the radial front position of the current, r(t), evolves in time as

r(t)∝ (g′Q)1/4t3/4 (1.6)
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during the inertial–buoyancy regime, and

r(t)∝
(

g′Q3

ν

)1/8

t1/2 (1.7)

during the viscous–buoyancy regime. The presence of the two equilibrium regimes was
observed by Britter (1979) in a series of experiments reproducing negatively buoyant
axisymmetric currents running on a rigid bottom. Unfortunately, the analytical solution
to the constant-inflow initial value problem in the inertial–buoyancy equilibrium has
proven to be most elusive. Britter (1979) was not able to find an exact analytical
solution of the self-similar problem, i.e. the coupled system of nonlinear ordinary
differential equations. Opposite approaches were pursued by Chen (1980) and Garvine
(1984); the former attempted to numerically solve the similarity problem in the
inertial–buoyancy regime, i.e. integrating backward in time the self-similar ordinary
differential equations from the final position of the front, and the latter solved the
initial value problem in the spirit of Penney & Thornhill (1952) and Abbott &
Hayashi (1967), following the method of analysis of the characteristics.

It was soon found that the time rates of spreading found in the self-similar solution
proposed by Chen (1980), r ∝ t3/4, cannot be considered as the asymptotic regime
reached by the solution of the initial problem studied by Garvine (1984), r ∝ t0.92,
due to the completely different spreading rates. Grundy & Rottman (1986), using
the phase-plane method of Sedov (1993), demonstrated that no continuous analytical
similarity solution satisfying the boundary conditions on the axis of symmetry can
exist for the general time-varying-inflow axisymmetric initial value problem, except
in the case of constant-volume release. In fact, they demonstrated that the numerical
solution of Chen (1980) was not compatible with the boundary conditions of the
original problem. In the case of currents with a variable flow rate but planar symmetry,
Gratton & Vigo (1994) found that up to four different families of solutions can exist,
only one of which is continuous. This result led Bonnecaze et al. (1995) to suggest
that in the case of a constant flow rate, given the nonlinear, hyperbolic nature of
the flow, the absence of continuous solutions might imply that only discontinuous
solutions with shocks could eventually be found. A closely related problem is the
study of the circular hydraulic jump (Bohr, Dimon & Putkaradze 1993). The problem,
studied in laboratory experiments and numerical simulations, basically deals with
the flow generated when a vertical jet of fluid impinges on a horizontal surface. In
this case the interest is not in the position of the front, but rather in the position
of the hydraulic jump. The circular jump theoretical problem has been successfully
solved in a classical way imposing a discontinuous solution, or shock, in the sense
of Whitham (1999). A successive experimental investigation by Thorpe & Kavcic
(2008) of an internal circular hydraulic jump realised in a two-layer flow shows
similarities to the conditions studied in axially symmetric constant-volume currents,
and, in fact, the characteristic outcome of the experiments is the presence of circular,
axisymmetric rings. The theoretical line of investigation on circular hydraulic jumps
(e.g. see Bhattacharjee & Ray 2011), while providing a general hydraulic model
relating the variation of Froude number to the presence of a circular jump in a close
analogy with the planar case, does not cover the case of non-stationary, multiple
shocks.

When no clear symmetry is present in the flow, as is the case for the three-
dimensional unconfined gravity current problem, references in the literature are few.
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Ross, Linden & Dalziel (2002) studied the instantaneous release of a three-
dimensional (3-D) gravity current on an unconfined uniform slope. La Rocca et al.
(2008, 2012) described a series of lock-exchange experiments of unbounded gravity
currents generated in a large square tank. Prior to their study, Maxworthy (1980) had
presented experiments on 3-D gravity currents generating trains of solitary waves in
a stratified environment realised in a similar large tank. The geometries of the two
experimental set-ups differed in terms of the size of the volume of fluid in the lock,
but despite the differences, it turns out that in many cases, the 3-D gravity currents
generated appeared to acquire a definite axial symmetry in a short time.

The recent experimental results of Lombardi, Adduce & La Rocca (2018), obtained
in a set-up similar to that used by La Rocca et al. (2008), show that the size of the
lock width has a significant effect on the development of the gravity current not only
in the evolution of the shape of the planform, but also in terms of the propagation
speed of the frontline. For relatively large lock gates the current is similar to a planar
current and develops a characteristic slumping regime with a constant front speed,
while for lock gate widths under a definite threshold the current acquires a cylindrical
symmetry and the spreading is always decelerating. In this case, a portion of the
generated axisymmetric current has a circular sector with an angle increasing in time
from approximately 170◦ to 200◦.

The aim of the present study is to numerically investigate, in the context of the
Boussinesq approximation, the formation of three-dimensional lock-exchange flows
evolving in axisymmetric, constant-inflow gravity currents and the development of ring
structures. Given the initial set-up as described in the experiments of La Rocca et al.
(2008), Lombardi et al. (2018), which allows the formation of a constant inflow
of dense fluid from the lock, the focus is in the description of the form and the
evolution in time of the current planform in terms of characteristic regimes, and the
propagation of shocks inside the flow in the early stage of development of the gravity
current. Specifically, the presence of an initial slumping phase (Huppert 1982) and
the existence of a subsequent inertial–buoyancy equilibrium regime, consistent with
the results of Britter (1979), are investigated for the purely axisymmetric part of the
gravity current. The study is carried out using wall-resolving large eddy simulation.
This technique allows us to span a wide range of Grashof numbers, including the
ones found in the experiments in physical laboratories, obtaining features of high
resolution and accuracy. Section 2 presents the mathematical model and the set-up
for the numerical experiments. Section 3 reports the analysis of the time evolution
of the flow and the determination of the current regimes. A simple extension of the
slumping regime theory of Huppert & Simpson (1980) applied to constant-inflow
axisymmetric currents is also proposed to analyse the initial part of the spreading
before the inertial–buoyancy equilibrium becomes effective. The conclusions are
presented in § 4.

2. Numerical formulation and model implementation
2.1. Numerical model

A large eddy simulation model is used to solve the filtered Navier–Stokes equations
under the usual Boussinesq approximation. A Cartesian coordinate system is
considered with spatial components xi, where the vertical x3 coordinate is defined as
positive upward. Time is indicated as t and the flow variables are denoted as ui for
the velocity field, p for the pressure field and ρ for the density field. According to
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the Boussinesq approximation the total density ρtot(xi, t) is subdivided into a bulk
quantity ρ0 and a residual field ρ ′(xi, t):

ρtot(xi, t)= ρ0 + ρ
′(xi, t) i= 1, 2, 3. (2.1)

Similarly, for the pressure field,

ptot(xi, t)= p0(x3)+ p′(xi, t), (2.2)

where p0 satisfies the hydrostatic balance for the bulk density ρ0. The approximation
is valid under the assumption that ρ0� ρ

′(xi, t), which is the case under investigation.
In our system the density field ρ varies in the closed range [ρ2, ρ1] the values being

the density of the ambient fluid and that of the fluid in the lock respectively. A density
scale is thus 1ρ = ρ1 − ρ2 and we can define ε = 1ρ/ρ2, and the reduced gravity
g′ = εg. In our problem we set ρ0 = ρ2. To consider a suitable non-dimensional form
of the equations, it is assumed that the dimensional variables xi, t, ui, p are related to
the dimensionless corresponding variables xi∗, t∗, ui∗, p∗ through the scales Ls,Ts,Us in
the following way: xi=Lsxi∗, ui=Usui∗, t=Tst∗=Ls/Ust∗, p′=ρ2U2

s p′
∗

and ρ ′=1ρ ρ ′
∗
.

The choice of the consistent set of scales Ls=H, where H is the total height of the
physical volume, Us=

√
g′H and Ts=H/Us produces the momentum equation in non-

dimensional form, where all asterisks and primes are dropped to make the notation
lighter:

∂ui

∂t
+
∂ujui

∂xj
=−

∂p
∂xi
+

1
√

Gr

∂2ui

∂xj
2 − ρδi3. (2.3)

In the expressions above the symbol δij denotes the Kronecker tensor. The Grashof
number Gr= (UsH/ν)2 is clearly related to the Reynolds number Re when the latter
originates from a different choice of the set of scales, i.e. Us = Uf , where Uf is the
front velocity and Ls is expressed in terms of a measure of the height of the current
at the front hf , i.e. Ls = hf = αH (Härtel, Meiburg & Necker 2000). Then,

Re=
Uf hf

ν
=
αUf

Us

UsH
ν
= αFrf

√
Gr, (2.4)

where Frf is a Froude number that depends on the front velocity of the gravity
current and 0.0<α < 1.0 is a numerical coefficient. After applying the LES filtering
procedure, the complete system takes the following form:

∂ ūj

∂xj
= 0, (2.5)

∂ ūi

∂t
+
∂(ūjūi)

∂xj
=−

∂ p̄
∂xi
+

1
√

Gr

∂2ūi

∂xj∂xj
− ρ̄δi3 −

∂τij

∂xj
, (2.6)

∂ρ̄

∂t
+
∂(ūjρ̄)

∂xj
=

1
√

GrSc

∂2ρ̄

∂xj∂xj
−
∂λj

∂xj
, (2.7)

where Sc is the Schmidt number, defined as Sc = ν/k. ν is the kinematic viscosity
and k is the diffusivity. Given a generic field φ(xi, t), the symbol φ̄ denotes the
filtering operation, which is performed here through the implicit application of the
top-hat filter. All the mentioned variables with overhead are resolved-scale filtered
quantities. In particular, ρ̄ is now intended to be the filtered dimensionless residual
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density caused by the salinity variation in the absence of ambient stratification and at
constant temperature. In fact, the density here is directly related to the concentration
of salt by a linearised state equation in terms of a volumetric coefficient β.

