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Abstract

Iceberg calving is a major source of ice loss from the Antarctic and Greenland ice sheets. However,
itis still one of the most poorly understood aspects of ice sheet dynamics, in part due to its variabil-
ity at a wide range of spatial and temporal scales. Despite this variability, most current large-scale
ice sheet models assume that calving can be represented as a deterministic flux. In this study, we
describe an approach to modeling calving as a stochastic process, using a one-dimensional depth-
integrated marine-terminating glacier model as a demonstration. We show that for glaciers where
calving occurs more frequently than the typical model time steps (days-months), stochastic calv-
ing schemes sampling a binomial distribution accurately simulate the probabilistic distribution of
glacier state. We also find that incorporating stochastic calving into simulations of a glacier with
a buttressing ice shelf changes the simulated mean glacier state, due to nonlinearities in ice shelf
dynamics. Relatedly, we find that changes in calving frequency, without changes in the mean calv-
ing flux, can cause ice shelf retreat. This new stochastic approach can be implemented in large-scale
ice sheet models, which should improve our capability to quantify uncertainty in predictions of
future ice sheet change.

1. Introduction

Global warming is already causing sea level rise via melting of glaciers and ice sheets and
ocean thermal expansion. However, future sea-level rise projections remain uncertain due to
unknown future anthropogenic emissions, imperfect representation of glaciological processes
in ice sheet models and internal variability that is intrinsic to the Earth system (Hu and Deser,
2013; Robel and others, 2019; IPCC, 2021). Iceberg calving is one major source of ice loss from
the Greenland and Antarctic ice sheets (Rignot and Kanagaratnam, 2006; Rignot and others,
2013) and potentially the largest contributor to uncertainty in sea-level rise projections beyond
2100 (Fox-Kemper and others, 2021). Despite its importance, a comprehensive understanding
of the processes responsible for calving and its accurate simulation in ice sheet models remains
elusive, in part due to its variability at a wide range of spatial and temporal scales (Benn and
others, 2007; 2017a; Bassis and Jacobs, 2013). Existing calving representations in ice sheet mod-
els, including simple deterministic calving laws (Benn and others, 2007), continuum damage
mechanics (Duddu and others, 2013), linear elastic fracture mechanics (Yu and others, 2017)
and discrete element models (Astrém and others, 2013; Bassis and Jacobs, 2013), struggle to
capture this variability. Calving events occur over spatial and temporal scales ranging from the
multi-decadal quasi-periodic detachment of tabular icebergs hundreds of kilometers in length
from floating ice shelves (Greene and others, 2022) to the detachment of icebergs meters in
scales from outlet glaciers in Greenland multiple times every hour (Benn and others, 2017b;
Cookand others, 2021). Such internal variability of calving over time and from glacier-to-glacier
is thus challenging to reproduce in ice sheet models and is a source of unquantified ‘irreducible’
uncertainty in ice sheet projections (Bassis, 2011).

In climate and ocean models, stochastic parameterization of internal variability and unre-
solved processes has been used successfully to reduce systematic model errors, improve the
skill of probabilistic forecasts and quantify aleatoric (i.e. due to intrinsic random variability)
projection uncertainty (Porta Mana and Zanna, 2014; Berner and others, 2017; Palmer, 2019).
Building a more accurate representation of calving with the inclusion of variability in ice sheet
models will enable the quantification of the contribution of calving to ice sheet change and
future sea level rise that can be incorporated into climate adaptation planning.

We build on the earlier work of Bassis (2011), who argued that iceberg calving can be treated
as a stochastic process due to the intrinsic sensitivity of calving to unresolved micro-scale stress
variations near glacier termini. In his model, the probability distribution for terminus position
as a function of time is computed using simplifying assumptions, and the calving rate is cal-
culated based on this distribution. However, Bassis (2011) only considered how the terminus
position responds to such stochastic calving events, without extensively considering how
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the rest of the glacier integrates these stochastic calving events at
the terminus, or the form of stochastic calving parameterizations.
This study aims to investigate the dynamical glacier response to
stochasticity in calving. Prior idealized model experiments (Robel
and others, 2018; 2024; Verjans and others, 2022) tested the glacier
response to treating calving flux as a Gaussian white noise pro-
cess. Results from these studies show that variability in calving rates
changes the glacier mean state (i.e. noise-induced drift). However,
these studies did not provide a conceptual or mathematical basis
for how to treat calving flux on time scales of weeks to years and
did not explore the statistical dynamics of the ice flow response to
this variability.

This study aims to understand multi-scale calving variability by
addressing the following questions: (1) How can we accurately rep-
resent calving as a stochastic process in ice sheet models with time
steps much longer than the typical duration of events? (2) How
do glaciers respond to stochasticity in calving? (3) How does the
stochasticity of calving affect our ability to make well-constrained
predictions of future ice sheet change? In the next section, we
describe the incorporation of stochastic calving into a flowline
model of a marine-terminating glacier. We consider three different
stochastic calving laws based on Bernoulli, binomial and Gaussian
random processes. We then show that we can use a binomial ran-
dom process to represent calving variability at time scales of days
to years. A Gaussian random process is suitable for simulations
with long time steps and high calving frequency. Both processes are
equivalent to long-time-scale integrated representations of a short-
time-scale threshold process (i.e. calving). In addition, we find that
stochastic calving changes the mean glacier state when a buttress-
ing ice shelf is present. We conclude by discussing how our results
set the foundation for implementing stochastic calving into more
complicated ice sheet models.

