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Shadowing, sensitivity and entropy points
Noriaki Kawaguchi

Abstract. For continuous self-maps of compact metric spaces, we explore the relation-
ship among the shadowable points, sensitive points, and entropy points. Speci�cally,
we show that (1) if the set of shadowable points is dense in the phase space, then any
interior point of the set of sensitive points is an entropy point; and (2) if the topologi-
cal entropy is zero, then the denseness of the set of shadowable points is equivalent to
almost chain continuity. In addition, we present a counter-example to a question raised
by Ye and Zhang regarding entropy points.

1 Introduction

Shadowing is an important concept in the theory of dynamical systems. It
was initially introduced in the context of hyperbolic di�erentiable dynamics
[3, 5] and generally refers to a situation in which coarse orbits, or pseudo-
orbits, are approximated by true orbits. For background on the shadowing
theory, we refer the reader to the monograph [4]. In [15], by localizing global
shadowing into pointwise shadowings, Morales introduced the notion of shad-
owable points. In [11], a shadowable point that is also an entropy point of a
certain type is characterized by the structure of pseudo-orbits. In this paper,
we discuss the relationship among the shadowable points, sensitive points,
and entropy points. For instance, one of the main results is that if the set
of shadowable points is dense in the phase space, then any point located in
the interior of the set of sensitive points is an entropy point (Theorem 1.2).
Another result is that if the topological entropy is zero, then the denseness of
the set of shadowable points is equivalent to almost chain continuity (Theorem
1.3). In contrast to [11], a particular focus of this paper is on the terminal
chain components. We also present a counter-example to a question raised by
Ye and Zhang [17] regarding entropy points.

We begin by de�ning shadowable points. Throughout, X denotes a compact
metric space endowed with a metric d.

De�nition 1.1. Let f : X → X be a continuous map and let ξ = (xi)i≥0 be
a sequence of points in X. For δ > 0, ξ is called a δ-pseudo orbit of f if
d( f (xi), xi+1) ≤ δ for all i ≥ 0. For ϵ > 0, ξ is said to be ϵ-shadowed by x ∈ X
if d( f i(x), xi) ≤ ϵ for all i ≥ 0. We say that x ∈ X is a shadowable point for
f if for any ϵ > 0, there is δ > 0 such that every δ-pseudo orbit (xi)i≥0 of

2020 Mathematics Subject Classi�cation: 37B40, 37B65, 37D45.
Keywords: shadowing, sensitivity, entropy, chain continuity, chain component.

2025/09/15 16:08

This is a ``preproof'' accepted article for Canadian Mathematical Bulletin
This version may be subject to change during the production process.
DOI: 10.4153/S0008439525101239

https://doi.org/10.4153/S0008439525101239 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525101239


2 N. Kawaguchi

f with x0 = x is ϵ-shadowed by some y ∈ X. We denote by Sh( f ) the set of
shadowable points for f .

For a topological space Z, a subset S of Z is called a Gδ-subset of Z if S is
a countable intersection of open subsets of Z.

Remark 1.1.(1) Let f : X → X be a continuous map. For any j, l ≥ 1, let Sj ,l

denote the set of x ∈ X such that there is an open neighborhood U of x for
which every 1

j -pseudo orbit (xi)i≥0 of f with x0 ∈ U is 1
l -shadowed by

some y ∈ X. We see that Sj ,l is an open subset of X for all j, l ≥ 1 and

Sh( f ) =
∩
l≥1

∪
j≥1

Sj ,l;

therefore, Sh( f ) is a Gδ-subset of X.
(2) A continuous map f : X → X is said to have the shadowing property if for

any ϵ > 0, there is δ > 0 such that every δ-pseudo orbit of f is ϵ-shadowed
by some point of X, which is equivalent to X = Sh( f ) (see Lemma 2.4 of [8]).

Sensitivity is a characteristic feature of chaotic dynamical systems. It is
an element of some formal de�nitions of chaos and intuitively means that
an arbitrarily small di�erence in initial conditions can be ampli�ed to be a
signi�cant di�erence in later states (see, e.g., [7] for an in-depth look at the
concept of sensitivity). The formal de�nition of sensitive points is as follows.

De�nition 1.2. Given a continuous map f : X → X and r > 0, x ∈ X is called
an r-sensitive point for f if for any ϵ > 0, there are y, z ∈ X and i ≥ 0 such that

max{d(x, y), d(x, z)} ≤ ϵ

and d( f i(y), f i(z)) > r. We denote by Senr ( f ) the set of r-sensitive points for
f . We also de�ne the set Sen( f ) of sensitive points for f by

Sen( f ) =
∪
r>0

Senr ( f ).

For a continuous map f : X → X, a subset S of X is said to be f -invariant
if f (S) ⊂ S.

Remark 1.2.(1) For any continuous map f : X → X and r > 0, Senr ( f ) is a
closed f -invariant subset of X.

(2) A continuous map f : X → X is said to be sensitive if X = Senr ( f ) for
some r > 0.

Next, we recall the de�nition of entropy points. Note that the positive
topological entropy is another characteristic feature of chaotic dynamical sys-
tems. The notion of entropy points is obtained by a concentration of positive
topological entropy at a point [17].