The sub-grid-scale momentum and mass flux contributions

τij = uiuj − ūiūj, (2.8)
λj = ρuj − ρ̄ūj (2.9)

are computed using the dynamic model of Armenio & Sarkar (2002) with the
constants evaluated using the Lagrangian procedure of Meneveau, Lund & Cabot
(1996). The choice of the Lagrangian model is motivated by the absence of directions
of homogeneity in the development of three-dimensional gravity currents. In the
model, equations (2.5)–(2.7) are numerically integrated using the fractional step
algorithm of Zang, Street & Koseff (1994). A more general and exhaustive description
of the numerical methods used can be found in Armenio & Piomelli (2000) and
Armenio & Sarkar (2002). The model has been successfully applied in a wide class
of problems, among the others for the study of wall-bounded stratified flows (Taylor,
Sarkar & Armenio 2005), for unsteady transitional flows (Salon, Armenio & Crise
2007) and, more recently, in the evaluation of mixing in planar gravity currents
(Ottolenghi et al. 2016a,b, 2017a). The present version of the model makes use of
an immersed boundary technique (Roman et al. 2009) to simulate the presence of
obstacles in the domain of the flow. No-slip boundary conditions are imposed for
velocity on the bottom and on the lateral walls, whereas on the top wall, a shear-free
boundary condition is applied. No-flux conditions are also enforced for the salinity
on all boundaries.

2.2. Numerical set-up
The simulations aim to realistically reproduce experimental conditions similar to those
described in La Rocca et al. (2008, 2012), Lombardi et al. (2018). For simplicity, the
indicial notation is dropped hereinafter in favour of the basic Cartesian notation, where
x= x1, y= x2 and z= x3. Consistently, the flow velocity components will be denoted as
u= u1, v= u2 and w= u3. A schematic of the geometry of the numerical domain and
the laboratory tank is shown in figure 1. The geometry of the experimental apparatus
has been numerically reproduced in the form of a rectangular tank of length L, width
2y0 and height H, with the vertical dimension H being considerably smaller than the
horizontal ones (y0 and L). The domain of the simulation is the entire volume of the
tank L · 2y0 ·H. The tank is divided into two volumes by a wall inserted at a distance
of x0 from the left side of the tank. An open gate of width d is positioned at the centre
of the separating lock wall. The ratio between the width of the gate and the size of
the wall is d/y0� 1. The initial conditions represent a situation in which the fluid is
at rest everywhere. The left volume (i.e. the lock) is filled with a liquid with density
ρ1 (a solution of sodium chloride, NaCl, and fresh water in the physical experiments)
and the right volume is filled with a liquid with a lower density ρ2 (fresh water in
the physical experiments). Both portions of the tank are filled to the same level H
(full-depth configuration).

Two different configurations are implemented: one closely corresponds to the
laboratory experiments mentioned above, and the other one, which would be hardly
realisable in ordinary laboratory conditions, simulates an extended domain to follow
the numerical spreading of the current front for relatively long times. The values of
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d

Ly

x

x

z
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(a)

(b)

FIGURE 1. Sketch of the lock-release tank: (a) top view and (b) side view.

Geometry L 2y0 H x0 d
d

2y0

LD 16.8 9.6 1.0 8.0 0.96 0.10
ED 35.7 21.4 1.0 14.3 0.96 0.05

TABLE 1. Geometrical parameters for the laboratory domain (LD) and the extended
domain (ED). All quantities have been made non-dimensional using H.

the geometrical parameters for the two domains, i.e. the laboratory domain (LD) and
the extended domain (ED), are shown in table 1. The primary difference between
the two domains is that in the ED the circular frontline is able to develop over a
horizontal area approximately 9 times larger than in the LD case.

The presence of the separating wall with the lock opening d has been implemented
in the simulation by imposing no-slip condition on the nodes contained in the wall,
except for the grid points on d. The condition has been realised by using an immersed
boundary technique as described in Roman et al. (2009).

The three-dimensional grid for the LD domain is composed of 1024×64×512 cells
in the x, y, z directions, respectively and it is not uniform. On the (x, y) horizontal
plane, the grid has the highest resolution 1x= 0.01; 1y= 0.01 in the central part of
the domain, near the separating wall; and it has a lower resolution towards the external
vertical walls. Along the vertical dimension, z, it has the maximum resolution at the
top and bottom of the domain, with a relatively coarse resolution in the central part.
The cells in the three directions are distributed as arctan(xi) following the method of
Vinokur (1983). The rationale for this choice is that, since the current is generated
by lock exchange, there are two almost symmetrical currents propagating in opposite
directions, one is a current made of dense fluid propagating on the bottom of the tank
in the positive x-direction, the other is a current of light fluid propagating on the top
of the tank in the negative x-direction. Both are important in determining the volume
discharge at the gate. As shown in figure 2, both the currents on the top and on the
bottom of the tank move respectively below and over the plane at z= 1/2 during the
duration of the simulation.

The numerical grid on the ED domain, made of 2048 × 64 × 1024 nodes, is an
expanded version of the previously described one. It has the same structure in the
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0 0.1 0.2 0.3 0.4 0.5 0.6

2.86 4.28 5.71 7.14 8.57 10.0 11.43

0.7 0.8 0.9 1.0

0.5

1.0

x

FIGURE 2. Density field on the mid-plane y= y0, t= 8.7, case S11.

vertical z direction and a non-uniform horizontal grid with the same higher resolution
1x, 1y near the gate and the same lower resolution near the external wall. The LES
on the extended grid requires very high-performance computing resources, and the
results were obtained on a cluster of high-performance computing nodes using 512
cores.

In all simulations, it was verified that the grid resolution is sufficiently fine to
resolve the near-wall structures, as required by wall-resolved LES. In particular, it
was verified that the dimensionless grid size in terms of wall units x+i = xiuτ/ν is
always in the range 1x+ < 50, 1y+ < 20, and 1z+max ' 1, where uτ =

√
τ/ρ2 is the

local friction velocity, with τ the local wall shear stress. For a discussion see, among
the others, Piomelli & Chasnov (1996), Piomelli & Balaras (2002). The a posteriori
analysis of the friction velocity showed that the conditions were met for all cases
investigated. Specifically it was verified that the criterion above reported on the grid
spacing in the horizontal directions was satisfied and that at least 6 grid points fell
within the viscous sub-layer of the turbulent boundary layer.

Eleven test cases were simulated, the field of variation of the parameters is shown in
table 2. Cases S1–S6 have Gr increased by three orders of magnitude from Gr(S1)=
8.1× 104 to Gr(S6)= 2.0× 108, i.e. raised by a factor of 2500.

Cases S7–S11 have Gr in the range [2.7–8.1] × 108, i.e. Gr is increased by a
factor of 3 from S7 to S11. Case S12 is a laboratory experiment conducted under the
same conditions as case S11. The value Sc = 600 has been considered in all cases.
The full-depth release of a saline gravity current, case S12, was conducted at the
Hydraulics Laboratory of the University of ‘Roma Tre’ in a rectangular Plexiglas tank
with the same dimensions and configuration shown in figure 1. The physical length
of the tank is 2.35 m, width 1.35 m and height 0.14 m. A blue dye (methylene) was
added to the salty solution (i.e. the lock fluid) to identify the two fluids during the
experiment. The density measurements were performed using a pycnometer, with a
relative error 0.2 %. The experiment started when the lock gate was lifted vertically.
The development of the current was recorded using an overhead charged coupled
camera, with a time resolution of 25 fps and a spatial resolution of 0.25 cm pxl−1.
The space–time evolution of the current shape was measured by applying an image
analysis technique based on the threshold method (Adduce, Sciortino & Proietti 2012;
Lombardi et al. 2015; La Forgia, Adduce & Falcini 2018). Points belonging to the
current profile (i.e. interface between the two fluids) were determined within an error
of 0.2 cm. An additional simulation, S13, was conducted to consider the spreading
on the ED larger scale. The values of Gr and ε used in S13 are those defined for
the simulation of case S9.