2. Model description

Calving is fundamentally a deterministic physical process gov-
erned by fracture mechanics which depends on small-scale stress
states (Benn and others, 2007; Astrém and others, 2013). As with
other chaotic processes, this leads to a sensitive dependence of
fracture evolution to small variation in initial conditions. Thus, in
large-scale ice sheet models which do not resolve such small-scale
stress states, a stochastic approach to simulating calving permits
sampling of the range of possible calving event size and frequency,
similar to stochastic approaches that have been used to model the
range of possible states in chaotic geophysical fluid systems (Berner
and others, 2017).

We start by considering a glacier that has a time-varying calv-
ing rate U, that is typically zero but can take a non-zero value
when a calving event occurs at any moment in time. We define
a calving event as a period of non-zero calving rate U, dur-
ing a single model time step. This definition reflects the models
temporal resolution and should not be conflated with instanta-
neous, real-world calving processes, which occur on a shorter
timescale than the model resolves. The stress state and geometry
of the glacier calving front produce a probability P, for a calv-
ing event to occur at such a moment in time. A high-fidelity
model of glacier fracture (e.g. Astrom and others, 2013) or obser-
vations (e.g. Cook and others, 2021) may be used to quantify
P.. However, in this study, we simply assume that P, is known
a priori to investigate the consequences of such calving stochas-
ticity on glacier evolution. In the remainder of this section, we
define the mathematical model for the dynamics of this glacier and
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describe the specific stochastic models used to represent calving
variability.

2.1. Flowline model

To understand the effect of stochasticity on a marine-terminating
glacier in an idealized setting, we use a vertically and laterally
integrated one-dimensional flowline model. Such a model is a
good representation of the glacier response to stochastic calving on
longer time scales and along the glacier flowline, though it does not
reproduce the more complex details that may accompany realistic
lateral or vertical variations in calving front geometry. As such, we
restrict the scientific questions that we seek to answer to those that
can be answered in such a model and leave more complex consid-
erations for planned future work with 3D models. In this flowline
model, ice thickness evolution is described by the conservation of
mass

oh  O(hu)

e o a(x) (1)

where £ is the ice thickness, u is the ice velocity, x is the hori-
zontal position along the direction of flow and a(x) is the surface
mass balance (SMB) profile. Velocity is solved with a momen-
tum conservation equation describing the shallow-stream/shelf
approximation (SSA) with lateral shear stress included

P <2hA ! 1 ou d(h + b)
Ox

p —_ —_— —
O ) — Ahu Cu™ ngh Ox 0
2
where A is the vertically integrated Nye-Glen law coefficient, 7 is
the Nye-Glen law exponent, A and p are lateral drag parameters, C
and m are basal drag parameters, p; is the ice density, g is the grav-
itational acceleration and b is the elevation of the bedrock above
mean sea level. Following Hindmarsh (2012), A is calculated using

3u

ox
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where W is the glacier width.
In simulated glacier states with floating ice, the grounding line
position, x,, is the location where ice begins to float, such that

h= (%) b at X = Xg, (4)

where p,, is the density of water. We assume continuity of ice thick-
ness, ice velocity and longitudinal stress across the grounding line.
The floating ice shelf extends to the calving front x = x,. The stress
boundary condition at the calving front is

A= 3)

Ou|n 1614 1 P\ 12 _
™ o 2,olg (1_E>h at x=x, (5

which describes the balance of longitudinal stress with the hydro-
static and glaciostatic pressures.

The glacier may also be in a state where the calving front is
grounded (i.e. no floating ice), where

2hA h

h><?>b at  x=x,. 6)
In such cases, the stress boundary condition at the calving front is
8u - Ou 1, >
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In this model, the position of the calving front is defined by
the balance between ice flow bringing ice mass to the front
and calving removing ice mass from the front. Changes in ice
flow and calving thus control the calving front position through
an explicit prognostic equation for migration of the calving
front:

Ox,

= =
where u(x,) is the ice flow velocity at the calving front, and U, is the
calving rate, which is either prescribed as a constant (in determin-
istic simulations) or a random variable sampled from a prescribed
probability distribution.

We took a similar numerical approach as Schoof 2007 in dis-
cretizing the thickness and velocity evolution equations using finite
differences with a staggered grid. In order to track the calving
front position, we used the stretched coordinate system (i.e. there
is always a grid point at the calving front), and so

u(x;) — U, 8)

o= ©)
xC

This maps the interval 0 < x < x(f) to 0 < o < 1
In cases where there is no floating ice, we used a coarse grid
resolution of ~2 km in the glacier interior and a finer resolu-
tion (~100 m) close to the calving front to improve accuracy.
In cases with floating ice, a uniform grid resolution of ~500 m
was used throughout the domain. The grounding line position
can be diagnosed from the model output by finding the location
where the ice thickness reaches flotation. However, the ground-
ing line can be located between grid points. At the grid resolutions
used in this study, the resulting errors in grounding line flux are
less than 5% when compared to the analytical approximation of
Schoof 2007. The time derivative is discretized using an implicit
time step. The resulting discretized set of nonlinear equations is
solved simultaneously using the Newton-Raphson method using
a built-in optimization scheme in MATLAB. This computes the
Jacobian numerically and solves for the unknowns at each grid
point for every time step. This numerical approach ensures robust
numerical stability even under stochastic calving (described in the
next section), though accuracy may be influenced by the lack of
higher-order differentiability in the simulated stochastic terminus
position.