Let f : X → X be a continuous map. For n ≥ 1 and r > 0, a subset E of X
is said to be (n,r)-separated if

max
0≤i≤n−1

d( f i(x), f i(y)) > r
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Shadowing, sensitivity and entropy points 3

for all x, y ∈ E with x , y. Let K be a subset of X. For n ≥ 1 and r > 0, let
sn( f ,K,r) denote the largest cardinality of an (n,r)-separated subset of K. We
de�ne h( f ,K,r) and h( f ,K) by

h( f ,K,r) = lim sup
n→∞

1

n
log sn( f ,K,r)

and

h( f ,K) = lim
r→0

h( f ,K,r).

The topological entropy htop( f ) of f is de�ned by htop( f ) = h( f ,X).
De�nition 1.3. Let f : X → X be a continuous map. For x ∈ X, let K(x) denote
the set of closed neighborhoods of x.

(1) Ent( f ) is the set of x ∈ X such that h( f ,K) > 0 for all K ∈ K(x).
(2) For r > 0, Entr ( f ) is the set of x ∈ X such that h( f ,K,r) > 0 for all

K ∈ K(x).
(3) For r, b > 0, Entr ,b( f ) is the set of x ∈ X such that h( f ,K,r) ≥ b for all

K ∈ K(x).
Remark 1.3. The following properties hold

� Ent( f ), Entr ( f ), r > 0, and Entr ,b( f ), r, b > 0, are closed f -invariant
subsets of X,

�

Ent( f ) ⊃ Entr ( f ) ⊃ Entr ,b( f )
for all r, b > 0,

� for any closed subset K of X and r > 0, if h( f ,K,r) > 0, then K∩Entr ( f ) , ∅,
� for any closed subset K of X and r, b > 0, if h( f ,K,r) ≥ b, then

K ∩ Entr ,b( f ) , ∅.
Remark 1.4. Note that Entr ( f ) ⊂ Senr ( f ) for all r > 0.

Chain components, which appear in the (so-called) fundamental theorem of
dynamical systems by Conley, are essential objects for a global understanding
of dynamical systems [6]. Let us recall the de�nition of chain components.

De�nition 1.4. Given a continuous map f : X → X and δ > 0, a �nite sequence
(xi)ki=0 of points in X, where k > 0 is a positive integer, is called a δ-chain of
f if d( f (xi), xi+1) ≤ δ for every 0 ≤ i ≤ k − 1. For any x, y ∈ X, the notation
x → y means that for every δ > 0, there is a δ-chain (xi)ki=0 of f with x0 = x
and xk = y. The chain recurrent set CR( f ) for f is de�ned by

CR( f ) = {x ∈ X : x → x}.

We de�ne a relation ↔ in

CR( f )2 = CR( f ) × CR( f )

by: for any x, y ∈ CR( f ), x ↔ y if and only if x → y and y → x. Note that
↔ is a closed equivalence relation in CR( f )2 and satis�es x ↔ f (x) for all
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4 N. Kawaguchi

x ∈ CR( f ). An equivalence class C of ↔ is called a chain component for f .
We denote by C( f ) the set of chain components for f .

Remark 1.5. The following properties hold

� CR( f ) = ⊔
C∈C( f ) C, a disjoint union,

� every C ∈ C( f ) is a closed f -invariant subset of CR( f ),
� for all C ∈ C( f ), f |C : C → C is chain transitive, i.e., for any x, y ∈ C and
δ > 0, there is a δ-chain (xi)ki=0 of f |C with x0 = x and xk = y.

Following [2], we de�ne the terminal chain components as follows.

De�nition 1.5. Given a continuous map f : X → X, we say that a closed f -
invariant subset S of X is chain stable if for any ϵ > 0, there is δ > 0 such that
every δ-chain (xi)ki=0 of f with x0 ∈ S satis�es d(xk,S) = infy∈S d(xk, y) ≤ ϵ . We
say that C ∈ C( f ) is terminal if C is chain stable. We denote by Cter( f ) the
set of terminal chain components for f .

The following lemma is from [10].

Lemma 1.1 ([10, Lemma 2.1]). Let f : X → X be a continuous map. For any
x ∈ X, there are C ∈ Cter( f ) and y ∈ C such that x → y.

Given a continuous map f : X → X and x ∈ X, the ω-limit set ω(x, f ) of x
for f is de�ned as the set of y ∈ X such that

lim
j→∞

f i j (x) = y

for some sequence 0 ≤ i1 < i2 < · · · . Note that ω(x, f ) is a closed f -invariant
subset of X and satis�es

lim
i→∞

d( f i(x),ω(x, f )) = 0.

Since we have y → z for all y, z ∈ ω(x, f ), there is an unique C(x, f ) ∈ C( f )
such that ω(x, f ) ⊂ C(x, f ) and so

lim
i→∞

d( f i(x),C(x, f )) = 0.

The �rst result of this paper is the following theorem. For a subset S of
a topological space Z, S and int[S] denote the closure and the interior of S
respectively.

Theorem 1.1. Let f : X → X be a continuous map. For any x ∈ Sh( f ) and
r > 0,

(1) if C(x, f ) ∈ Cter( f ) and x ∈ Senr ( f ), then x ∈ Ents( f ) for all 0 < s < r,
(2) if x ∈ int[Senr ( f )], then x ∈ Ents( f ) for all 0 < s < r.

The next lemma is a consequence of the Baire category theorem. The proof
is left as an exercise for the reader.