A key parameter of the gravity current dynamics is the flow rate of dense fluid at
the separating gate, Q. This flow rate directly affects the speed of the front of the
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Gr ε
Q

UsH2
η t0 ti tv tf

S1 8.1× 104 0.030 (0.156± 0.001) — 4.8 4.8 6.7 47.8
S2 5.0× 105 0.030 (0.169± 0.001) — 3.5 5.2 10.9 31.9
S3 2.0× 106 0.030 (0.175± 0.001) — 2.9 5.4 15.8 30.7
S4 4.5× 106 0.030 (0.178± 0.001) — 4.1 5.4 19.4 27.5
S5 8.1× 106 0.030 (0.179± 0.001) — 3.2 5.5 22.5 26.1
S6 2.0× 108 0.030 (0.180± 0.003) 0.55 2.9 5.5 50.3 26.1
S7 2.7× 108 0.010 (0.180± 0.001) 0.48 3.3 5.4 54.2 21.6
S8 4.0× 108 0.015 (0.180± 0.001) 0.49 3.1 5.5 60.4 22.6
S9 5.4× 108 0.020 (0.180± 0.002) 0.51 3.1 5.6 64.6 21.3
S10 6.7× 108 0.025 (0.180± 0.003) 0.45 2.9 5.6 68.2 19.9
S11 8.1× 108 0.030 (0.179± 0.003) 0.48 2.9 5.5 71.8 21.5
S12 — 0.030 — — — 5.5 71.8 19.2
S13 5.4× 108 0.020 (0.187± 0.003) 0.51 3.1 5.6 64.6 68.7

TABLE 2. S1–S11: numerical simulations in the LD, S12: laboratory experiment in the LD
and S13: numerical simulation in the ED; t0 is the time after which Q becomes steady, ti=

aQ/πg′H2 is the time scale for transition to buoyancy–inertial regime, tf is the end time
of simulation/experiment, tv =

√
Q/g′ν is the time scale for transition to buoyancy–viscous

regime, η is the non-dimensional frequency of ring generation.

current and the onset of the viscous regime, which was estimated as tv ∼
√

Q/g′ν by
Huppert (1982) in the limit of the shallow water approximation and experimentally by
Britter (1979). To compute Q(t) =

v
Sgate

Θ(x0, y, z, t)u × nx dS from the simulations,
the flow integral of the positive velocity in the x-direction crossing the lock gate is
numerically evaluated. Sgate(t)=

∫ 2y0

0

∫ H
0 Θ(x0, y, z, t) dy dz is the part of the section of

the dividing wall where the velocity is positive and Θ is a function defined as:

Θ(x0, y, z, t)=

{
1 on (x0, y, z, t)|u> 0,
0 otherwise.

(2.10)

In all simulations, the flow rate exhibits a peak in the very early stage of
development and then tends to an almost constant value after a relatively small
time which varies from one case to another. The non-dimensional volume discharge
Q/UsH2 is independent of Gr at relatively high Grashof numbers, i.e. for Gr> 106.

3. Results
3.1. General features of the current

Immediately after the removal of the gate, a heavy current develops on the bottom
surface in the right part of the tank, where the ambient fluid is fresh water. A similar
and almost symmetrical buoyant current is generated on the top surface on the
opposite side of the tank, as shown in figure 2. The two currents, which are affected
by different boundary conditions imposed at the top and at the bottom of the tank,
present similarities and differences. Both manifest axial symmetry and instabilities,
but the current spreading on the bottom is more stable and is simpler to investigate
in the laboratory. Consequently, only the spreading of the current on the bottom of
the tank is considered in the following.
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In order to discuss the axial symmetry of the frontline it is necessary to formalise
the definition of some geometric constructions used in the numerical and experimental
analyses. The external contour of the planform, taken as the frontline of the current,
can be determined using the field of density on a fixed horizontal plane by introducing
a threshold value ψ . Then a plane function G(x, y) is defined as:

G(x, y)=

1 on (x, y)
∣∣∣∣ρ(x, y, zb)− ρ2

ρ1 − ρ2
−ψ <= 0,

0 otherwise.
(3.1)

The external frontline is identified implicitly by the function G(x, y) defined on the
horizontal plane z= zb= 0.05. This is the lower height at which the velocity profile is
not significantly affected by the distance from the bottom, particularly by the radial
structures associated with the time evolution of lobes and clefts. The determination
of the minimum plane height is important as the depth of the current becomes very
shallow during the spreading. ψ is a small density threshold used in the determination
of the frontline. The frontline position can be determined in low Gr cases starting
from ψ = 1 %, but taking ψ = 3 % provides a sufficiently continuous frontline in
all cases. In the experiment S12, the frontline is determined using a similar method
applied to the images recorded by an overhead camera. In this case, given that the
light is absorbed by the tracer monotonically with the depth of the current, the level
of grey in the camera image replaces the density in (3.1). The implicit function G can
be used to obtain the explicit form of the frontline xf = fl(y) on the fixed horizontal
plane, starting by identifying separately the maximum fl(y+) and minimum fl(y−) of
the frontline function above and below the longitudinal axis. At all times, the form of
the frontline has a definite curvature: it starts close to elliptic, with the radius in the
transverse (y) direction being greater than that in the longitudinal (x) one. The elliptic
form of the frontline collapses to a circle in a short time, and the frontline maintains
the circular shape in time apart from occasional perturbations. The simplest approach
to identify the frontline explicitly is then to consider the two radii of curvature, Rb
along y and Ra along x. In general, if the frontline is an ellipse (or a circle), then the
maximum and minimum of G will have the same projection on the x axis, i.e. xc. The
minor semi-axis of the ellipse, b, is taken as half the distance between the two points.
The major axis of the ellipse, a, is then obtained from the difference between the
intersection of the frontline with the x axis, xf and the x-coordinate of the centre, xc.

The geometry of the spreading is illustrated in figure 3 showing the frontline
G(x, y) at the end of the simulation in the low Grashof number case S2. An accurate
inspection reveals that the frontline has a circular shape centred at a position xc on
the longitudinal axis y= y0. In other words, as shown below, the current assumes an
axially symmetric form with respect to a time-varying virtual origin that translates
along y = y0. In all cases considered, xc(t) increases almost linearly with velocity
ẋc ∼ 0.1 up to a distance which depends on Gr, then it moves very slowly until the
end of the simulation. The transition is reached at distances ranging from x− x0= 1.1
at low Grashof to x − x0 = 2.0 at high Grashof. In case S13, the longest run, the
transition occurs at x− x0= 2, then it moves with speed ẋc∼ 0.04 until the end of the
simulation, at x− x0 ∼ 3.5 (figure 4). For values of Gr> 2× 106 the development of
lobe and cleft instabilities causes some problems for the detection of the position of
the frontline due to the appearance of spurious jumps in xc. For 4.5× 106 <Gr< 107,
the lobes are relatively few and larger, whereas for Gr > 107, the number of lobes
increases, but the frontline is less perturbed. Since the life span of the individual
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FIGURE 3. Case S2 Gr= 5.0× 105, ε = 0.03; frontline G(x, y) at t= 32.
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FIGURE 4. Case S13: Gr= 5.3× 108, ε = 0.02; (a) a2/b2 versus time; (b) radial front
position R and axial position xc − x0 versus time.

lobe is of the order of 1t∼ 3, i.e. small compared to the duration of simulations and
experiment, a correction for the estimates of the radius of the circular frontline and
of the position xc can be easily implemented using geometric or statistical methods.
An effective geometrical method based on the iterative comparison of different radii
is applied, as briefly illustrated in the following. Three distances are considered: a, b
and Rc. b is evaluated as half the maximum distance along y between two extremal
points on the frontline. a is obtained as the distance between the frontline position
on the x axis, xf and the x-coordinate of the symmetry axis xc, i.e. a= xf − xc. The
third length is the distance along the x axis between the fixed point at the centre of
the gate x0 and xf , i.e. Rc = xf − x0.

The correction procedure is applied to the simulations and the laboratory experiment.
In the latter case the method is employed to locate the frontline obtained from the
images of the experiment in the (x, y) plane viewed from the camera positioned above
the tank. The evolution in time of the frontline and the corrected radius is shown in
figure 5.

