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The purpose of this paper is to present a proof of the following theorem of Maclagan-
Wedderburn.*

Every finite skew-field] is a field.
The proof depends on group theory and on the properties of Galois fields. As an intro-

duction, §§1-4 are devoted to a systematic and self-contained account of the theory of
Galois fields.

§1. Determination of all Galois Fields.
Definition: A finite field, i.e., a field with only a finite number of elements, is called a

Galois field.
This name has been given to such fields because Galois was the first to publish f investi-

gations concerning finite fields, though the idea of using finite fields to describe the procedures
involved in the solution of higher congruences

/(*) = 0(p), :

where f(x) is a polynomial with integral coefficients and p is a prime number, was probably
familiar to Gauss before Galois had published his papers.

Let F be a Galois field with q elements. Since F has only a finite number of elements, its
characteristic is a prime number p, and its prime field is a field Fv isomorphic with the field
of residue classes of the rational integers modulo p.

The field F, considered as an extension ofFp, is a linear space over Fv. This linear space
is of finite dimensions, for it is spanned by the set of all q elements of F. Let the dimension
of this linear space be r; then there is a set of r linearly independent elements of F, ax, a2, . . . ,
ar, say, and every element of F is of the form

Since each coefficient £,i can be any one of the p elements of F'„, it follows that there are pr

elements in F :
q=pr.

The multiplicative group of the non-zero elements of F has order q -1. Hence, by
Fermat's theorem, each non-zero element of F satisfies the equation

. where 1 is the unity element of F and therefore of Fv. Hence each non-zero element of F
satisfies the equation

x"=x.
* A Theorem on Finite Algebras. American M. S. Transactions, 6, pp. 349-352, (1905).
t A skew-field or division ring is an algebraic system which satisfies all the postulates of a field except

possibly that which demands that multiplication shall be commutative ; i.e., it is a ring, not necessarily
commutative, whose non-zero elements form a multiplicative group. The theorem states that if the number
of elements is finite, the commutative property of multiplication is a consequence of the other postulates.

{ Liouville's Journal XI (1846), pp. 381-444.
D G.M.A.
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Since the zero element 0 of F also satisfies this equation, it follows that the q elements of F
are q distinct zeros of the polynomial ft - 1 and therefore that

tq-t = IJ{t-a).

Thus F is a splitting field of the polynomial tq -1. Since F contains no other elements than
the zeros of the polynomial, it is a minimal splitting field of F over Fp (the smallest field which
contains the coefficients of the polynomial). '

Conversely, let q=pr be any power of a prime number p. Let Fp be a prime field of p
elements and let F be a, minimal splitting field of the polynomial tQ -t over Fv. Let

il

Since ai
Q=ai, we have

tq-t = tq-t-ai
q + ai

Hence (t - at)
2 is not a factor of tq -1; i.e., the zeros of tq -1 are all distinct. They form a sub-

set of F which is closed under addition, since

(at + a,)ff = a* + a / = at + at,

and the set of whose non-zero elements is closed under multiplication, since

(aiajy=ai
qai

q = aiai.

Hence, by Euler's Theorem, this subset of elements of F forms a subfield of F. This subfield
of F contains FP and is a splitting field of tq -1; since F is a minimal splitting field of this
polynomial over Fp, it follows that the subfield is F itself, i.e., that F is the set ax, a2, ...,aQ

• of zeros of V -t.
The results established so far may be summarised in

THEOEEM 1. The number of elements in any Galois field is equal to a power pr of its charac-
teristic, the prime number p. For each power pr of any prime number p, there is a Galois field of
pr elements ; this Galois field is determined up to isomorphism as a minimal splitting field of the
polynomial tq -1, where q =pr, over the prime field Fv.

We denote the Galois field of pr elements by GF(pr). In this notation, Fv is GF(p).
We now prove

THEOEEM 2. The multiplicative group of a Galois field is cyclical.

This theorem follows immediately from the following purely group-theoretic theorem,
stating a characteristic property of finite cyclical groups.

Any finite group G in which, for all positive integral values of n, the equation

xn = \,

where 1 is the identity element of G, has at most n solutions, is cyclical.

Proof. Let G have order N. Then any element of G has an order d which is a factor of
N. For each factor d of N, let a{d) be the numbers of element of G of order d ; then

N= Z x(d).