Lemma 1.2. Let Z be a complete metric space. Every sequence Aj , j ≥ 1, of

closed subsets of Z satis�es int[∪j≥1 Aj] =
∪

j≥1 int[Aj].
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By Theorem 1.1 and Lemma 1.2, we obtain the following theorem.

Theorem 1.2. Given a continuous map f : X → X, if X = Sh( f ), then

int[Sen( f )] ⊂ Ent( f ).

Proof Letting (rj)j≥1 be a sequence of numbers with 0 < r1 > r2 > · · · and
limj→∞ rj = 0, we have

Sen( f ) =
∪
j≥1

Senrj ( f ).

We take a sequence (sj)j≥1 of numbers such that 0 < sj < rj for all j ≥ 1. By
Theorem 1.1, we have

int[Senrj ( f )] ∩ Sh( f ) ⊂ Entsj ( f )

for all j ≥ 1. Note that an open subset U of X and a subset B of X satisfy

U ∩ B ⊂ U ∩ B.

By X = Sh( f ), we obtain

int[Senrj ( f )] = int[Senrj ( f )]∩Sh( f ) ⊂ int[Senrj ( f )] ∩ Sh( f ) ⊂ Entsj ( f ) = Entsj ( f )

for all j ≥ 1. With the aid of Lemma 1.2, we obtain

int[Sen( f )] = int[
∪

j≥1
Senrj ( f )] =

∪
j≥1

int[Senrj ( f )] ⊂
∪

j≥1
Entsj ( f ) ⊂ Ent( f );

thus, the theorem has been proved. ■

Given a continuous map f : X → X, we say that x ∈ X is

� an equicontinuity point for f if for any ϵ > 0, there is δ > 0 such that
every y ∈ X with d(x, y) ≤ δ satis�es

sup
i≥0

d( f i(x), f i(y)) ≤ ϵ,

� a chain continuity point for f [1] if for any ϵ > 0, there is δ > 0 such that
every δ-pseudo orbit (xi)i≥0 of f with x0 = x is ϵ-shadowed by x, i.e.,
satis�es

sup
i≥0

d( f i(x), xi) ≤ ϵ .

We denote by EC( f ) (resp. CC( f )) the set of equicontinuity (resp. chain
continuity) points for f . By

EC( f ) = X \ Sen( f ) =
∩
j≥1

[X \ Senj−1 ( f )],

we see that EC( f ) is a Gδ-subset of X. It is easy to see that

CC( f ) = Sh( f ) ∩ EC( f )
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6 N. Kawaguchi

and so CC( f ) is a Gδ-subset of X. We say that f is almost chain continuous
if CC( f ) is a dense (Gδ-)subset of X.

Theorem 1.3. For a continuous map f : X → X, if htop( f ) = 0, then the
following conditions are equivalent:

(A) X = Sh( f ),
(B) f is almost chain continuous.

Proof The implication (A) =⇒ (B): Since Sh( f ) is a Gδ-subset of X, if X =
Sh( f ), then Sh( f ) is a dense Gδ-subset of X. Due to Theorem 1.2, if X = Sh( f )
and

int[Sen( f )] , ∅,
then Ent( f ) , ∅ and so htop( f ) > 0. By X = Sh( f ) and htop( f ) = 0, we obtain

int[Sen( f )] = ∅;

therefore, EC( f ) = X \Sen( f ) is a dense Gδ-subset of X. By the Baire category
theorem, we conclude that

CC( f ) = Sh( f ) ∩ EC( f )

is a dense Gδ-subset of X.
The implication (B) =⇒ (A) is a direct consequence of the inclusion

CC( f ) ⊂ Sh( f ). ■

Remark 1.6. By Theorem 1.3, if a continuous map f : X → X satis�es
htop( f ) = 0 and X = Sh( f ), i.e., the shadowing property, then f is almost
chain continuous. An alternative proof of this can be given as follows.

Proof By Theorem A.1, for a continuous map f : X → X and x ∈ X, x ∈
CC( f ) holds exactly if C(x, f ) ∈ Cter( f ) and CC( f |C(x, f )) = C(x, f ). Every
continuous map f : X → X satis�es CR( f |CR( f )) = CR( f ) and

C( f ) = C( f |CR( f )) = Cter( f |CR( f )).

Assume that htop( f ) = 0 and X = Sh( f ). By Theorem B.1, X = Sh( f ) implies
CR( f ) = Sh( f |CR( f )). If Sen( f |CR( f )) , ∅, by taking x ∈ Sen( f |CR( f )) and C ∈
C( f ) with x ∈ C, we obtain C(x, f |CR( f )) = C and x ∈ Senr ( f |CR( f )) for some
r > 0. By C ∈ Cter( f |CR( f )) and Theorem 1.1, we obtain x ∈ Ents( f |CR( f )) for all
0 < s < r and so htop( f ) > 0, a contradiction. It follows that Sen( f |CR( f )) = ∅;
thus, EC( f |CR( f )) = CR( f ). We obtain

CC( f |CR( f )) = Sh( f |CR( f )) ∩ EC( f |CR( f )) = CR( f )

(cf. Corollary 6 of [14]). This implies that CC( f |C) = C for all C ∈ C( f ). As a
consequence, if htop( f ) = 0 and X = Sh( f ), then

CC( f ) = {x ∈ X : C(x, f ) ∈ Cter( f )}.
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On the other hand, by Theorem 1.1 of [12], X = Sh( f ) implies that

{x ∈ X : C(x, f ) ∈ Cter( f )}

is a dense Gδ-subset X. By these conditions, we conclude that CC( f ) is a
dense Gδ-subset X, i.e., f is almost chain continuous. ■

Let f : X → X be a continuous map. For δ,r > 0 and n ≥ 1, we say that two
δ-chains (xi)ni=0, (yi)ni=0 of f is (n,r)-separated if d(xi, yi) > r for some 0 ≤ i ≤ n.
Let

sn( f ,X,r, δ)
denote the largest cardinality of a set of pairwise (n,r)-separated δ-chains of
f . The next lemma is from [13].