Notably, the present results are consistent with those of Maxworthy (1980), who
performed experiments with three-dimensional lock-exchange collapsing fluids in a
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FIGURE 5. Case S12 (experiment) evolution in time of the frontline at t= 2.8, 5.7, 8.6,
11.5, 14.4 and 17.3; grey area is the planform of the gravity current; black line: circle
centred at the centre of the separating gate and radius equal to the distance from the gate
to the frontline on the x axis; blue lines: circles centred at xc and radius Rb=Ra; asterisks:
position of the centre (xc, y0) and of the upper extremal (xc, y+).

stratified ambient fluid. In the mentioned study, the flow could be separated into a
radial expansion and a rigid translation not only for the current’s front but also for the
ring-like solitary waves propagating ahead on the interface between two fluid layers.

In the following, the symbol R represents the radius of the axially symmetric current
obtained from three-dimensional lock-exchange currents as previously described,
whereas r indicates the radius of an equivalent axially symmetric current generated
by a constant inflow at the axial position (as in Britter 1979). In order to study the
properties of the purely axially symmetric part of the current, the velocity field u
is decomposed in a plane translating velocity field ẋ(t)f and an axially symmetric
velocity field ur, uθ , uz, obtained by applying the ordinary transformation rules from
a Cartesian (x, y, z) to a cylindrical coordinate system (R, θ, z). θ is, of course, the
azimuthal angle.

3.1.1. Low Grashof number
At very low Grashof numbers, Gr = 8 × 104

− 5 × 105, the current at the bottom
assumes an almost circular frontline and spreads uniformly. In these cases Re< 800,
there is no evidence of lobe and cleft instabilities at the frontline and the flow is
essentially laminar. The presence of periodic structures in the flow can be investigated
by using Hövmoller diagrams (HDs) in the density field. In the present analysis of
the numerical simulations, HDs are created using the time-varying density field
ρ(x, y0, zc, t) on the centreline of the tank at the point zc= 0.12, y= y0. The diagram
is relatively sensitive to the choice of the vertical level zc, in the sense that, mostly
due to the continuously decreasing depth of the current, if zc is too low it would
show discontinuous bands, while if zc is too high, it would make the bands appear
to merge early. In the HDs, the density field extracted at the centreline is mapped in
the space (x, t). When present, quasi-periodic perturbations in the density field appear
in a diagram with series of alternating bands having different colours. As shown in
figure 6, at very low Gr there is no indication of perturbations in the density field,
except for the advancement in time of the external frontline.
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FIGURE 6. Hövmoller diagram, case S1, simulation Gr= 8.1× 104.
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FIGURE 7. Density isosurface at ρ = 3 %, case S3, t= 8.7.

At Gr = 2 × 106, after t ∼ 8.7 from the ‘removal of the gate’, the external front
structure assumes toroidal features in the horizontal plane, stretching out from the
body of the current (figure 7).

A Froude number FrH = ūr/
√

g′h (Shin, Dalziel & Linden 2004) is introduced in
terms of vertically averaged, radial component of velocity ūr and the local average
buoyancy velocity Ul =

√
g′h, where g′h= g

∫
(ρ(x, y, z)− ρ2/ρ1) dz. Defined in this

way, FrH is the ratio between the vertically averaged radial outward velocity and the
group velocity of the most rapid waves propagating inward at the interface, measured
relative to the mean outward flow. When FrH > 1 disturbances cannot propagate
radially backward, and, as in the planar case, a circular jump in the depth of the
fluid is expected between the annular region at high velocity and another region with
lower velocity (Thorpe & Kavcic 2008; Bhattacharjee & Ray 2011). The kinematics
of the flow on the mid-plane y = y0 is shown in figure 8 using the modulus of the
fluid velocity vector scaled by Ul, i.e. |u|/

√
g′h. The analysis of the figure reveals

an ascending band followed by an abruptly descending one, similar to the profile of
a breaking wave. This appears associated with the interaction between the external
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FIGURE 8. (a) Non-dimensional velocity |u|/Ul on the mid-plane y= y0; the thick black
line indicates the depth hl= g′h/g′ and the dashed line marks ht, i.e. the interface ρ= 3 %,
(b) Froude number FrH versus x. Case S3, t= 8.7.

front and a successively generated internal shock that follow closely. The introduction
of the local buoyancy scale hl provides a method for evaluating the depth of the
current that does not depend on an arbitrary fixed threshold in the density field (Shin
et al. 2004), hl= g′h/g′. A second height ht is calculated as the height of the ρ= 3 %
isopycnal. While hl remains well under the depth at which mixing is effective, ht is
largely affected by mixing with the ambient fluid, so where the two curves diverge
in figure 8, entrainment must have occurred. In the initial development of the current,
the flow has a FrH > 1 in a disk around the axis, it shows a transition to FrH < 1
around x= 10.5 and shows again FrH > 1 in a small ring at the head of the current.
This behaviour is consistent with the presence of the circular hydraulic jumps in the
core of the current shown by the line hl. The depth indicated by the line ht is instead
mostly related to the action of the Kelvin–Helmholtz billows.

At successive times, the value of |u|/Us behind the front decreases in intensity with
R, and its distribution becomes more uniform along the body of the current outside
the spreading area at x< 10.5 (figure 9). Correspondingly, the FrH number is always
sub-critical beyond the initial spreading area.

The analysis of the HD in figure 10 shows the evolution in time of the frontline,
which is closely followed by a secondary, isolated, perturbation in the density field.
Comparing this behaviour with the one in figure 6 it is clear that it represents the
trace of an increased complexity in the structure of the head of the current, which is
now composed of a ring of flow limited by two close frontal structures, one internal
and the other at the external edge. This is consistent with the information provided
by the Froude number as a function of x shown in figure 8(b).

The formation of isolated hydraulic shocks that follow the external front, bounding
the head of the gravity current from the inside, is the distinctive feature of all the
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FIGURE 9. (a) Non-dimensional velocity |u|/Ul on the mid-plane y= y0; the thick black
line indicates the depth hl= g′h/g′ and the dashed line marks ht, i.e. the interface ρ= 3 %,
(b) Froude number FrH versus x. Case S3, t= 16.
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FIGURE 10. Hövmoller diagram, case S3, simulation Gr= 2.0× 106.

cases investigated up to Gr=8×106. It is also completely consistent with the solution
of the theoretical model proposed by Garvine (1984). At even larger values of Gr,
starting from case S6 (Gr = 2 × 108), the development of the current is dominated
by the continuous production of alternating bands of fluid at different densities in the
horizontal plane, i.e. ‘rings’. These features are described in the next subsection.

3.1.2. High Grashof number
At sufficiently high-inflow rates, alternating bands (or rings) can be observed

in every horizontal section of the density and velocity fields. Rings appear as
axisymmetric, periodic structures (see, for example, figures 11, 12) which persist
during the entire simulation and extend mostly over a limited domain of the tank.
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FIGURE 11. Density field on the horizontal plane at z= 0.1, t= 8.7, case S11.

FIGURE 12. Top view image of the experiment S12, t= 14.5.

They form at some distance from the symmetry axis and move inside the current
as internal shocks. The rings maintain some sort of individuality for a variable (but
relatively short) distance, after which they merge with each other and generally decay
beyond a critical distance.

In the case of very high Grashof number, case S11, at t= 8.7, the position of the
front is approximately at xf = 11.4. Three internal ring structures are clearly visible
in the ρ field on the horizontal plane at z= 0.1 (shown in figure 11). The three ring
structures visible in the horizontal plane section of the density field are related to the
axisymmetric bulges in the 3-D view of the surface ρ = 3 % shown in figure 13. In
this range of Gr the perturbation in the azimuthal direction of the axial symmetry of
the vortex rings as they propagate outward is evident, together with the production of
small-scale vortical structures radially advected. The map of |u|/Us on the mid-plane
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FIGURE 13. Case S11: 3 % ρ∗ surface, t= 8.7.
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FIGURE 14. (a) Non-dimensional velocity |u|/Ul on the mid-plane y= y0; the thick black
line indicates the depth hl =

√
g′h/g′0 and the dashed line marks the interface ρ = 3 %,

(b) Froude number FrH versus x; case S11, t= 8.7.