2.2. Stochastic calving models

We first define how the probability of calving, P,, is modeled in our
study. In the continuous framework, the evolution of probability
for a calving event to occur is governed by

dp,
L= (10)

where A is a transition rate (Bassis, 2011) which represents the
probability per unit time that a calving event occurs. We obtain the
probability of calving during a finite time interval At by discretiz-
ing this continuous equation such that P, = AAt. We investigate
the use of three different types of random processes to represent
stochastic calving in our model. A Bernoulli process is often used to
describe an event that has a discrete number of possible outcomes,
mostly commonly two: success or failure. Such a binary outcome is
a good way to simulate processes undergoing changes at a thresh-
old, such as calving events, where at a given time ice may be lost
from a glacier by an iceberg of a given size detaching, or alternately,

https://doi.org/10.1017/jog.2025.10056 Published online by Cambridge University Press

no iceberg detachment may occur. At a given time step, t;, this is
described by

ife; =1
(11)
ifCi =0

where U, is the time-averaged calving rate, P, = f.At represents
the probability of calving, f, is the calving frequency, which can be
interpreted as the transition rate in equation (10) and ¢; is a sam-
ple from a Bernoulli random process. It is important to note here
that we calculate P, in terms of the time step, At, as a matter of
numerical expediency and to ensure that for a given choice of f,,
the long-term mean calving rate, U,, will be equal to the deter-
ministic (constant in time) calving rate from which all stochastic
simulations in this study are initialized. However, as stated above,
in reality, P. is set by the small-scale stress state at the glacier front.
The central assumption of modeling calving as a stochastic pro-
cess is that such a probability is known a priori from high-fidelity
modeling or observations. The Bernoulli process is meant to sim-
ulate individual calving events occurring with duration (seconds
to days) much shorter than the typical response time scale of a
marine-terminating glacier (decades to millenia; Robel and others,
2018). Even in such a reduced model, it is computationally infea-
sible to simulate the full glacier response at time scales of minutes
or less with our intention to simulate glacier evolution over millen-
nia. Since we are here considering a flowline model that is vertically
integrated, the only individual calving events we are able to resolve
are necessarily full thickness. At even the most vigorously calving
tidewater glaciers, such events are sufficiently uncommon (Fried
and others, 2018), that we opt to simulate the integrated glacier
response to a Bernoulli random calving process with a time step
of one day. Given that one day is already far in the limit of being
a very short time scale compared to glacier response time scales
(years to millennia), we do not expect that adopting an even shorter
time step (seconds to minutes) would yield meaningful differences
in such a purely viscous, depth-integrated, marine-terminating
glacier model.

Even the use of the Bernoulli random calving process with a
time step of one day or less is, however, not practical in large-scale
ice sheet models, with typical time steps being longer for decadal-
scale simulations. Some ice sheet models may also have numerical
stability issues in simulating the response to large instantaneous
calving events. To investigate how to implement a realistic stochas-
tic calving scheme in a large-scale model, we also consider a
binomial random calving process. A binomial random variable
is the sum of #n independent samples from a Bernoulli random
process. Thus, on longer time steps, we can construct a bino-
mial random calving process which has equivalent variability to
Bernoulli processes sampled on shorter time steps. However, this
does not guarantee that the glacier will respond equivalently to
many individual calving events on daily time scales sampled from
a Bernoulli process and the sum of their mass flux over weekly to
yearly time scales. Thus, we aim to investigate the conditions under
which these stochastic schemes produce approximately equivalent
distributions of glacier state. The binomial random calving process

is specified as
_ U
()= (12

where # is the number of trials corresponding to the number of
calving events within a desired time step (greater than one day),
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Figure 1. Comparison of binomial (blue) and Gaussian (red) stochastic calving velocity distributions over a 1 year time step for different calving frequencies: (a) 1 event per
week, (b) 1 event per month and (c) 2 events per year. These frequencies result in distinct mean values p as indicated on each plot. Histograms are across all 20 ensemble

members from 4000 year tidewater glacier simulations.

and r is a random number generated from a binomial distribution,
such that r ~ B(n, P,), representing the total number of successful
calving events in a given integrated time step.

We also consider the possibility of calving as a Gaussian ran-
dom process, which is commonly used in stochastic simulations
(Verjans and others, 2022) and represents a limiting case of a
binomial random process. This approach allows us to simulate
calving as a continuous variable rather than as discrete events. The
Gaussian calving rate is calculated using equation (12), where 7 is
a random number drawn from a normal distribution with mean y
and standard deviation o calculated as follows,

(13)
n-P.-(1—P,).