Lemma 1.3 (Misiurewicz).

htop( f ) = lim
r→0

lim
δ→0

lim sup
n→∞

1

n
log sn( f ,X,r, δ).

Let f : X → X be a continuous map. Following [17], we de�ne the set
Entup( f ) of uniform entropy points for f by

Entup( f ) =
∪

r ,b>0

Entr ,b( f ).

Note that

Ent( f ) = Entup( f ).
The following lemma can be proved by Lemma 1.3 and a similar argument

as in the proof of Theorem 1.2 in [11]. Note that the `only if' part is rather
trivial.

Lemma 1.4. For a continuous map f : X → X and C ∈ Cter( f ), htop( f |C) > 0
holds if and only if C ∩ Entup( f ) , ∅.

The following lemma is proved in [11] (see Lemma 1.2 and Lemma 3.1 of
[11]).

Lemma 1.5. Let f : X → X be a continuous map. Let x, y ∈ X and r, b > 0. If
x → y, then

(1) x ∈ Sh( f ) implies y ∈ Sh( f ),
(2) x ∈ Sh( f ) and y ∈ Entr ( f ) imply x ∈ Ents( f ) for all 0 < s < r,
(3) x ∈ Sh( f ) and y ∈ Entr ,b( f ) imply x ∈ Ents,b( f ) for all 0 < s < r.

By using Lemma 1.1, Lemma 1.4, and Lemma 1.5, we obtain the following
theorem.

Theorem 1.4. For a continuous map f : X → X, if X = Sh( f ), then the
following conditions are equivalent:

(A) X = Entup( f ),
(B) htop( f |C) > 0 for all C ∈ Cter( f ).
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Proof The implication (A) =⇒ (B) is a direct consequence of Lemma 1.4.
The implication (B) =⇒ (A): Due to Lemma 1.1, for any x ∈ X, there

are C ∈ Cter( f ) and y ∈ C such that x → y. By htop( f |C) > 0, we obtain
z ∈ Entr ,b( f ) for some z ∈ C and r, b > 0. Since y, z ∈ C, we have y → z.
This with x → y implies x → z. By x ∈ Sh( f ) and Lemma 1.5, we obtain
x ∈ Ents,b( f ) for all 0 < s < r; thus, x ∈ Entup( f ). Since x ∈ X is arbitrary, we
conclude that X = Entup( f ). ■

We recall the de�nition of C-entropy points from [17]. For a continuous
map f : X → X and an open cover U of X, let h( f ,U) denote the entropy of
f relative to U (see [16] for details). We say that (x, y) ∈ X2 with x , y is an
entropy pair for f if for any closed neighborhoods A of x and B of y,

h( f , {X \ A,X \ B}) > 0

whenever A ∩ B = ∅. We denote by E2( f ) the set of entropy pairs for f . We
say that x ∈ X is a C-entropy point for f if (x, y) ∈ E2( f ) for some y ∈ X with
x , y. Let E1( f ) denote the set of C-entropy points for f . By Theorem 3.4 of
[17], we know that E1( f ) ⊂ Ent( f ). In [17], Ye and Zhang raised the following
question.

Question ([17, Question 6.11]). Does E1( f ) ⊂ Entup( f ) hold for any homeo-
morphism f : X → X?

In Section 3, we present an example of a homeomorphism f : X → X with
the following properties

(1) X = Sh( f ),
(2) there exists C ∈ Cter( f ) such that C is an in�nite set and satis�es

C ⊂ E1( f ) \ Entup( f ).

This paper consists of three sections and three appendices. In the next
section, we prove Theorem 1.1. In Section 3, we present the example just
mentioned above. In Appendix A, we prove Theorem A.1. In Appendices B
and C, Theorems B.1 and C.1 are proved.

2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. For the proof, we need a few lemmas.
Let f : X → X be a continuous map. For a closed f -invariant subset S of

X and r > 0, we denote by Sen∗r ( f |S) the set of x ∈ S such that for any δ > 0,
there are δ-chains (xi)ki=0, (yi)ki=0 of f |S with x0 = y0 = x and d(xk, yk) > r. For
x ∈ X and ϵ > 0, let Bϵ (x) denote the closed ϵ-ball centered at x: Bϵ (x) = {y ∈
X : d(x, y) ≤ ϵ}.