Similarly, if j8(d) is the number of elements of order d of the cyclical group G', say, of order N,
then

N= S P(d).
ldN
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We have to show that a(iV)>0. Since G' is generated by an element a, say, of order N,
fi(N)>0. I t will therefore be sufficient to show that a(N)^f](N).

If for a particular factor d of N, a(d)>0,G has an element y, say, of order d. This element
generates a subgroup (y) of G, all of whose elements y, y2,.-., yd~x, 1 satisfy the equation

Since this equation has, by hypothesis, not more than d solutions, and since each element of
G of order d satisfies it, it follows that all the oc(d) elements of G of order d are in the subgroup
(y). Now G' has a subgroup isomorphic with (y), viz., the subgroup generated by aNld. The
elements of this subgroup have the same order as the corresponding elements of (y) ; so this
subgroup of 0' contains <x(d) elements of order d. Hence, if oc(d)>0, P(d)^<x(d). This in-
equality is obviously also true if <x(d) = 0. Thus

E p(d)=p(N)>0.

This proves the theorem on finite groups.
Since, in a field, an equation of degree n never has more than n solutions, theorem 2

follows immediately. ,

§ 2. Subfields of the Galois Field GF(pr).
The number of elements in any subfield F of GF{pr) is of the form ps, where 0<s^.r.

We now show that s is a factor of r.
Let r—as + b, where 0<&<r, be the result of division with remainder of r by s. If x is

any element of F, then xv* =x; hence xp2$•= (*3>8)»>s = xpS = x, and, by induction xpMS = x, where
m is any integer ; in particular, xp0S = x. Thus, since x is an element of GF(pr),

Hence if 0 < 6 < s , the equation X® =x has at least ps and therefore more than pb solutions,
which is impossible. Hence b = 0, i.e., r=as, i.e., 5 is a factor of r.

Since each element of F satisfies the equation

so that F supplies p3 distinct roots of this equation, and sinee F has no elements other than the
roots of this equation, it follows that F is uniquely determined as the minimal splitting field

, of the polynomial tpS -1 in GF(pr).

Conversely, let s be any factor of r and let r = ds. Let F* be a splitting field of tpS -1 ove
GF{pr), so that

Hence at
p" =at and therefore, as in an earlier argument,

and consequently ai is in GF(pr). Hence GF(pr) already contains a splitting field of t"s -t,
consisting of the zeros of this polynomial. Since this splitting field contains only these zeros,
it is a minimal splitting field of this polynomial, over the prime field Fv of GF(pr), (FP being
the smallest subfield of GF(pr) which contains the coefficients of the polynomial). We thus have

THEOREM 3. A Galois field GF(pr) of pT elements and characteristic p contains, for each
factor s of r, one and only one subfield of ps elements, the elements of this subfield being the zeros
of the polynomial tpS -t in GF(pr). There are no other subfields.
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§ 3. Automorphisms of the Galois Field GF (pr).
We first observe that in any field F of characteristic p, the correspondence a which maps

each element x of F on the element xp is an automorphism. In the first place, the corre-
spondence is one-one, for if x and y are any elements of F,

and therefore xv = yv if and only if x = y. In the second place, the correspondence preserves
addition and multiplication, for

and
The correspondence is therefore an automorphism. We write it in the form x

The result of v applications, where v is any positive integer, of the automorphism is an
automorphism a" under which the image of each element x of F is its p"-th power. The auto-
morphisms a" of F form a cyclical group (a) generated by o-.

If the field under consideration is GF(pT), then

x"r = xI>r = x ;

the automorphism ar is therefore the identity. On the other hand, if 0 < v < r , the equation

x°v = x, i.e.,

is not satisfied by all the pr(>p") elements of GF(pr). Hence the automorphism a" is not the
identity. The cyclical group (<r) is therefore of order r.

If s is a factor of r, say r = ds, there is, as we have already seen, a subfield GF(ps) of
GF(pT) consisting of the ps roots of the equation

X^=X :

in GF(pr). The elements of this subfield are therefore left invariant by <js and all its powers. :
Conversely, if a" leaves each element of GF(ps) invariant, and if v =as + b, where 0<6<s , we
have

x=x°v = x*v = (x"ayb = x"b,

for all x in GF(ps). If 0 < 6 < s , this would mean that the polynomial Pb -t had more than
pb zeros, which is impossible. Hence v =as, and therefore a" = aas.