In this framework, y represents the expected number of calving
events over # trials (or time steps), while o quantifies the variabil-
ity around this expected value. A key issue with using a Gaussian
distribution to model calving is that it can yield negative calving
velocities due to the lack of finite support. As the mean (u) of the
Gaussian distribution approaches zero, the likelihood of obtaining
negative calving velocities increases (Fig. 1), which are unphysical.
Even when they occur infrequently, negative velocities can lead to
convergence issues in the model solver. We discuss the results from
the use of a Gaussian process in Section 3.2.

2.3. Model configurations

We perform two sets of idealized experiments using the model
described above. The first configuration simulates a tidewater
glacier with a grounded terminus, similar to outlet glaciers in
Greenland. For model stability and accordance with reality, the
SMB profile in this model is defined by a piecewise linear function,
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Table 1. List of parameters for ice shelf configuration

Parameters Description Value Units
A Deformation coefficient 4227x10%  PpPasst
n Stress exponent 3
U, Time-averaged calving rate 600 myr?!
a Surface mass balance 0.5 myr?
A Lateral drag parameter 309.238 Pam~4/3s1/3
w Glacier width 40 x 103 m
p Lateral drag exponent é
c Basal friction coefficient 7% 108 Pam~1/3sl/3
m Weertman friction law i

exponent

ag for x < x,

a(x) = (14)

ag—ay - (x—x,) forx > x,.

The SMB is 1 m yr™! through the glacier interior and decreases
with position x from x, (96 km) to approximately —0.7 m yr™! at
the calving front. The second configuration simulates an ice shelf
similar to floating ice shelves in Antarctica, where the glacier accu-
mulates ice due to a constant SMB of 0.5 m yr. Ice flows from
the ice sheet interior towards the ocean on a prograde bed slope
of 1 x 107 in both configurations. The parameter values used
in both experiments are provided in Tables 1 and 2. These values
are meant to be broadly representative of these kinds of glaciers
but do not correspond to one specific glacier. We run the experi-
ments to a deterministic steady state with a deterministic calving
rate equal to the mean calving rate in the stochastic simulations
and use the resulting steady-state conditions as initial conditions
for the transient runs with stochasticity. Figure 2 shows the ini-
tial steady-state profile for the two configurations simulated by
the flowline model. We run ensembles of 20 simulations for all
the stochastic calving runs in this study. Each simulation within
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Table 2. List of parameters for tidewater glacier configuration

Parameters? Description Value Units

U, Time-averaged calving rate 300 myrt
ap Constant Surface mass balance 1 myrt
ay Mass balance gradient 2 myrt

aparameters A, n, C and m are consistent with the ice shelf configuration.

an ensemble differs only in the random realization of stochastic
calving.

3. Results
3.1. Bernoulli and binomial stochastic calving

We start by comparing the distribution of glacier states produced
by stochastic calving schemes based on Bernoulli and binomial
random processes. Runs with the Bernoulli random calving pro-
cess use a time step of one day for tidewater glacier configurations
and 1 week for ice shelf configurations, both over 4000 years. We
test the binomial random calving process with time steps of 1 week,
1 month and 1 year, but the average calving rate and the probability
of individual calving events are the same as the Bernoulli ran-
dom calving process being compared. We vary the full-thickness
calving frequency, f, from 1 event per week to 1 event every 2
years for tidewater glacier simulations, and from 1 event every 2
years to 1 event per decade for ice shelf simulations. This variation
aims to reflect the frequent calving events typical of Greenland’s
outlet glaciers (Cook and others, 2021) and the infrequent calv-
ing events typical of Antarctica’s ice shelves (Greene and others,
2022). The probability of calving, P,, is calculated by multiplying
f. by the time step At. The calving rate at each time step is then
determined using equations (11) for Bernoulli calving and (12) for
binomial calving. Infrequent calving events are larger than frequent
events to maintain a consistent mean calving rate, UC, between sim-
ulations. The corresponding calving event sizes for these calving

frequencies, calculated by multiplying the calving rate by the time
step, are listed in Table 3.

We see in Figure 3 that there are some minor quantitative differ-
ences in the distributions of glacier state for Bernoulli (blue colored
bar) and binomial distributions (red, yellow and purple colored
bars) in the tidewater glacier configuration. Kolmogorov-Smirnov
(KS) testing indicates that such calving front distributional differ-
ences are statistically significant. However, KS testing has known
issues for such large sample sizes (Sullivan and Feinn, 2012). In
practice, the difference in mean calving front position is less than
200 m for the tidewater glacier configuration. Such differences are
comparable to or smaller than the mesh element size of the most
high-resolution simulations of marine-terminating glacier simu-
lations. These minor differences are consistent across all calving
frequencies tested. For relatively high frequencies of calving in the
ice shelf configuration (Fig. S1), the binomial calving parameteri-
zation is a good approximation of the Bernoulli calving parameter-
ization. However, this is not the case for lower calving frequencies
(Figs S2 and S3). Since Bernoulli calving can be reliably simulated
using normal time steps for an ice sheet model (1 week), it should
be possible to reliably simulate stochastic Bernoulli calving for ice
shelves in current ice sheet model configurations. Thus, we con-
clude that for cases where the calving is sufficiently frequent, the
binomial distribution is a good approximation of Bernoulli distri-
bution to within an error comparable to the grid resolution, and we
can use an integrated binomial calving flux to accurately simulate
the stochastic glacier state at various time steps. However, for infre-
quent calving as in ice shelf calving, Bernoulli calving is the most
accurate way to stochastically simulate calving. In either case, both
Bernoulli and binomial are accurate in describing the statistics of
calving in time steps typical for an ice sheet model.