Lemma 2.1. Let f : X → X be a continuous map and let C ∈ C( f ). For any
x ∈ C and r > 0, if

x ∈ Sh( f ) ∩ Sen∗r ( f |C),
then x ∈ Ents( f ) for all 0 < s < r.
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Proof We �x s, ϵ > 0 such that s + 2ϵ < r. By x ∈ Sh( f ), we obtain δ > 0
such that every δ-pseudo orbit (xi)i≥0 of f with x0 = x is ϵ-shadowed by some
y ∈ X. Since x ∈ Sen∗r ( f |C), there is a pair

(α0, α1) = ((x(0)i )ki=0, (x
(1)
i )ki=0)

of δ-chains of f |C such that x(0)0 = x(1)0 = x and d(x(0)
k
, x(1)

k
) > r. Since

x, x(0)
k
, x(1)

k
∈ C, we have x(0)

k
→ x and x(1)

k
→ x; therefore, there is a pair

(β0, β1) = ((y(0)i )li=0, (y
(1)
i )mi=0)

of δ-chains of f such that y
(0)
0 = x(0)

k
, y

(1)
0 = x(1)

k
, and y

(0)
l
= y

(1)
m = x. Let

n = 2k + l + m and let

(γ0, γ1) = (α0β0α1β1, α1β1α0β0) = ((z(0)i )ni=0, (z
(1)
i )ni=0),

a pair of δ-chains of f . Note that z(0)0 = z(1)0 = z(0)n = z(1)n = x and

d(z(0)
k
, z(1)

k
) = d(x(0)

k
, x(1)

k
) > r .

For any N ≥ 1 and u = (u j)Nj=1 ∈ {0,1}N , let

γu = (w(u)
i )nNi=0 = γu1

γu2
· · · γuN ,

a δ-chain of f . Since w
(u)
0 = x, by the choice of δ, we have xu ∈ X such that

d( f i(xu),w(u)
i ) ≤ ϵ

for all 0 ≤ i ≤ nN. Note that

d(x, xu) = d(w(u)
0 , xu) ≤ ϵ

and so xu ∈ Bϵ (x) for all u ∈ {0,1}N . For any u, v ∈ {0,1}N , u , v implies
u j , vj and so

d( f k+(j−1)n(xu), f k+(j−1)n(xv)) ≥ d(w(u)
k+(j−1)n,w

(v)
k+(j−1)n) − 2ϵ

= d(z(0)
k
, z(1)

k
) − 2ϵ > r − 2ϵ > s

for some 1 ≤ j ≤ N. It follows that {xu : u ∈ {0,1}N } is an (nN, s)-separated
subset of Bϵ (x) with

|{xu : u ∈ {0,1}N }| = 2N .

Since N ≥ 1 is arbitrary, we obtain

h( f ,Bϵ (x), s) ≥ lim sup
N→∞

1

nN
log snN ( f ,Bϵ (x), s)

≥ lim sup
N→∞

1

nN
log 2N =

1

n
log 2 > 0.

Since ϵ > 0 with s + 2ϵ < r is arbitrary, we conclude that x ∈ Ents( f ),
completing the proof of the lemma. ■
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Lemma 2.2. Let f : X → X be a continuous map and let C ∈ Cter( f ). For any
x ∈ C and r > 0, x ∈ Senr ( f ) implies x ∈ Sen∗s( f |C) for all 0 < s < r.

Proof Since x ∈ C and C ∈ Cter( f ), for any ϵ > 0, there is γ > 0 such that
every γ-chain (xi)ki=0 of f with x0 = x satis�es

d(xi,C) ≤ ϵ

for all 0 ≤ i ≤ k. By x ∈ Senr ( f ), we obtain a pair

((x(0)i )ki=0, (x
(1)
i )ki=0)

of γ-chains of f with x(0)0 = x(1)0 = x and d(x(0)
k
, x(1)

k
) > r. For each j ∈ {0,1},

we take a sequence y
(j)
i ∈ C, 0 ≤ i ≤ k, with y

(j)
0 = x(j)0 = x and

d(x(j)i , y
(j)
i ) = d(x(0)i ,C) ≤ ϵ

for all 0 < i ≤ k. For every δ > 0, if ϵ, γ > 0 are su�ciently small, then

((y(0)i )ki=0, (y
(1)
i )ki=0)

is a pair of δ-chains of f |C such that y
(0)
0 = y

(1)
0 = x and d(y(0)

k
, y

(1)
k
) > s. This

implies x ∈ Sen∗s( f |C); therefore, the lemma has been proved. ■

By using these lemmas, we prove Theorem 1.1.

Proof (1): We take ϵ > 0 such that s + 2ϵ < r. Let y ∈ ω(x, f ). Since Senr ( f )
is a closed f -invariant subset of X, x ∈ Senr ( f ) implies ω(x, f ) ⊂ Senr ( f ). Note
that

ω(x, f ) ⊂ C(x, f ).
By C(x, f ) ∈ Cter( f ) and Lemma 2.2, we obtain

y ∈ Senr ( f ) ∩ C(x, f ) ⊂ Sen∗s+2ϵ ( f |C(x, f )).

Note that y ∈ ω(x, f ) implies x → y. By x ∈ Sh( f ) and Lemma 1.5, we obtain
y ∈ Sh( f ) and so

y ∈ Sh( f ) ∩ Sen∗s+2ϵ ( f |C(x, f )).
This with Lemma 2.1 implies y ∈ Ents+ϵ ( f ). By x → y, x ∈ Sh( f ), and Lemma
1.5, we conclude that x ∈ Ents( f ).