Thus the set of all powers of a which leave each element of GF(ps) invariant forms a sub-
group (CTS) of (a) of order d and index s ; and GF(ps) consists of all elements of GF(pr) left
invariant by as, and therefore by all its powers.

We now show that there is no automorphism of GF(pr) other than the powers of cr. If
there is any automorphism which is not a power of u, let -r be one of those which leave in-
variant a maximum number of elements of GF(pr). The set of all elements left invariant by T,
forms a subfield ; for if T is written in the form x^-xT and if a and b are any elements of GF(pr)
left invariant by T, then aT = a and br = b and therefore

(a + b)T = ar + bT = a + b
and (ab)T = aTbT = ab.

Thus the set is closed under addition and multiplication ; and it includes the zero and the unity
of GF(pr). Hence it forms a subfield, which must be one of the subfields GF(ps), where s is a
factor of r.

Since T is not the identity, which is aT, it follows that there is an element in GF(pr) but not
in GF(ps). Let x be such an element and consider the polynomial

f(t)= n(t-x»is).
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(The application of as to the coefficients of this polynomial produces the polynomial

I fl{t-{x^Y}, i.e., n{t-x*H+1\ i.e., n{t-xv%
i i = l t = l • t = l

fsince x»{a+lh = (x**y = x»'; i.e., it produces f(t). Thus all the coefficients of/(Z) lie in GF(ps).
[They are therefore left invariant by T. On the other hand the application of T to the co-
| efficients of f(t) produces

I fi{t- (x*isy},
• i=l

|the last factor of which is t -xT. Hence x7 must be one of the powers xpU, say xv^s, i.e., x?^.
Thus the automorphism ra~is leaves invariant each element of OF(ps), and also the element
x which is not in OF(ps), i.e., it leaves invariant more elements than T. On the other hand it
does not belong to (<?). This contradicts the maximum property of T. I t follows that there is
no automorphism of GF(pr) which is not a power of a.

These properties of the automorphisms of OF(pr) are collected in

I THEOREM 4. The automorphisms of the Galois field OF(pr) of pr elements and characteristic
\ p form a cyclical group (a) of order r generated by the automorphism a defined by
i
j X->XV = X".

I The set of automorphisms which leave invariant each element of the subfield GF(ps), where r = ds,
; forms a subgroup (as), of order d and index s, generated by crs, of the full group of automorphisms.
I Conversely, each subgroup of (or) is generated by some as, where s is a factor of r, and the set of
I elements of GF(pr) left invariant by each automorphism of the subgroup (a*) forms the subfield
\GF(ps)ofGF(pr).

\ §4. Norms in Galois Fields.
\ Let F be the Galois field GF(pr) and let S be its subfield GF(ps), where r = ds. The group
[ (<7S) of automorphisms of F which leave invariant each element of S is called the group of
automorphisms of F over 8 and is denoted by G^/g. Its order G^/g : 1 is d. Jfq =ps, the number
of elements in 8, then the number of elements in F is pr =pds=qd.

For any element x of F, we define its conjugates over 8 to be the d elements xr, where T is
in GF/S ; these d elements need not all be distinct. All the distinct conjugates of x appear in the
set of all its d conjugates with the same multiplicity ; for if xT = xr', then x^ = xp7', where
xpT means, (xry, and conversely.

The product of all the d conjugates of x over 8 is called the norm of x over 8 and is denoted
by Nm{x):

i = n x7.

Since any automorphism of F over 8 simply permutes the conjugates of x over 8, NFjs is left
invariant by each such automorphism and is therefore an element of 8:

NF/S(x)e8.

The norm has also the following easily verified properties :

The group GF/S consists of the automorphisms

x->x»ms, (xeF ; m=0, 1, 2, . . . , d-1),

i.e., x->x«m, (m = 0, 1, 2, ...,d-\).
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Hence Nm(x)=x1+i+^+-+^1 = x^d-1)<^-1) (1)
We now prove

THEOREM 5. Each element of any subfield 8 of a Galois field F is the norm over 8 of some
element of F.