(x, y= y0, z) shown in figure 14 highlights a series of three acceleration phases from
high velocity, FrH > 1→ low velocity, FrH < 1→ high velocity, FrH > 1. The rapid
variation in FrH (decreases from close to FrH = 1.6 at x= 9.6 to a value of FrH ∼ 0.5
at x= 10.0 in the considered case) is associated with an increase in the depth hl of
the current, marking the presence of a circular hydraulic jump. Similar behaviour is
visible at x = 10.4 and x = 11.0. Corresponding to the high radial velocity regions
before the jumps, at heights greater than the depth hl, Kelvin–Helmholtz billows are
responsible for the entrainment under the bulges visible in the profile of the ht line in
figure 14 and in the density isosurface shown in figure 11. Figure 15 shows (in shades
of grey) the density contour at level ψ = 3 % and (in colour) the velocity vectors
on the meridian (x, y) plane at y0, t = 12. The combined analysis of velocity field
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FIGURE 15. Case S11: velocity field on the mid-plane (x, y), Gr= 8.1× 108, ε = 0.03,
t= 12.

and density contour indicates the presence of rings associated with rapid variations
in the radial fluid velocity field along x. The velocities are higher on the ascending
side of the rings, similar to what is observed at the compressive part of the flow in
the development of a shock wave in a volume of gas (Whitham 1999). Here, the
velocity of the fluid is considerably higher than the phase velocity of the ring. Kelvin–
Helmholtz billows, situated between the core of the current and the ambient fluid,
hang above the position of the local maxima of velocity. There are two clearly defined
rings in the region 8.9< xf < 10.3 and a weaker third one that is close to xf = 11.4.
Beyond this position, the velocity is mostly radial and uniform up to the external front.
As observed for t= 8.7, the bulges visible in the ψ = 3 % surface correspond to zones
of high radial velocity, and again, Kelvin–Helmholtz billows at the interface between
current and ambient fluid are likely producing mixing.

Just before the end of simulation S11, at t= 16, the planform occupies almost the
entire surface of the tank (figure 16). As expected, the depth of the current hl is much
shallower than in the initial phase, there is only one circular hydraulic jump close to
the symmetry axis and most of the flow has FrH < 1. Most of the Kelvin–Helmholtz
billows have faded out, with the exception of the very active instability close to the
jump, and the current propagates as a uniformly mixed flow of depth hl.

The HD map in figure 17 clearly shows a succession of rings in the region 9< x<
12. A total of 11 rings are clearly identifiable.

The recorded image frames of the experiment (such as the one shown in figure 12)
can also be used to produce HD maps. Note that the experimental data are collected
using a camera recording the top of the surface, whereas the salinity field used in
the simulations is extracted at a carefully chosen level to obtain the best possible
resolution of the structures. Moreover, note that the visibility of the rings in the
experimental conditions depends on several external factors, such as the concentration
of the dye, the depth of the current and the presence of disturbances on the free
surface. In the experiment, rings are clearly detectable as alternating bands of different
shades of grey due to the mixing associated with the hydraulic jumps. It is possible to
verify from the HD (not shown) the presence of several rings. It appears that the rings
have some periodicity; however, it is unclear whether the width of the rings is variable
or whether some of them are too close to each other to be distinguished. The first
small ring starts at approximately t = 3, and the rings are generated throughout the
entire duration of the experiment in a variable area near the origin. Due to the
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FIGURE 16. (a) Non-dimensional velocity |u|/Ul on the mid-plane y= y0; the thick black
line indicates the depth hl=

√
g′h/g′0 and the dashed line marks the interface ρ= 3 %. (b)

Froude number FrH versus x; case S11, t= 16.
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FIGURE 17. Hövmoller diagram case S11, simulation Gr= 8.1× 108.

presence of many light reflections from the dark surface of the current, it is unclear
whether, after t= 9, the rings remain confined in a circle or whether they are able to
propagate forward towards the external front in the final part of the spreading.

Most of the features illustrated in the simulated case S11 are also present in
cases S6–S10. They differ in that the bulges visible in the ψ = 3 % surface are
less numerous but increasing in size at lower Gr. As an example, the number of
rings observed for case S7 (ε = 0.010 ) is close to 1/3 of the rings present in S11
(ε = 0.030) in the same time period.

Looking carefully at all the Hövmoller diagrams it seems that the position of the
first ring tends to be the closest to the axis of symmetry, the position of the successive
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FIGURE 18. Square of distance of the first ring from the symmetry axis (r1r) with respect
to the velocity times the travel time (t1r) of the disturbance carried by the fastest gravity
wave.

rings are gradually shifted outward. The time of formation of the first ring depends
on ε and is subsequent to the time t0 of formation of the axisymmetric current. The
radial position of the first ring is clearly related to the time taken by the fastest
gravity wave to travel the distance r1r, from the axis of symmetry to the position
of the hydraulic jump. As shown in figure 18, in all cases the position of the jump
approximately corresponds to the time it takes for a gravity wave with velocity Ub=

Us/4 to cover r1r.
Since Ub is evaluated with respect to the velocity of the fluid, the velocity with

respect to an observer at rest is (1+Fr2
H)U

2
b . The value of Fr2

H is obtained from FrH(x)
near the jump position at a time close to the jump formation and does not depend
on Us since it is evaluated as in Shin et al. (2004). The time interval t1r is the time
of formation of the first shock determined from the HD with respect to the starting
time of the perturbation, visible from the FrH(x) after the propagation of the external
front. Ub is slower than Us because U2

s is defined in terms of g′H, which is clearly an
overestimate of the maximum velocity of the gravity waves, since their depth is always
less than H/2. In fact, the effective velocity Ub =

√
g′H/4=

√
g′he can be related to

a current having effective depth he=H/4, which is consistent with the value of hl of
the current at the time and position of the jump. If the time of formation of the first
ring is scaled using T∗s =H/Ub, then the non-dimensional relation R2

r = (1+ Fr2)× t2
r

holds, as expected.
The HD of S13 (extended domain case) reveals some more features regarding the

propagation of the rings, which appear only at large times (figure 19). The most
evident aspect is that only few rings (approximately 1 out of 10) are able to exit
from the confining area, and only two of them actually reach the external front. This
spatial pattern can also be clearly identified by examining the horizontal section of
the density field ρ(x, y, zc) at the final stage of spreading for t= 65 (figure 20). The
first ring reaching the front is generated at approximately t= 17 and meets the front
at approximately t= 41, indicating that the average phase speed of the ring is close to
twice the average velocity of the frontline. The other feature is that rings are produced
continuously in the entire 50 s of simulation, i.e. up to t= 60.
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FIGURE 19. Hövmoller diagram case S13, simulation Gr= 5.4× 108.
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FIGURE 20. Case S13: ρ(x, y, zc), t= 64.

The frequency of ring generation, defined as the number of rings generated
in the total time of simulation divided by the total time, χ , is related to the
inflow Q. The linear least squares fit indicates a possible functional relationship
χ = βQγ with β = eα m−3. The regression coefficients are α = (6.577 ± 1.024) and
γ = (0.9635± 0.139), and the squared Pearson correlation coefficient is R2

= 0.913.
Unfortunately, the error associated with the determination of the exponent γ is
large, and the confidence interval at the 95 % level of probability is in the range
[0.68–1.24]. The non-dimensional frequency of ring generation η = χTs = χH/Us,
shown in figure 21, is nearly constant over the range of Gr considered in the study.
The average value is

η̄= 0.48± 0.06, (3.2)
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FIGURE 21. Dimensionless frequency of ring generation η versus Gr; dots represent
S6–S11; cross is S13; dashed line indicates η̄.

with the error being evaluated as the confidence interval around η̄ at the 95 % level
of probability.

The estimate of η for case S13 (indicated by a cross in figure 21) is evaluated on
a time period that is five times longer than the duration of the other cases. Some
similarity between the results obtained by Maxworthy (1980) for the frequency of
generation of ring-like solitary waves produced by collapsing volumes of fluids,
propagating in a stratified ambient fluid, and the present results (e.g. see plates 7
and 8 in the original paper) is devisable. In both cases, the number of ring-shaped
structures depends on the Grashof number in the same way, but in the former,
the solitary waves move in the stratified fluid externally to the generating gravity
current, whereas in the latter, the rings are embedded in the current propagating in a
homogeneous environment. Moreover, the rings discussed here have the structure of
hydrodynamic shocks and are related to a three-dimensional, intrinsically hyperbolic
nonlinear problem, whereas the solitary waves described in Maxworthy (1980) are
nonlinear dispersive waves moving along the interface between two shallow layers of
a stratified fluid.

3.2. Spreading regimes for axisymmetric, constant-volume flow gravity currents
3.2.1. Slumping asymptotic solutions

The existence of an additional regime, the ‘slumping phase’, was proposed by
Huppert & Simpson (1980). The slumping, which dominates the short times prior
to the onset of the inertial–buoyancy equilibrium, has been investigated by several
authors, e.g. Ungarish & Zemach (2005), in the limited context of planar and
fixed-volume axisymmetric gravity currents. The presence of a slumping phase
in constant-flow-rate, axisymmetric gravity currents has not yet been given proper
attention, probably due to the uncertainties already found in the theoretical assessment
of the inertial–buoyancy regime. Its presence, however, might justify the inconsistency
between the ‘spreading regime’ introduced by Garvine (1984) and the solution found
by Chen (1980) as part of the asymptotic solution of the initial value problem. The
geometry of the problem here considered is slightly different from that used in the
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formulation of the slumping theory. In fact, the box model of Huppert & Simpson
(1980) is based on two conditions: the first is that in the slumping regime, the current
conserves the volume, i.e. the volume of the current at any time is the same as the
cylindrical initial volume of the denser fluid; the second is that the Froude number
at the front of the current can be expressed as a monotonic function of the fractional
height φ = h/H of the depth of the current h divided by the total depth of the fluid
H. The functional relationship is based on the experiments at a constant flow rate of
Simpson & Britter (1979).