3.2. Gaussian calving simulations

We also run simulations of stochastic calving using a Gaussian ran-
dom process, which has previously been used in stochastic ice sheet
modeling (Verjans and others, 2022; Robel and others, 2024). We

2000, . : . : . 300
1500 | a 250 §
€ 1000 200 &
£ 150 %
N s00f 1 100 <
Y= . 50 —
1 1 I e — I 1
0 50 100 150 200 250
X (km)
3000 . . . : : 600
500 <
2000 b o)
= 400 §
= 1000 . 300 =~
N
o 200 <
J 100 <
-1000 1 L L I I
0 100 200 300 400 500
X (km)

Figure 2. Initial steady-state profile for the (a) tidewater glacier and (b) ice shelf configurations simulated by the flowline model.
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Table 3. List of parameters for tidewater glacier and ice shelf configurations

Tidewater glacier Ice shelf

Calving frequency  Calving event Calving frequency Calving event

(yrd) size (m) (yr'?) size (km)

1 event per week 5.77 1 event every 2 1.2
years

1 event per 25 1 event every 4 2.4

month years

2 events per year 150 1 event every 7 4.2
years

1 event per year 300 1 event every 10 6.0
years

1 event every 2 600

years

vary the calving frequency from 1 event per week to 1 event every 2
years for comparison with Bernoulli and binomial tidewater glacier
simulations. To address the issue of negative calving velocities from
Gaussian process preventing convergence of the model solver, we
truncate the Gaussian by setting a zero minimum calving veloc-
ity. In Figure 4, we show the distribution of calving front position
from Gaussian calving simulations alongside equivalent Bernoulli
and binomial simulations for two specific calving frequencies: 1
event per week and 2 events per year. The corresponding calving
velocity distributions are shown in Figure 1a for 1 event per week
and Figure 1c for 2 events per year. We see that for a calving fre-
quency of 1 event per week (Fig. 4a, the glacier states simulated
by the Bernoulli (blue line), binomial (red line) and Gaussian (yel-
low line) calving processes are similar. However, as the frequency
decreases, as seen in the case of 2 events per year (Fig. 4b), the

Aminat A. Ambelorun and Alexander A. Robel

glacier state that is simulated from the Gaussian simulation shows
a significant difference from the Bernoulli and binomial glacier
states. This is due to the truncation of the calving velocity distribu-
tion qualitatively changing the leading-order statistical moments
of this distribution. The mean ensemble calving velocity increases
to 334 m yr !, the standard deviation decreases and the skewness
increases. In the ice shelf cases, where calving frequencies are rela-
tively low, the resulting small mean (u) values also led to frequent
occurrences of negative calving velocities, preventing model con-
vergence. We discuss the implications of these results for ice sheet
modeling further in Section 4.

3.3. Distribution of calving front position

In another ensemble of simulations, we vary the calving frequency
without changing the average calving flux to determine the influ-
ence of calving style on the distribution of the calving front posi-
tion. We compare the stochastic tidewater glacier and ice shelf
simulations with their deterministic simulations in Figure 5. The
spread and skewness of the distribution of glacier state change as
a function of calving frequency in both configurations. As calv-
ing events become more frequent, the spread of the distribution
decreases approximately as a square root of the calving frequency
(indicated by the solid line in Fig. 6). This is to be expected, as
the standard deviation (¢) of the binomial/Gaussian random calv-
ing velocity as defined in equations (12) and (13) should vary like
1

oy, X P. *. Put another way, the uncertainty in the simulated
glacier state (as measured by the standard deviation) due to calv-
ing variability is set by the calving frequency. So, glaciers with less

0.3 T T T

a : ' [—1Bernouli
02}k 11 week
1 month
01F W, 11 year
o == = === deterministic
ol I 1 . 1
224 226 228 230 232 234 236 238
Calving front position (km)
2 0.06 T T T T T T
& b
8 0.04f -
2
3 0.02r .
©
Ke)
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Ice velocity at the calving front (m yr'1)

Figure 3. Distributions of (a) calving front positions, (b) ice thickness at the calving front and (c) ice velocity at the calving front from Bernoulli and binomial stochastic calving
simulations for the same calving frequency (i.e. 1 event per year with a size of 300 m). Blue histogram bars are Bernoulli transient runs with a time step of one day, while red,
yellow and purple histogram bars are binomial transient runs with time steps of 1 week, 1 month and 1 year, respectively. These results are from 4000 year tidewater glacier

simulations across 20 ensemble members.
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black dashed lines in both figures are deterministic steady-state initial conditions.

frequent (and larger) calving events are subject to more irreducible
uncertainty in their simulated state.