Proof. The correspondence which maps each non-zero element of F on its norm over 8
is a homomorphism of J", the multiplicative group of F, onto a subgroup of F'. The kernel of
this homomorphism is the set of elements of a; whose norms are 1, the unity ofF, i.e., the set of
elements x of F for which

Since F is a field, there cannot be more than (qa - l)j(q - 1) such elements. Since F' has qd -1
elements, it follows that the factor group of F' over the kernel has at least

i.e., (q - 1) elements. But the set of non-zero norms, being the image of F' under the homo-
morphism, is isomorphic with this factor group ; the number of distinct non-zero norms is
therefore also at least (q - 1). On the'Other hand, since each norm is a non-zero element of 8,
there are at most (q-l) distinct non-zero norms. Hence there are exactly (q-l) non-zero
norms ; i.e., each non-zero element of 8 is the norm of some element of F. The zero of 8 is the
norm of the zero element of F.

This completes the proof.
We now prove the further theorem

THEOREM 6. If 8 is a subfield with q elements of a Galois field F with qd elements, then each
element x of F whose norm over 8 is 1 is of the form

and conversely.

Proof. I fx = ̂ - 1 , then, by (1),

This establishes the converse part of the theorem.
To prove the direct part, we observe that the correspondence

y^y«-l (yeF')

is a homomorphism of F' onto.a subgroup of F'. The kernel of this homomorphism is the set
of elements of y of F for which y11'1 = 1. Since F is a field this equation has not more than q-l
solutions. The kernel has therefore at most q-l elements and consequently the factor-
group of F' over the kernel has order at least (qd - 1)1 [q -1 ) . But the set of elements of the
form yQ~x, being the image of F' under the homomorphism, is isomorphic with this factor-
group. It follows that there are at least (qd - l)j(q - 1) elements of F of the form yq~1. On the
other hand, since each element of the form yq~x satisfies the equation (1), there are at most
(qd - l)/(q - 1) such elements. I t follows that there are exactly (qa -1)1 (q - 1) elements of this
form. Since the equation (1) has these as solutions and cannot have more than this number
of solutions, it follows that the elements y^1 consist of all the solutions of this equation, i.e.,
they consist of all the elements whose norms are 1.

§5. Proof of Maclagan-Wedderburn's Theorem.
Let K be a finite skew-field. We have to show that K is a field, i.e., that the multiplicative

group K' of the non-zero elements of K is Abelian. The proof depends on the following
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LEMMA. IfGis any Abelian subgroup of K', the normaliser of G coincides withthe centraliser
ofG.

Proof. We have to show that if x is any element of K' satisfying the condition

XlrX — I T , (1)

then x also satisfies the condition

xax~x = a, for all aeG (2)

Let x be any element satisfying the condition (1). Since, by Fermat's Theorem for the group K',

and since 1 lies in the centraliser of G, it follows that there is a positive integer fj. (viz.,
= K' :1) for which x» is in the centraliser of G. Let m be the least positive integer /A for

which this is the case. Then

xmax~m=a,- for all aeG ;

biit, for each positive integer v such that 0 < v < m , there is an aveG for which

Let H be the subgroup of K' generated by xm and G. Since any two generators of H commute,
H is Abelian. Since xGx"1 = G and xxmx~1 = xm,

Let F be the set of all elements of K which are the sums of finite numbers of elements of
H, i.e., all elements of the form

together with the zero element of K. I t is obvious that F is closed under addition; its elements
therefore form a subgroup of the additive group of if. I t is easily verified that the set of non-
zero elements of F is closed under multiplication and therefore forms a subgroup of K'.
Finally, since H is Abelian, multiplication in F is commutative. I t follows that the set F
forms a field.

Since xHx~1 = H and xQx~1 =0, it follows that, if yeF, then xyx^eF arid every element of
F is of the form xyx~1, where yeF ; hence xFx~1=F. Further, since

x(a + b)x~1=xax-1+ xbx-1

•and x(ab)x~1 = (xax-1)(xbx-1),

the one-one correspondence a defined by

a-^-xax"1 = a" (aeF)
is an automorphism of F.

We show that if m, defined earlier, is assumed to be greater than 1, we are led to a contra-
diction.

Assume, then, that m>\ ; then

a"m = xmax~m = a, for all aeF,

but, if 0<v<m, there is an av in G, and therefore in F, for which

a/=
Thus the automorphism om of F is the identity, but the automorphism a", where 0 o < m , is
not. Consequently a is an automorphism of F of order m.
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Since (xm)a = xxmx~1 = xm, xm is one of the elements left invariant by a ; xm therefore
belongs to the subfield S of F consisting of those elements of F which are left invariant by a.
By theorem 5, therefore, xm is the norm NF/S(y), over S, of some element y of F ; i.e.,

xm = yy°y°*... y"m'\ (yeF) (4)

For this y, consider the expression

(x -y)(1 + y-xx + y-h/-"x2 + ...+ y-xy~a ... y~<jm~ixm-1).