(2): Due to Lemma 1.1, there are C ∈ Cter( f ) and y ∈ C such that x → y.
Let (ϵj)j≥1 be a sequence of numbers with 0 < ϵ1 > ϵ2 > · · · and limj→∞ ϵj = 0.
By x ∈ Sh( f ), for each j ≥ 1, we have δj > 0 such that every δj-pseudo orbit
(xi)i≥0 of f with x0 = x is ϵj-shadowed by some z ∈ X. Since x → y, for each

j ≥ 1, there is a δj-chain (x(j)i )k ji=0 of f with x(j)0 = x and x(j)
k j
= y. We obtain a

sequence xj ∈ X, j ≥ 1, such that

d( f i(xj), x(j)i ) ≤ ϵj
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for all j ≥ 1 and 0 ≤ i ≤ k j . Note that

d(xj, x) = d(xj, x(j)0 ) ≤ ϵj
and

d( f k j (xj), y) = d( f k j (xj), x(j)k j
) ≤ ϵj

for all j ≥ 1. Since x ∈ int[Senr ( f )], we have xj ∈ Senr ( f ) for all j large enough.
Since Senr ( f ) is a closed f -invariant subset of X, it follows that f k j (xj) ∈
Senr ( f ) for all j large enough; thus, by limj→∞ f k j (xj) = y, we obtain

y ∈ Senr ( f ) ∩ C.

Note that C ∈ Cter( f ), x → y, and x ∈ Sh( f ). The rest of the proof is similar
to that of (1). ■

3 Example

In this section, we present an example of a homeomorphism f : X → X with
the following properties

(1) X = Sh( f ),
(2) there exists C ∈ Cter( f ) such that C is an in�nite set and satis�es

C ⊂ E1( f ) \ Entup( f ).

The following example is taken from [10]. We modify Example 4.3 of [10]
to obtain the homeomorphism.

Example 3.1. Let σ : [−1,1]Z → [−1,1]Z be the shift map, i.e.,

σ(x)n = xn+1

for all x = (xn)n∈Z and n ∈ Z. Let d be the metric on [−1,1]Z de�ned by

d(x, y) = sup
n∈Z

2−|n | |xn − yn |

for all x = (xn)n∈Z, y = (yn)n∈Z ∈ [−1,1]Z. We �x a sequence s = (sk)k≥1 of
numbers with 0 < s1 < s2 < · · · and limk→∞ sk = 1. Put

S = {−1,1} ∪ {−sk : k ≥ 1} ∪ {sk : k ≥ 1},

a closed subset of [−1,1].
We de�ne a closed σ-invariant subset X of SZ by for any x = (xn)n∈Z ∈ SZ,

x ∈ X if and only if the following conditions are satis�ed

� |xn | ≤ |xn+1 | for all n ∈ Z,
� for any n ∈ Z and k ≥ 1, if xn = sk , then xn+j = −sk for all 1 ≤ j ≤ k,
� for every n ∈ Z, if xn = 1, then xn+j = −1 for all j ≥ 1.

We de�ne z = (zn)n∈Z and z(m) = (z(m)
n )n∈Z, m ∈ Z, as follows.

� zn = −1 for all n ∈ Z,
� z(m)

m = 1 for all m ∈ Z,
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� z(m)
n = −1 for all m,n ∈ Z with m , n.

Let f = σ |X : X → X, Xk = X ∩ {−sk, sk}Z, k ≥ 1, and let

X∞ = X ∩ {−1,1}Z = {z} ∪ {z(m) : m ∈ Z}.

A similar argument as in Example 4.3 of [10] shows that

CR( f ) = {x = (xn)n∈Z ∈ X : |xn | = |xn+1 | for all n ∈ Z} = X∞ ∪
∪
k≥1

Xk

and C( f ) = {X∞} ∪ {Xk : k ≥ 1}. Note that Cter( f ) = {X∞}.
Similarly as in Example 4.3 of [10], by taking a sequence s = (sk)k≥1 that

rapidly converges to 1, we can show that X = Sh( f ), i.e., f has the shadowing
property. Since X∞ ∈ Cter( f ) and htop( f |X∞ ) = 0, by Lemma 1.4, we obtain

X∞ ∩ Entup( f ) = ∅.

Note that the sequence Xk , k ≥ 1, satis�es

lim
k→∞

Xk = X∞

with respect to the Hausdor� distance. For every k ≥ 1, since Xk is a mixing
subshift of �nite type, f |Xk

is mixing and satis�es the shadowing property.
This implies that for every k ≥ 1, f |Xk

has uniformly positive entropy (upe)
and so satis�es

(x, y) ∈ E2( f )
for all x, y ∈ Xk with x , y (see, e.g., [9] for details). Given any u, v ∈ X∞ with
u , v, by taking two sequences (xk)k≥1, (yk)k≥1 such that

� xk, yk ∈ Xk and xk , yk for all k ≥ 1,
� limk→∞ xk = u and limk→∞ yk = v,

we obtain (u, v) ∈ E2( f ). It follows that X∞ ⊂ E1( f ); thus, this example satis�es
the desired properties.

A

In this Appendix A, we prove the following theorem.

Theorem A.1. Let f : X → X be a continuous map. Let x ∈ X and C = C(x, f ).
The following conditions are equivalent:

(A) x ∈ CC( f ),
(B) C ∈ Cter( f ) and C ⊂ CC( f ),
(C) C ∈ Cter( f ) and CC( f |C) = C,
(D) C ∈ Cter( f ) and CC( f |C) , ∅.