The shape of the distributions also shows increasing skew as
we move to lower calving frequencies, with more pronounced
skewness in the ice shelf cases (Fig. 5b) where calving frequen-
cies are very low. These asymmetries arise because infrequent
large calving events lead to significant jumps in the calving front
position. With infrequent calving, the glacier has more time to
advance, resulting in larger ice loss when calving does occur, which
skews the distribution. In contrast, more frequent events result
in smaller, more regular changes, leading to a more symmetric
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distribution. This is further illustrated by the plot of skewness
and kurtosis shown in Figure 6b and c. Though there are also
analytical predictions for the skewness and kurtosis of binomial
distributions as a function of P., these appear to be less predic-
tive of these moments in glacier state distribution, due to the
effect of glacier dynamics. This increase in the spread and skew-
ness of the probability distribution of the calving front positions as
calving events become larger and less frequent is consistent with
findings in Bassis (2011), which showed that this is unavoidable
when calving event sizes are not negligible compared to the system
size.
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3.4. Realistic calving size distribution

Thus far, we have explored the glacier response to idealized stochas-
tic calving with a single event size. We now consider a more
realistic size distribution for calving, in order to determine whether
large and infrequent or small and frequent calving events exert a
stronger control on the distribution of glacier state. Astrom and
others (2021) and other studies (Tournadre and others, 2016; Sulak
and others, 2017; Crawford and others, 2018; Scheick and others,
2019) have found, both in theory and observations, that recently
calved icebergs follow a power-law distribution. This distribution
is attributed to the physical processes that cause fragmentation of
brittle materials. To model such a polydisperse distribution of calv-
ing event sizes in the tidewater glacier configuration, we define the
probability of calving, P, as a power-law function of calving events
size

. =aL? (15)

where a is a normalization constant that we use to ensure a constant
mean calving rate, b is the power-law exponent and L, represents
the calving event size in terms of along-flow dimension of the
calved iceberg, since all calving events in our depth-integrated
model are full-thickness events. We vary the calving event size
across discrete values: 5.77, 8.33, 12.5, 25, 50, 150, 300 and 600
m. These sizes are calculated by multiplying the calving velocities
from different calving frequencies by the time step (i.e. calving size
L. = U,At). At each time step, we simulate a finite number of inde-
pendent Bernoulli processes, one for each calving event size. For
each size, we calculate the probability P, using equation (15) and
perform a random draw from the Bernoulli process to determine
whether a calving event occurs for that size. The normalization fac-
tor a is calculated once before the Bernoulli random draw. We then
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calculate the calving rate U,(¢) at time step ¢ as the sum of sizes
of calving events that occur, divided by the time step. We test dif-
ferent power law exponents b (1, 1.5, 2, 2.5 and 3) over a range
spanning those found in observations and theory. The resulting
distributions (colored solid lines) are compared against two cases
from single-event-size Bernoulli calving simulations for a tidewa-
ter glacier: the most frequent event (1 event per week, shown as red
dashed lines) and the least frequent event (1 event every 2 years,
shown as black dashed lines) in Figure 7. All simulations plotted
in Figure 7 have the same mean calving rate. As b increases, the
distribution of glacier calving front position approaches that of the
single-event-size simulations with frequent calving, indicating that
small and frequent calving events dominate the glacier response.
In contrast, b=1 appears furthest from the frequent small event
distribution, indicating a more balanced contribution of calving
event sizes to setting the glacier state. We can make sense of this
by considering the expected value of calving event size

E[L]=PL, = al7t"". (16)

This essentially measures the average contribution from each calv-
ing event size to the overall calving rate at every point in time,
taking into account the size and probability of different types of
calving events. The expected value predicts that when b > 1 small
events contribute more than large events to the overall calving flux,
and the larger b is, the more important small events are. For b =3,
the average contribution of small calving events (i.e. L. = 10 m)
to the total calving flux will be 100 times greater than the contri-
bution of large events (i.e. L, = 100 m). Prior observations (Sulak
and others, 2017; Crawford and others, 2018; Scheick and others,
2019; Astrom and others, 2021) strongly indicate that 1 < b < 3 in
reality, and thus we expect the distribution of glacier state to mainly
be set by the stochastic variability of small calving events.

3.5. Noise-induced drift

To investigate the impact of variations in calving frequency on the
mean glacier state, we vary the calving frequency in an ensem-
ble simulation while maintaining a constant mean calving rate. We
conduct a two-phase experiment in our model with the ice shelf
configuration. We focus on the ice shelf configuration because the
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distributions of glacier state plotted in the long-running experi-
ments plotted in Figure 5 indicate a shifted mean in the ice shelf
configuration, but not the tidewater glacier configuration. Initially,
we run ensemble simulations with a calving frequency of 1 event
per month for 6000 years. Following this, we decrease the calving
frequency to 1 event every 10 years (keeping mean calving rate the
same) and continue the simulation for an additional 2000 years.

We plot the time series of calving front position for the ensemble
mean and individual ensemble members in Figure 8, contrasting
the effects of the two distinct calving frequencies. While there is
an apparent change in the ensemble-average glacier calving front
position (long thick blue line), it is relatively small (3 km over 6000
years). The retreat rate then accelerates when calving frequency is
reduced to 1 event every 10 years (thick red line). We initialize two
additional 1000 year ensemble simulations from a single ensemble
member of the low-frequency (1 event every 10 years) simulation
at years 6500 and 6700, increasing the calving frequency in those
simulations back to 1 event per month. Following this increase,
the ice shelf tends towards a longer steady-state position with a
reduced retreat rate (short blue lines). We remind the reader that
throughout this entire simulation, the mean calving rate remains
constant at the same level as in the initial deterministic steady-state.
Thus, it is solely the change in stochastic variability that drives these
retreats, with higher retreat rates for lower calving frequency.