Let us denote it by f(x, y); then

f(x, y)=x + xy~xx + xy-hf^x2 + ...+ xy~h/~" ... ^-"""V"-1

_ y - x -
Now, in the expression on the right, each term (except the last) in the first row is equal to the
term in the succeeding place in the next row ; for

Hence, applying this formula to t*he last term in the first row also,

f(x, y)=-y + y-°y-°*... y~°m~V»

= - y + y - " y - ° 2 • • • y-"r~xyy° • • • y°m~\ b y (4),

= -y+y,
since y, y", ... y°m~1, being elements of F, commute with one another. Thus f(x, y) =0 and
therefore either x = y or

1 +y-1x + y-1y-°x2 + ... +y~1y-° ... y-"m~2xm-1 =0 '. (5)
Consider the latter possibility. If (3) holds, then there will be, among the relations of the

form
t

1+ E cjx
h = Q, (6)

v—l

where 0<Cj1<ji<C...<jt<Cm and 0=£civeF, one or more relations with t a minimum ; let (6)
be one such. If, in (6), we multiply on the left by ar1, and on the right by a^, where a^ is the
element of G, and therefore of F, introduced earlier (see (3)), such that x^a^x-^j^a^, we
obtain

0 = 1+ E a[1\x
j'ah

t
= 1 + E ar1^ (x3vaj,x iv)xj"

= 1+ i d^', (7)

say. Since a and therefore a3" leaves F invariant, x'"a~1x^y is in F, and therefore djy is in F.

Subtracting (7) from (6), and multiplying on the right by x~^, we obtain
t . _ .

ch-dh+ E (cs -djjx3* h=0 (8)
v=2

Now tjy -dj^O, for
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Hence there is an element (c^ - djj^1 of F. Multiplying (8) by this on the left, we obtain a
relation

1+ ie ,x>»-*=0, {e,eF),
v=2 v

which is of the form (6) but has at least one term fewer, contrary to the supposition that t was
a minimum. Thus the assumption that (5) holds leads to a contradiction and we must conclude
that x = y, and therefore that a; lies in F, from which it follows that xax~1 = a, for all a in F.
But this contradicts the assumption that m > l . Hence the assumption that m > l leads to a
contradiction, and we must conclude that m = l ; i.e., that any element x which lies in the
normaliser of G also lies in the centraliser of 0.

This concludes the proof of the Lemma.
The proof of Maclagan-Wedderburn's theorem is now completed by establishing

THEOREM 7. / / , in a finite group G, the normaliser of every Abelian subgroup coincides with
the centraliser of that subgroup, then the group 0 is Abelian.

We prove this theorem by induction over N, the order of the group G.
If N = 1, the theorem is obvious.
Let us make the induction hypothesis that the theorem is valid for groups of all orders

less than N, and let G be a group of order N possessing the property that the normaliser of each
Abelian subgroup of G is also the centraliser of this subgroup. Then any proper subgroup of
G also possesses this property and has order less than N ; hence by the induction hypothesis,
any proper subgroup of G is Abelian.

Let Z be the centre of G, and consider first the case in which Z is not the identity. Then
the factor group GjZ has order less than N. We show that, on the induction hypothesis, it is
Abelian. If GjZ is not Abelian, let U be an Abelian subgroup of G/Z and let X be any element
of the normaliser of U, i.e., any element oiGjZ such that XUX-1 = U. Let U be the subgroup
of G formed by the elements of G in those cosets of Z which form U. Since U is Abelian and
GjZ is not, U is a proper subgroup of GjZ and therefore U is a proper subgroup of G ; hence,
as a consequence of the induction hypothesis, U is Abelian. Since XUX^1 = U, it follows that,
if x is any element of X, xTJx~x = U, i.e., x belongs to the normaliser of V in G and therefore to
the centraliser of U in G ; i.e., x commutes with every element of U. It follows that X
commutes with every element of U, i.e., that X belongs to the centraliser of U. Hence the
factor group GjZ satisfies the conditions of the theorem ; and it has order less than N. I t is
therefore, by the induction hypothesis, Abelian. Thus the assumption that GjZ is not Abelian
leads to a contradiction, and we conclude that (on the induction hypothesis) GjZ is Abelian.