For the proof, we need several lemmas.

Lemma A.1. For a continuous map f : X → X and x, y ∈ X, if x ∈ CC( f ) and
x → y, then y ∈ CC( f ).
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Proof Let ϵ > 0. By x ∈ CC( f ), we have δ > 0 such that every δ-pseudo
orbit (xi)i≥0 of f with x0 = x is ϵ-shadowed by x. Let ξ = (yi)i≥0 be a δ-
pseudo orbit of f with y0 = y. We �x a sequence (δj)j≥1 of numbers with
δ ≥ δ1 > δ2 > · · · and limj→∞ δj = 0. Since x → y, for every j ≥ 1, there is

a δj-chain αj = (x(j)i )k ji=0 of f with x(j)0 = x and x(j)
k j
= y. By x ∈ CC( f ) and

limj→∞ δj = 0, we obtain limj→∞ f k j (x) = y. For each j ≥ 1, let

ξj = (y(j)i )i≥0 = αjξ,

a δ-pseudo orbit of f . Given any j ≥ 1, since y
(j)
0 = x(j)0 = x, we have

sup
i≥0

d( f i(x), y(j)i ) ≤ ϵ

which implies

sup
i≥0

d( f i( f k j (x)), yi) = sup
i≥0

d( f i+k j (x), y(j)
i+k j

) ≤ ϵ .

Letting j → ∞, we obtain

sup
i≥0

d( f i(y), yi) ≤ ϵ .

Since ξ is arbitrary, we conclude that y ∈ CC( f ), proving the lemma. ■

Lemma A.2. For a continuous map f : X → X and C ∈ C( f ), if C∩CC( f ) , ∅,
then C ∈ Cter( f ).

Proof Let x ∈ C ∩ CC( f ). Let y ∈ C, z ∈ X and y → z. By x, y ∈ C, we have
x → y. By x → y and y → z, we obtain x → z. Since x ∈ CC( f ), this implies
z ∈ C; thus, we conclude that C ∈ Cter( f ). ■

Lemma A.3. Let f : X → X be a continuous map and let C ∈ C( f ). If C ∈
Cter( f ), then CC( f |C) ⊂ CC( f ).

Proof Let x ∈ CC( f |C) and ϵ > 0. By x ∈ CC( f |C), we have δ > 0 such
that every δ-pseudo orbit (xi)i≥0 of f |C with x0 = x is ϵ-shadowed by x. Let
0 < β ≤ ϵ . Since C ∈ Cter( f ) and x ∈ C, there is γ > 0 such that every
γ-pseudo orbit ξ = (yi)i≥0 of f with y0 = x satis�es

sup
i≥0

d(yi,C) ≤ β.

If β, γ > 0 are su�ciently small, then by letting x0 = x and taking xi ∈ C,
i > 0, such that

d(yi, xi) = d(yi,C) ≤ β
for all i > 0, we obtain a δ-pseudo orbit ξ ′ = (xi)i≥0 of f |C with x0 = x. It
follows that

sup
i≥0

d( f i(x), xi) ≤ ϵ
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and so

sup
i≥0

d( f i(x), yi) ≤ ϵ + β ≤ 2ϵ .

Since ξ is arbitrary, we obtain x ∈ CC( f ) and thus CC( f |C) ⊂ CC( f ), proving
the lemma. ■

Lemma A.4. Let f : X → X be a continuous map. Let x ∈ X and let C =
C(x, f ). If C ∈ Cter( f ) and CC( f |C) , ∅, then x ∈ CC( f ).

Proof Let y ∈ CC( f |C) and z ∈ ω(x, f ). By C ∈ Cter( f ) and Lemma A.3,
we obtain y ∈ CC( f ). Since ω(x, f ) ⊂ C, we have y, z ∈ C and so y → z. By
Lemma A.1, we obtain z ∈ CC( f ). Then, for any ϵ > 0, there is δ > 0 such
that every δ-pseudo orbit (xi)i≥0 of f with x0 = z is ϵ-shadowed by z. For
0 < β ≤ 2ϵ , we �x k > 0 with d(z, f k(x)) ≤ β. By continuity of f , we have
γ > 0 such that every γ-pseudo orbit ξ = (yi)i≥0 of f with y0 = x satis�es

sup
0≤i≤k

d( f i(x), yi) ≤ β

and so

d(z, yk) ≤ d(z, f k(x)) + d( f k(x), yk) ≤ 2β.

If β, γ > 0 are su�ciently small, then

(z, f k+1(x), f k+2(x), . . . )

and

(z, yk+1, yk+2, . . . )
are δ-pseudo orbits of f and so ϵ-shadowed by z, which implies

sup
i≥k+1

d( f i(x), yi) ≤ 2ϵ .

Note that

sup
0≤i≤k

d( f i(x), yi) ≤ β ≤ 2ϵ .

Since ξ is arbitrary, we conclude that x ∈ CC( f ), completing the proof. ■

By these lemmas, we prove Theorem A.1.

Proof The implication (A) =⇒ (B) is a consequence of Lemma A.1 and
Lemma A.2. (B) =⇒ (C) and (C) =⇒ (D) are obvious by de�nition. (D) =⇒
(A) is a consequence of Lemma A.4. This completes the proof of the theorem.