These results are consistent with Verjans and others (2022) and
Robel and others (2024), which also found that noise-induced drift
can occur in 2D ice sheet models for glaciers with buttressing ice
shelves, or in tidewater glacier simulations when there are identi-
fiable reverse-sloping regions of bed topography. Robel and others
(2024) also showed mathematically that we expect stochastic calv-
ing to increase the time-averaged ice flow velocity through the
buttressed grounding line, leading to retreat when initialized from
a deterministic steady-state or a statistical steady-state with less
calving variability. In contrast, we do not find detectable drift for
tidewater glacier configurations without regions of reverse-sloping
bed topography, which add bifurcations to the system dynamics, as
shown in Robel and others (2024).

3.6. Decadal-scale calving front migration due to natural
calving variability

To further investigate the role of stochastic variability on retreat
rates, we analyze the distribution of calving front position changes
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over different time intervals. We run ice shelf simulations for 10 000
years to achieve a statistical steady state. In the simulations with 1
calving event per month, the ice shelf comes very close to a statisti-
cal steady state. However, in simulations with less frequent calving
events (1 event every 2 years and 1 event every 7 years) the calving
front positions drift towards an ice-free state (x, = 0 km), rather
than reaching a steady-state with some ice. This is likely a product
of the assumption that the mean calving rate remains constant. We
subsample each ensemble at monthly and yearly intervals to resem-
ble observations of calving front positions. We plot histograms of
ensemble trends over 5, 10 and 20 year intervals for the three calv-
ing frequencies in Figure 9 (for monthly sampling of calving front
position) to examine variability in migration rates. Focusing on
the 10 year trends (middle plots), we find that for the very fre-
quent calving event (dark blue bars), where the mean is slightly
offset from zero (-0.1437 m yr™!), migration rates due to stochas-
tic variability are relatively small, falling within a range of tens of
meters per year. In contrast, simulations with less frequent calving
(light blue and cyan bars) show a much wider range of migration
rates. While there are non-zero mean migration rates in these cases
of —0.2010 m yr~! for 1 event every 2 years and —0.8140 m yr~!
for 1 event every 7 years, stochastic variability leads to a signifi-
cant spread in migration rate around the mean, producing periods
of retreat at rates of up to hundreds of meters per year that are
not caused by any mean forcing. We observe similar patterns in
the yearly data (Fig. S4), but with even more pronounced migra-
tion rates. In Figure 10, we compare histograms of ensemble trends
over 5 year intervals for calving front positions sampled at weekly,
monthly, yearly and 5 years (using only the end points) intervals
from the simulations with 1 event every 7 years. Weekly sampling
produces the lowest migration rates of just a few meters per year
while sampling at every 5 years yields rates of up to several kilo-
meters per year. We further discuss the implications of such results
for making statistically robust statements about observed calving
front retreats in the next section.

4. Discussion

In this study, we treat calving as a stochastic process in ide-
alized simulations of marine-terminating glaciers. Our primary
goal is to better represent calving variability in ice sheet models
and understand the effects of calving on the natural distribution
of glacier state. We find that a Bernoulli or binomial random
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simulations with the same calving frequency, 1 event every 7 years.

process can be used to accurately represent the stochastic nature
of sporadic calving events, while using time step lengths used in
many ice sheet models, typically weeks or months. In contrast, a
Gaussian random process can closely approximate the binomial
process only at high calving frequencies and long time steps. A
binomial distribution tends to a Gaussian distribution when the
number of calving events per time step is large and the calving
probability on each time step is neither close to 0 nor 1. This
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approximation is justified by the Central Limit Theorem, which
states that the distribution of the sample mean approaches a nor-
mal distribution as the number of trials increases, provided that
event probability is not very close to 0 or 1 (Blitzstein and Hwang,
2019). However, when calving probability is very low (i.e. infre-
quent calving) or very high, the binomial distribution becomes
skewed, as shown in Figure 1c, which the Gaussian approximation
fails to capture accurately. Furthermore, truncating the Gaussian
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distribution to exclude negative calving velocities alters its statis-
tical properties and changes the mean calving velocity. Therefore
it is crucial to consider the impact of truncation on model accu-
racy when using Gaussian processes. Our recommendation is thus
to use a Bernoulli or binomial random process to represent calv-
ing variability in ice sheet models where feasible. We note that
in reality, f. may vary over time in response to changing glacier
dynamics and climate forcing. Future work could explore how a
time-varying binomial approximation compares to the Bernoulli
approach.

Simulating variability in glacier state using a more realistic
power-law calving size distribution, indicates that the distribution
of glacier state is set by smaller events for power-law exponents
greater than 1. This also demonstrates that composite stochastic
calving laws with long time steps can be constructed directly from
observed calving event size catalogs. For calving styles that we
expect in reality, the smallest events are likely to dominate the mass
flux and therefore the glacier state distribution. However, this con-
clusion likely does not hold for ice shelves where calving occurs
mainly through very large, very infrequent events. Such cases may
be better represented through single-event-size stochastic calving
parameterizations.