Let a and b be any two elements of G. Since bz = zb for all elements z of Z and Z is Abelian,.
the subgroup (b, Z) generated by b and Z is Abelian. Since GjZ is Abelian, aba-1 = b(Z).
Since, in addition, az = za for all z in Z,

a(b, Z)a~1=(b, Z),

i.e., a is in the normaliser of (b, Z); it is therefore in the centraliser of (b, Z), i.e., it commutes
with each element of (6, Z). In particular, it commutes with b, i.e.,

ab = ba.
Hence G is Abelian.

This completes the proof by induction of the theorem, for groups G for which the centre
Z is not the identity.

Now consider the case in which Z is the identity. We have already observed that for any
group G of order N which satisfies the conditions of the theorem, it follows from the induction
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hypothesis that any proper subgroup of 0 is Abelian. As a consequence of this, if C7X and E72

are any two distinct maximal proper subgroups of G, their intersection lies in the centre Z of
G. To prove this we observe firstly that the subgroup (Ux, J72) generated by Uj and U2 is 0
itself; and secondly that any element z in the intersection of U1 and U2 commutes with each
element of U1 and each element of Z72 and therefore with each element of (C71; J72), i.e., with
each element of G. Thus, in the case under consideration, any two distinct maximal proper
subgroups intersect in the identity.

Now let V be any maximal proper subgroup of G. Then any conjugate subgroup zUx-1,
where xe.G, of U in G is also a maximal proper subgroup of G. We find the condition that two
of these conjugate subgroups xUx"1 and yUy^1 shall coincide.

If xUx~1=yUy-1,

then (y-1x)U{y-1x) = U.

Hence y~xx is in the normaliser of U and therefore, since U is Abelian, in the centraliser of U ;
i.e., y~xx commutes with every element of U. It therefore commutes with every element of
the subgroup (y^x, IT). VLy~xx is not in U, this new subgroup is G itself; hence y~xx commutes
with every element of G, i.e., it is in the centre of G, i.e., it is the identity, and is therefore in
U. Thus the assumption that y~xx is not in U leads to a contradiction and we must conclude
that y~xx is in U.

Thusif xUx~1=yUy~1, y^xeU. The converse is obviously the case. Hence xUx~1=yUy~1

if and only if xeyU, i.e., if and only if xU =yU. Hence U has the same number of conjugates
as it has right cosets.

Now in each of the conjugate subgroups of U there are U : 1 - 1 elements other than the
identity and therefore not in any of the other conjugate subgroups ; and there are 6?: U
conjugate subgroups of U. Hence the total number of elements, other than the identity, in
the conjugate subgroups of U is

(G:U)(U: 1-1),
i .e . , (G:U)(U:1)-G:U,
i.e., N-G-.U

A T G : 1

N-u~v
AT N

We use this to show that G is Abelian.
Suppose that G is not Abelian. Then each element x of G, other than the identity,

generates a subgroup (x) which is Abelian and consequently not G ; it is therefore a proper
subgroup of G, Thus G possesses at least one proper subgroup. Since each proper subgroup
of a finite group is contained in at least one maximal proper subgroup, it follows that G
possesses at least one maximal proper subgroup. If U is any such, then, since U : 1>1, the
above calculation shows that U and its conjugates supply, in addition to the identity, at least
\N distinct elements of G. Now if G contained any element y not in U or any of its conjugates,
this element would lie in a maximal proper subgroup V of G, and F would contain no element
in U or its conjugates other than 1. Hence V and its conjugates would supply at least \N
distinct elements of G, other than the identity and none of which would be in U or any of its
conjugates. Thus U and V and their conjugates would supply more than N distinct elements
of G, which is impossible. It follows that U and its conjugates supply all the elements of G,
and therefore that

1+N-G:U=N;
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i.e., that 0 : U = 1, i.e., that U = £?, .contrary to the assumption that U was a proper subgroup,
Thus the supposition that 0 is not Abelian leads to a contradiction. We conclude that 0
must be Abelian.

This completes the proof by induction of the theorem in the case in which the centre of
Q is the identity.

It follows from the lemma that the multiplicative group K' of the non-zero elements of
any finite skew-fields K is Abelian, and therefore that any finite skew-field is a field.
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