■

B

The aim of this Appendix B is to prove the following theorem.

Theorem B.1. Every continuous map f : X → X satis�es Sh( f ) ∩ CR( f ) ⊂
Sh( f |CR( f )).
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Let f : X → X be a continuous map. For x, y ∈ X and δ > 0, the notation
x →δ y means that there is a δ-chain (xi)ki=0 of f with x0 = x and xk = y. We
de�ne an equivalence relation ↔δ in

CR( f )2 = CR( f ) × CR( f )

by: for any x, y ∈ CR( f ), x ↔δ y if and only if x →δ y and y →δ x. It is easy
to see that x ↔δ f (x) for all x ∈ CR( f ). It is also not di�cult to see that
x ↔δ y for all x, y ∈ CR( f ) with d(x, y) ≤ δ.

Proof Let x ∈ Sh( f ) ∩ CR( f ). Then, for any ϵ > 0, we have δ > 0 such that
every δ-pseudo orbit (xi)i≥0 of f with x0 = x is ϵ-shadowed by some y ∈ X.
Let ξ = (xi)i≥0 be a δ-pseudo orbit of f |CR( f ) with x0 = x. For every i ≥ 0,
since d( f (xi), xi+1) ≤ δ, we have xi ↔δ f (xi) and f (xi) ↔δ xi+1; therefore,
xi ↔δ xi+1. This implies that x0 ↔δ xk for all k > 0. Then, for any k > 0,
there is a δ-chain (yi)li=0 of f with y0 = xk and yl = x0. Since

ξk = (x0, x1, . . . , xk−1, y0, y1, . . . , yl−1, x0, x1, . . . , xk−1, y0, y1, . . . , yl−1, . . . )

is a δ-pseudo orbit of f with x0 = x, letting

Xk = {x ∈ X : ξk is ϵ-shadowed by x},

we have Xk , ∅. Note that Xk is a closed f k+l-invariant subset of X. By taking
u ∈ Xk and v ∈ ω(u, f k+l), we obtain v ∈ Xk ∩CR( f k+l) ⊂ Xk ∩CR( f ) and thus

CR( f ) ∩
k−1∩
i=0

f −i(Bϵ (xi)) , ∅.

It follows that

CR( f ) ∩
∞∩
i=0

f −i(Bϵ (xi)) =
∩
k>0

(
CR( f ) ∩

k−1∩
i=0

f −i(Bϵ (xi))
)
, ∅,

i.e., ξ is ϵ-shadowed by some y ∈ CR( f ). Since ξ is arbitrary, we obtain
x ∈ Sh( f |CR( f )), proving the theorem. ■

C

In this Appendix C, we prove the following theorem (Theorem C.1) that is not
used elsewhere in this paper but illustrates how `shadowable points' localize
the concept of shadowing. Given a continuous map f : X → X and a subset S
of X, we say that f has the shadowing on S if for any ϵ > 0, there is δ > 0 such
that every δ-pseudo orbit (xi)i≥0 of f with xi ∈ S for all i ≥ 0 is ϵ-shadowed
by some x ∈ X.

Theorem C.1. Let f : X → X be a continuous map. A closed subset A of X
satis�es A ⊂ Sh( f ) if and only if there is a closed f -invariant subset S of X
such that

(1) A ⊂ S,
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(2) S is chain stable,
(3) f has the shadowing on S.

Proof First we prove the �if" part. Let x ∈ S and 0 < β ≤ ϵ . By (3), we have
δ > 0 such that every δ-pseudo orbit (xi)i≥0 of f with xi ∈ S for all i ≥ 0 is
ϵ-shadowed by some y ∈ X. By (2), there is γ > 0 such that every γ-pseudo
orbit ξ = (yi)i≥0 of f with y0 = x satis�es

sup
i≥0

d(yi,S) ≤ β.

If β, γ > 0 are su�ciently small, then by taking xi ∈ S, i ≥ 0, such that

d(yi, xi) = d(yi,S) ≤ β

for every i ≥ 0, we obtain a δ-pseudo orbit ξ ′ = (xi)i≥0 of f with xi ∈ S for all
i ≥ 0. It follows that

sup
i≥0

d( f i(y), xi) ≤ ϵ

and so

sup
i≥0

d( f i(y), yi) ≤ ϵ + β ≤ 2ϵ

for some y ∈ X. Since ξ is arbitrary, it follows that x ∈ Sh( f ) and thus
S ⊂ Sh( f ). By (1), we obtain A ⊂ Sh( f ).

Next we prove the �only if" part. Let

S = A ∪ {y ∈ X : x → y for some x ∈ A}.

Since A is closed in X and the relation → is closed in X2, S is a closed subset
of X. Note that z → f (z) for all z ∈ X. For any x ∈ A, we have x → f (x)
and so f (x) ∈ S. For any x ∈ A, y ∈ X with x → y, we have y → f (y) and
so x → f (y); therefore, f (y) ∈ S. It follows that S is f -invariant. Since y ∈ S
for all x ∈ S, y ∈ X with x → y, it also follows that S is chain stable. By
A ⊂ Sh( f ) and Lemma 2.1, we have S ⊂ Sh( f ). By using Lemma 2.4 in [8], we
conclude that f has the shadowing on S, completing the proof. ■
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