Figure 8 shows that changes in the calving style and size dis-
tribution can modify the mean glacier state (i.e. the noise-induced
drift) when a buttressing ice shelf is present. This drift tendency
depends on the nature of calving, with the ice shelf tending to zero
length when calving events are large and infrequent. This occurs
because the calving probabilities are independent of the ice shelf
size, allowing large icebergs to break off even when the shelf is
short. Since velocity decreases with decreasing shelf length, infre-
quent but large calving events drive further retreat suggesting a
potential feedback between buttressing and noise-induced drift
from stochastic calving.

If an ice shelf starts to calve more frequently, an increase in
the overall average calving flux will typically cause it to retreat.
However, an important finding of this study is that an increased
frequency of calving events can shift the system toward a longer
steady-state glacier compared to less frequent calving, as shown in
Figure 8. Thus, accurate representation of stochasticity is crucial
to simulating both the mean state and the response of marine ice
sheets to changes in calving flux and style. As argued by Robel and
others (2024), models that do not include stochasticity are intrin-
sically biased with potential impacts on their modeled sensitivity
to future climate change.

Histograms of trends in calving front position show that we
should expect transient periods of calving front retreat or advance
due to random chance. The probability that we observe a retreat
due to random chance is higher in simulations with infrequent
events. Our results also show that the frequency and size of calving
events play a key role in determining how much uncertainty in
our predictions can be reduced or constrained. Glaciers with large,
infrequent calving events are subject to more irreducible uncer-
tainty. Previous studies (Baumhoer and others, 2021; Greene and
others, 2022; Andreasen and others, 2023) have observed km-
scale calving front retreats over decadal time scales, attributing
these changes to internal ice dynamics, geometry and external
environmental and mechanical forcing, depending on the period
and region. Our work shows that we need to account for the
role that natural calving variability may play when analyzing
trends in calving front retreat. Making accurate statistical infer-
ences about the significance of these trends requires methods
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that can generate realistic null hypotheses, and our model and
parameterization enable such analysis. We also find that infre-
quent observations of calving fronts are more likely to pro-
duce spurious observations of retreat, emphasizing the impor-
tance of having an observational platform that can observe calv-
ing front position data at least as frequently as monthly time
scales.

Our modeling approach, while promising, has some limitations
that must be considered. While the use of a one-dimensional flow-
line model is well-suited for capturing glacier response to calving
on longer timescales along the flowline, it does not resolve the com-
plexities introduced by lateral or vertical variations in calving front
geometry. The extent to which these variations might influence
our conclusions remains uncertain and requires further investiga-
tion. Adapting ideas from this study to two-dimensional ice sheet
model simulations requires new considerations. Our approach is
purely statistical in nature and thus does not fully capture the actual
physics of fracture which tends to affect calving front geometry
(Benn and others, 2007). A critical question then arises regarding
whether calving events at each point within a given glacier can be
treated as stochastic independent draws from a distribution, or if
they are correlated. This correlation, driven by physical processes
along the glacier front, influences the complex patterns observed
at the calving front that cannot be fully captured by a stochastic
model assuming complete independence across all points in the
mesh. One possible way forward is to use spatio-temporal calving
rates from observations to constrain the calving statistics in a 2D
model.

We also assume a known distribution of calving variability. This
assumption, while reasonable for our current understanding of
calving processes, may not fully capture the uncertainties inher-
ent in calving behavior. Addressing this limitation necessitates
extensive data on calving rates to constrain our calving probability
distribution, making this approach more viable and applicable to
realistic simulations. An alternative would be to introduce stochas-
ticity in parameters within existing calving parameterizations such
as the Von Mises calving law, a calving law based on a thresh-
old in local glacier stress (Morlighem and others, 2016). This
approach would allow for dynamic feedback between calving rates
and glacier geometry, while still capturing the inherently stochastic
nature of glacier calving behavior.

5. Conclusion

Stochastic parameterizations of glaciological processes, like calv-
ing, in large-scale ice sheet models can be used to quantify the
effects of internal variability in such a process on ice sheet sim-
ulations. In this study, we treat calving as a stochastic process in
a marine-terminating glacier system to better understand how to
implement such parameterizations in ice sheet models, and the
effect of representing this internal variability on the glacier system.
We demonstrate that stochastic calving can be readily incorpo-
rated into viscous ice sheet models with long time steps through
the use of binomial or Gaussian random processes, without the
need to resolve individual calving events. Results from this study
also show that stochastic calving parameterization changes the
mean glacier state in glaciers with buttressing ice shelves. This
indicates that the retreat of ice shelf calving fronts is the result
of both the mean size and frequency of calving events. We also
find that for calving styles expected in tidewater glaciers, smaller
events dominate the mass flux and strongly influence the glacier
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state. This new approach to modeling calving provides a frame-
work for implementing stochastic calving capabilities in large-scale
ice sheet models, which should improve our capability to make
accurate predictions of future ice sheet change with quantified
uncertainties.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/j0g.2025.10056.
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