The extension of the original slumping concept to the constant-flow-rate problem
can be simply obtained by replacing the condition of fixed volume with a condition
in which the volume increases in time at a fixed rate. The result is not as simple as
the constant-velocity law found for planar and axisymmetric constant-volume gravity
currents. In the present case, it is found that

r4/3
− r4/3

0 ∝Cslt7/6, (3.3)

where

Csl =

(
g′3QH2

π

)1/6

. (3.4)

The time after which the current exits the slumping regime can be evaluated as

ti =
aQ

πg′H2
, (3.5)

where a= (7/4 φ−2/3
0 )2 is a numerical coefficient.

The details of the calculations are presented in appendix A.

3.2.2. Statistical analysis
To investigate the spreading regimes obtained in our simulation and to check

whether they fit the theoretical expressions, the radial spreading rates obtained in the
simulations are evaluated and compared with the expected ones. The position of the
external front is obtained from the non-dimensional density field ρ(x, y, zb, t) provided
by the numerical simulations with the non-dimensional frequency of the numerical
output being in the range [3.5–6.0]. The highest non-dimensional frequency is clearly
in S7, which has the lowest ε. The filtering procedure applied to remove the effects
of lobes and clefts provides a decomposition of the frontline kinematics into a radial
spreading R(t) about a centre of symmetry (xc(t), y0) that translates in time along x.
The statistical analysis is successively applied on the series of radial positions about
the symmetry axis, R(t).

The time series R(t) is subdivided into three different time intervals separated by the
transition times corresponding to the onset of the inertial regime and the beginning of
the viscous phase. The sub-series are then compared with the asymptotic expressions
expected for the slumping, inertial and viscous phases. In the case of the onset of
the viscous–buoyancy regime, a simple similarity scaling provides a reasonable first
guess of the time beyond which viscosity–buoyancy equilibrium holds, tv = (Q/νg′)1/2
(Britter 1979). For the onset of the inertial–buoyancy regime, the time estimate (3.5)
is a starting reference to find the beginning of the inertial–buoyancy regime. As
discussed in § 2.2, data corresponding to times t/t0 < 1, i.e. when the inflow was
not yet stabilised, are discarded from the analysis. The actual transition times are
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t′s t′i t′v R′s R′i
S1 4.9 5.8 8.7 1.21 1.36
S2 4.6 5.5 11.9 1.21 1.43
S3 4.3 5.5 16.2 1.21 1.50
S4 4.6 5.5 18.8 1.28 1.43
S5 3.2 4.1 22.9 0.93 1.21
S6 2.9 4.9 20.9 1.07 1.43
S7 3.3 3.5 13.1 0.86 1.14
S8 3.1 4.5 14.8 0.93 1.36
S9 3.1 5.4 17.3 0.93 1.57
S10 2.9 5.8 20.4 1.07 1.71
S11 2.9 5.5 19.4 1.00 1.64
S12 3.3 5.4 16.4 1.11 1.64
S13 3.1 5.2 57.3 0.93 1.57

TABLE 3. ‘Best’ transition times and corresponding front positions estimated from the
statistical evaluation of the time series.

determined from the initial guesses by determining the best fit interval for each
regime. The estimated times of transition t0, ti and tv are listed in table 2 together
with the total duration of each test case. It can easily be verified that only the cases
at lower Grashof numbers are expected to enter the viscous phase. In high Gr cases,
i.e. S6–S11, the duration of the simulation is not expected to last long enough to
approach the transition to the viscous–buoyancy regime. This is the reason why
case S13 has been set up on an extended domain. To summarise, the expressions
considered in the statistical fitting procedure are as follows (see § 3.2.1 and Britter
1979):

R4/3
1 = af + bf t7/6, (3.6)

R2 = cf + df t3/4, (3.7)

R3 = ef + gf
√

t, (3.8)

for the slumping, inertial–buoyancy and viscous–buoyancy regimes, respectively. Even
though the transition times ti and tv represent the ‘best’ subdivision for the series to
follow the theoretical laws, the starting point of each regime is generally located at
some small distance from the radius which corresponds to the transition time. The
introduction of the coefficients af , cf and ef allows all points to be retained in the
analysis, thereby avoiding the need to exclude transition periods.

For each time interval, the series Ri(t), i= 1, 2, 3, is processed through a standard
least squares regression analysis and fitted to the corresponding analytical expression.
The first interval considered is the time period [t′s, t′i] in which the R1(t) is expressed
by (3.6), i.e. it is in the slumping regime. The second interval [t′i, t′v] is where the
front position R2(t) follows (3.7), i.e. where the current is in the buoyancy–inertial
equilibrium. The transition times t′s, t

′

i, t
′

v in table 3 may be compared with the expected
values ti, tv and the time of stabilisation of the volume flow at the gate t0 in table 2.
t′s is the time used as a lower bound of the slumping phase.

The comparison of R′i in table 3 with the non-dimensional expression for the
position of the first hydraulic jump rr = (r1r/H)2 from figure 18 shows that in all
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FIGURE 22. Non-dimensional radial front position versus non-dimensional time. The
vertical dashed line at t/tv = 1 represents the transition to the viscous phase. Cases S1–S5:
low Grashof number.

cases S6–S11, the position of the first ring is just after R′i, i.e. at the beginning of
the inertial regime.

The time evolution of the radial front position for the entire duration of the
simulations is investigated herein. The cases at low Grashof numbers (cases S1–S5)
are plotted in figure 22, the adopted scaling highlights the transition between the
inertial phase and the viscous one. In these cases, it is clearly observed that the
gravity currents do enter the buoyancy–viscous equilibrium regime, although the
duration of the buoyancy–inertial equilibrium regime increases at the expense of the
viscous phase with increasing Gr. Within this range of Gr values, [104–106

], the
slumping phase hardly appears (as discussed later).

The time evolution of the currents at medium–large Gr (simulations S6–S11 and
experimental data S12) is presented in figure 23, where time is made non-dimensional
with tv. Note that in these cases, the currents do not develop enough to enter the
viscous phase. This is the reason why if the scale ti were used, all the radial
front time evolutions would collapse over a single line. All lines are parallel in the
inertial–buoyancy domain. The series S11 and S12 are very close, indicating a good
correspondence between experiment and numerical simulation. An inspection reveals
that the two series show signs of a small-amplitude, large-scale oscillation due to the
interactions between rings and the external front.

Note that tv increases with Gr; consequently, the part of the inertial phase described
by the simulation progressively decreases due to the finite dimension of the domain
LD. For high Gr cases, S13 is the only one for which the numerical simulation
completely describes the entire inertial phase.
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FIGURE 23. Non-dimensional radial front position versus non-dimensional time cases
S6–S11: high Grashof number; red dots are experimental data from S12.

3.2.3. Slumping phase
The squared Pearson correlation coefficient R2 is approximately 1.00 for all cases

considered, indicating that the regression analysis of each numerical simulation (3.6)
closely follows the proposed asymptotic expression for the slumping regime (3.3). In
figure 24, the presence of a slumping phase is visible to the left of the vertical dashed
line t/ti= 1. All points collapse towards the horizontal line at R4/3/(af + bf t7/6)= 1 in
the slumping region, where af is found to be very small in all cases.

To relate bf to the parameter Csl in (3.3), the ratio between the value of the
statistical estimate bf and the coefficient of the asymptotic law Csl is shown in
figure 25. The average of the points, i.e. µ̄= 〈bf /Csl〉, is indicated as a dashed line.
A single star indicates the value of b̄fexp, where bf is calculated using the data from
experiment S12, and it is normalised with the scale of S11, which is the closest
numerical simulation. The box model (3.3) is found to be in reasonable agreement
with (3.6), where b̄f = µ̄Csl, and µ̄= (0.37± 0.05). The error is taken as the statistical
error at the 95 % confidence level. The expression of the front position with time in
the slumping regime would then be expressed as

r(t)4/3 = µ̄Csl t7/6. (3.9)

Cases S1 and S2 have been excluded due to the very short duration of the phase.
Comparing the duration of the phase obtained from figure 24 with the differences
ti − t0 (see table 2), it is apparent that in the three cases (S7, S8, and S9/S13)
where the duration is longer, the slumping phase starts before the flow rate at the
gate Q stabilises. In some other cases (S4, S5, S6 and S11), the slumping starts at
approximately t0. The remaining cases, S1, S2 and S3, are the cases with the shortest
slumping duration.

3.2.4. Garvine model
The radial expansion in time given by the slumping model, r∝ t7/8, is similar to the

‘spreading’ law r ∝ t0.92 proposed analytically by Garvine (1984). The present results
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FIGURE 24. Domain of existence of the slumping regime (3.6), non-dimensional radial
front position versus non-dimensional time. Vertical dashed line indicates the expected
transition from the slumping phase to the inertial phase.

104 106 107 108105 109

0.1

0.2

0.3

0.4

0

0.6

0.5

Gr

Fit numerical
Fit experiment

FIGURE 25. Non-dimensional coefficient bf normalised by Csl (3.6) versus Gr, cases
S1–S11. Dashed line represents µ̄= 〈bf /Csl〉.

help to clarify the controversial theoretical results found for the initial spread of the
gravity current by Chen (1980) and Garvine (1984): the former, proceeding forward
in time in the solution of the initial value problem, found a ‘spreading’ phase before
a hydraulic jump region (‘a trailing front’), whereas the latter, proceeding backward
in solving the similarity differential equation, hit the discontinuity while still in the
inertial range. In other words, they may have fallen in different ‘initial’ asymptotic
regimes.

3.2.5. Inertial–buoyancy equilibrium phase
The presence of an inertial–buoyancy equilibrium phase following (3.7) and

corresponding to the similarity expression (1.6) is observed in all cases, with a
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FIGURE 26. Domain of existence of the inertial–buoyancy regime (3.7): non-dimensional
radial front position versus non-dimensional time. Dashed line indicates R/(cf + df t3/4)=
κs; dotted lines indicate the interval at the 95 % confidence level. Vertical dash-dot line
indicates the theoretical transition to the inertial regime.

very high value of the Pearson correlation coefficient (R2 exceeding 0.997) found
in all regressions used for estimating df . In figure 26, the inertial regime appears as
a region with a constant value of the non-dimensional front position R/(cf + df t3/4)
versus non-dimensional time t/ti. Again, since cf � df in all cases, the value of the
ordinate corresponding to the dashed horizontal line indicates the coefficient κs in

r= κsdf t3/4. (3.10)

The estimated value is
κs = (2.4± 0.1), (3.11)

where the error indicates the band of values between which all points are bounded in
the inertial regime area to the right of t/ti = 1.

The inertial parameter df can be related to Cin in (3.7), considering the non-
dimensional parameter δ = df /Cin where

Cin = (g′Q)1/4. (3.12)

The distribution of the parameter δ = df /Cin is shown in figure 27. The average δ̄ =
〈df /Cin〉 is shown as a dashed line. Cases S1 and S2 are excluded from the analysis
due to the very short duration of their inertial phase (see table 2).

The average non-dimensional parameter is estimated as δ̄= (0.29±0.04) at the 95 %
confidence level. Expressing df = δ̄Cin, equation (3.7) is obtained as

r(t)= κ(Cin)
1/4t3/4, (3.13)
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FIGURE 27. Non-dimensional coefficient δ = df /Cin in (3.7) versus Gr, cases S3–S12.
Dashed line represents δ̄ = 〈df /Cin〉.

where κ = κsδ̄ = (0.7 ± 0.1). Despite the size of the error, the estimate is in good
agreement with the value provided in the literature (Huppert 1982; Britter 1979) for
the asymptotic spreading, i.e.

κ = (0.84± 0.06). (3.14)

A similar estimate for the parameter κ can be obtained by directly using the scaling
factor (3.12) in the plot of r/(Cint3/4) versus t/ti and proceeding as in figure 26. In
this case, the interval of values of κ can be read directly from figure 28. The most
obvious difference with respect to figure 26 is that a clear dependence of κ from Gr
is now observed. At least three different levels of κ are detectable, i.e. κ1 = 0.6 for
case S1, κ2 = 0.65 for cases S2–S5 and κ3 = 0.7 for cases S6–S13. Since κ cannot
depend on the viscosity, the splitting in a band of values κ1, κ2, κ3 must have been
introduced by the use of the flow rate Q in the non-dimensionalisation procedure. In
fact, the assumption implicitly made here and above is that the entire inflow Q is the
source of the axisymmetric current at the axis position. However, this assumption is
not consistent with the kinematics of the flow described in § 3.1, where it is shown
that the inflow Q is split in a radial flow with the vertical axis (xc(t), z0) moving
on the horizontal plane and a longitudinal flow that slowly translates the entire radial
current along the x axis.

Assuming that the estimate (3.14) holds for axisymmetric constant-flow-rate gravity
currents, it is possible to assess the flow rate at the moving symmetry axis indirectly
from the differences between κi, i= 1, 2, 3, and k in the following way. The simplest
assumption reflecting the kinematics of the problem is then to take Q= q+ q′, where
q is the radial part of the flow and q′ is the translating part. In this case,

r
([q+ q′]g′)1/4t3/4

=
r

(qg′)1/4t3/4[1+ ξ ]1/4
, (3.15)

where ξ = q′/q. If the estimate (3.14) is correct, then r(qg′)−1/4t−3/4
= κ = 0.84, and

r
(qg′)1/4t3/4[1+ ξ ]1/4

=
κ

[1+ ξ ]1/4
= κi (3.16)
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FIGURE 28. Inertial–buoyancy regime (1.6): non-dimensional radial front position versus
non-dimensional time. Dashed red line indicates R/(Cint3/4) = κ1; dotted line indicates
R/(Cint3/4)= κ2. Dot-dashed line indicates R/(Cint3/4)= κ3. Vertical dash-dot line indicates
the theoretical transition to the inertial regime; Q is assumed as the flow rate in the axial
position.

for i= 1, 2, 3. This result implies that q′/q∼ 2.8 for very low Grashof numbers (i.e.
S1 and κ1) and q′/q∼ 1.8 for intermediate Gr (i.e. S2–S4 and κ2). In both cases the
translating flow would be larger than the radial inflow. Finally, for high Gr (S6–S12
and κ3), q′/q∼ 1.1, and the radial inflow would almost be the same as the translating
flow.

3.2.6. Viscous–buoyancy equilibrium phase
As predicted from the transition times tv in table 2, a viscous–buoyancy phase

corresponding to the asymptotic law (1.7) is found only for the low Grashof number
cases, i.e. from S1 to S4. In the four cases studied, the value of the Pearson
correlation coefficient is above R2

= 0.998 for the least squares fit to (3.8). In the
other cases, the external front of the gravity current hits the lateral boundary before
or just after entering the viscous–buoyancy regime. The buoyancy–viscous regime
is visible in figure 29 after the transition time t/ tv = 1, where, as indicated by
the horizontal dotted line, R3/(ef + gf

√
t) = 1. Because ef is small, to relate the

expression found (3.8) to the asymptotic law (1.7), it is necessary to express the
empirical coefficient gf in terms of Cvis, where

Cvis =

(
g′Q3

ν

)1/8

. (3.17)

The relation must hold in all cases considered. It is found by considering the
distribution of non-dimensional ratios λ= gf /Cvis, as shown in figure 30.
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FIGURE 29. Temporal domain of existence of the viscous–buoyancy regime (3.8):
non-dimensional radial front position versus non-dimensional time. Dotted horizontal line
indicates R3/(ef + gf

√
t)= 1.
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FIGURE 30. Distribution of the non-dimensional coefficient λ in the fit (3.8) versus Gr,
cases S1–S4. Dotted line represents λ̄= 〈gf /Cvis〉.

The average ratio λ̄= 〈gf /Cvis〉 = (0.75± 0.07) is also shown as a dashed line. The
error is taken as the 95 % confidence interval based on the standard deviation of the
individual ratios from the mean. The expression (1.7) then becomes

r(t)= λ̄Cvis
√

t. (3.18)

Note that even in the longest time series available, S1, the current remains in the
viscous–buoyancy regime for less than the corresponding tf − tv, which is a short time
to correctly represent the asymptotic viscous regime. In comparison, the experiments
of Didden & Maxworthy (1982), which were conducted in the same range of ε but
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with flow rates at least six times smaller than the volume flow at the gate found in the
present study, lasted for more than twenty minutes. Moreover, note that in the final
part of the simulation, the flow is close to the wall; thus, the conditions are somewhat
different from the case in which the current spreads without the presence of walls.
All factors account for the small difference with respect to the value referenced in
the literature, which is (0.60± 0.02) (see Britter 1979; Didden & Maxworthy 1982;
Huppert 1982).

4. Conclusions
Lock-exchange, constant-volume three-dimensional gravity currents have been

investigated using wall-resolving large eddy simulation for Grashof numbers ranging
from Gr = 104 to almost Gr = 109. The flow configuration is that described in La
Rocca et al. (2008, 2012), Lombardi et al. (2018) for the case d/2y0 = 0.1.

In all cases considered, upon removal of the gate, an initial transient develops in
which the flow rate increases up to an asymptotic value. The dimension of the lock
volume is large enough to maintain a steady flow rate Q during the evolution of the
gravity current.

For the geometrical configuration herein investigated, the flow becomes axially
symmetric soon after the formation of the current, while the inflow rate at the gate
remains reasonably constant throughout all the simulations. A method has been
developed to detect the geometrical features of the flow. The method allowed us to
show that the frontline shape of the gravity current maintains a circular form, with
the centre of the circle translating along the x-direction and the radius increasing
monotonically in time. The axisymmetric current behaves as being driven by a virtual
source at (x0(t), y0) slowly moving in time along the mid-section of the tank.

Consistently with Grundy & Rottman (1986), Bonnecaze et al. (1995), the flow is
characterised by the presence of hydraulic shocks. The analysis of velocity and density
fields indicates the presence of rings as periodic perturbations of the dense flow at
sufficiently high Gr, i.e. for Gr> 2.7× 108. Isolated shocks are detectable in the range
5 × 105 6 Gr 6 2 × 108. In the latter case the structure of the current, characterised
by the head of the current being constrained between a forward and a rear shocks is
consistent with the model of Garvine (1984).

Shocks are associated with internal circular jumps (Thorpe & Kavcic 2008) which
are not stationary. The high-velocity structures, present on the supercritical side of
the jump are associated with Kelvin–Helmholtz billows. The combined action of
hydraulic jumps in the internal core of the current and the mixing action of the
Kelvin–Helmholtz instabilities at the top of the current is responsible for the growth
of the structures visible in the density fields.

When rings are continuously formed, the number of rings generated in a given
time period is a monotonic function of the flow rate, consequently the dimensionless
frequency of ring generation η is nearly independent of Gr. The estimated value is
η̄= 0.48± 0.06. In the initial stage of development of the flow the rings are generated
in the flow region where the frontline was in the inertial regime, and move through the
entire body of the current. In some cases they are able to interact with the external
front. As the radial spreading of the current exceeds a critical radial distance, most
of the rings, which continue to be generated, remain confined inside a circular sector,
while the frontal structure continues to advance regularly. Only a few shocks are able
to escape and move through the current up to the external frontline.

Turbulence effects become evident with the increase of Gr and are associated
with instabilities in the radial and azimuthal directions. They appear clearly in the
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perturbation of the axial symmetry of the rings. At low Gr the radially expanding
flow is almost laminar, there are no hydraulic jumps except in the close proximity of
the gate. Lobe and cleft at the frontline are unapparent, except in the close proximity
of the bottom. At intermediate Gr there are isolated shocks, and the current at the
external front shows the presence of azimuthal disturbances in the velocity field related
to lobe and cleft instabilities. At high Gr the effects of two kinds of instabilities in
the azimuthal direction are clearly visible: one is the lobe and cleft instability at
the front of the current, the other one is the progressive deformation of the axial
symmetry of the vortex rings. The Froude number analysis shows that in cases of low
Gr the flow is subcritical at all times in all the tank, except for a small ring near the
gate. The experiments of Britter (1979) also suggest that if the rate of volume flow
is low the axially symmetric flows do not exhibit shocks during the entire evolution
of the current. The present results indicate that, indeed, the non-dimensional volume
flow Q may be the critical parameter. In fact, in the range of Gr = [2–8] × 108, i.e.
cases S6–S11, it is always Q/UsH2

∼ 0.18, but when Gr= [1–5] × 105, i.e. for cases
S1 and S2, then Q/UsH2 is between 0.16 and 0.17.

Considering the purely axially symmetric part of the gravity current, three distinct
spreading regimes are found: slumping, inertial and viscous. These regimes are quite
similar in nature to those studied in the case of constant-volume axisymmetric gravity
current but follow the characteristic scaling laws for constant-flow-rate sources.

An analytical expression for the slumping, which is derived from an extension
of the box model of Huppert & Simpson (1980) to the case of a constant-inflow
axisymmetric current, is found to fit the initial part of the spreading in all cases. The
slumping phase starts just before or right at the time t0 for which the flow rate at
the gate Q becomes steady. The duration of the slumping depends on the buoyancy
acceleration at the gate, and the non-dimensional duration is a linear function of
the Froude number at the gate. However, this phase is very short at small Grashof
numbers. The presence of the slumping phase reconciles the spreading model of
Garvine (1984) with the expected asymptotic law obtained from the inertial–buoyancy
regime equation and the results of Chen (1980).

The presence of an inertial regime following the asymptotic law (1.6) is detected in
all cases. The expression found, r(t)= κ(Cin)

1/4t3/4, is consistent with the elementary
scaling laws of Chen (1980) and the results from the laboratory experiments of
Britter (1979). The confidence interval obtained here for the numerical coefficient
in the expression for the buoyancy–inertial dynamical equilibrium regime is slightly
larger than that obtained by Britter (1979) due to the use of the flow rate at the
gate, Q, in the parameter Cin rather than the true inflow source at the symmetry axis
(xc(t), z0).

The viscous–buoyancy regime, as predicted by Huppert (1982), is also detected
in the cases with lower Grashof numbers, with the front propagation expressed as
r(t) = λ̄Cvis

√
t. The agreement with the theory is satisfactory given that only a part

of the viscous–buoyancy regime could be simulated in the present domain.
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Appendix A. Frontal expansion in the slumping phase
In the original box model formulation of Huppert & Simpson (1980), which

accounts for both the slumping and the inertial–buoyancy regimes, the initial geometry
is a circular cylinder of dense fluid with height H and radius R0 separated from a
less dense ambient fluid by a removable wall. At the beginning of the simulation,
all the walls that bound the dense fluid are removed, and the current expands in
the radial direction. The analytical expression for the front position in time is based
on the assumption that the volume of the gravity current does not change in time
and that the velocity of the front in terms of the Froude number at the head of the
current Fr= Ṙ/

√
g′h depends only on the ratio φ = h/H, based on Britter (1979), as

Fr=
{ 1

2φ
−1/3, 0.075<φ < 1,

const.= 1.19, φ < 0.075.
(A 1)

The first case is observed when the current depth is still comparable with the
total depth of the fluid, and the second is valid when the current has a depth that is
considerably smaller than the total depth of the fluid (see also Marino, Thomas &
Linden 2005). It is relatively straightforward to derive a ‘slumping box model’ with
the constant-flow-rate assumption in place of the hypothesis of constant flow volume.
Indeed, assuming that the initial current is close to axisymmetric, the assumption
Qt=πr2h may be used to obtain a first guess of h to use in

Fr=
ṙ
√

g′h
= 1/2

(
H
h

)1/3

(A 2)

i.e.

ṙ=
1
2

(
(g′h)3

(
H
h

)2
)1/6

=
1
2

(
2g′3

qt
πr2

H2
)1/6

. (A 3)

Separating the variables r and t, the differential equation is easily solved by separating
variables, after which

r4/3
− r4/3

0 =
4
7

(
g′3qH2

π

)1/6

t7/6 (A 4)

or equivalently, (
r
r0

)4/3

= 1+
4
7

(
g′3qH2

πr0

)1/6 ( t
r0

)7/6

, (A 5)

when t� r0/(g′3qH2/πr0)
1/7

r(t)=
(

4
7

)3/4 (g′3qH2

π

)1/8

t7/8, (A 6)

which is incidentally not far from the expression found by Garvine (1984).
To evaluate the transition time ti when the Fr number becomes constant, when t→ ti,

φ→ φ0 = 0.075= h/H =Qti/πr2
s H, such that rs

2
= r0

2
+Qti/πφ0H and[

r0
2
+

Qti

πφ0H

]2/3

− r0
4/3
=

4
7

C1/6
sl t7/6 (A 7)
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i.e. (
Qti

πφ0r0
2H

)2/3 [
1+

πφ0r0
2H

Qti

]2/3

− r0
4/3
=

4
7

C1/6
sl t7/6

i . (A 8)

Since (2/3(πφ0H/Qti))
5/3
� r0

2/3

(
Qti

πφ0H

)2/3

=
4
7

C1/6
sl t7/6

i (A 9)

hence,

t1/2
i = 7/4

(
Q

πφ0H

)1/2
π

Qg′3H2
(A 10)

or,

ti =

(
7

4φ2/3
0

)2 Q
πg′H2

. (A 11)
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