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Analysis of pathogenic variants from the ClinVar database
in healthy people using next-generation sequencing
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Summary

Next-generation sequencing (NGS) became an effective approach for finding novel causative genomic variants
of genetic disorders and is increasingly used for diagnostic purposes. Public variant databases that gather data
of pathogenic variants are being relied upon as a source for clinical diagnosis. However, research of patho-
genic variants using public databases data could be carried out not only in patients, but also in healthy peo-
ple. This could provide insights into the most common recessive disorders in populations. The study aim was
to use NGS and data from the ClinVar database for the identification of pathogenic variants in the exomes of
healthy individuals from the Lithuanian population. To achieve this, 96 exomes were sequenced. An average
of 42139 single-nucleotide variants (SNVs) and 2306 short INDELs were found in each individual exome.
Pooled data of study exomes provided a total of 243 192 unique SNVs and 31 623 unique short INDELs.
Three hundred and twenty-one unique SNVs were classified as pathogenic. Comparison of the European data
from the 1000 Genomes Project with our data revealed five pathogenic genomic variants that are inherited in
an autosomal recessive pattern and that statistically significantly differ from the European population data.

1. Introduction genome variants, are being relied upon as a source
for clinical diagnosis (Lindor et al., 2017). Too exces-
sive reliance on databases’ data, without additional

verification, raises concerns with regards to misinter-

Due to technological advances and dramatic sequen-
cing cost reduction, next-generation sequencing
(NGS) has been widely used for finding causative gen-

omic variants of genetic disorders. Many laboratories
use whole-exome sequencing due to the fact that
approximately 85% of all known genetic Mendelian
disorders affect protein-coding regions (Gilissen
et al., 2012). As exomes comprise approximately
only 1% of the whole genome, sequencing the exome
instead of the whole genome reduces diagnosis cost
and facilitates data analysis.

After acquiring sequencing data, public variant
databases, which gather data on known pathogenic
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pretation that may harm patients. According to Bell
et al. (2011), approximately 10% of disease-causing
mutations depicted in widely used databases are mis-
interpreted and such databases should be carefully
scrutinized. Nevertheless, public pathogenic variants
databases are a beneficial tool for interpretation of
sequencing data.

The usage of public databases may also be imple-
mented for pathogenic variants analysis in healthy
people. Such research could provide an insight into
the most common recessive disorders in a particular
population, hence providing possible benefits for
diagnostics.

The aim of this study was to use NGS and to apply
data from the ClinVar database for identification of
pathogenic variants in the exomes of healthy individuals


https://doi.org/10.1017/S0016672317000040

T. Rancelis et al.

from the Lithuanian population and to determine fre-
quency differences of pathogenic variants comparing
Lithuanian population data and other population
data. In order to achieve this, 96 self-reported healthy
individuals’ exomes were sequenced.

Analysis was also conducted on how well the cur-
rently available ClinVar database of pathogenic var-
iants is balanced for healthy individuals’ research,
since the efficiency of study results is highly dependent
on the accuracy of the data in the database (Landrum
et al., 2014).

2. Materials and methods
(1) Samples

This study is a part of a project called ‘Genetic diver-
sity of the population of Lithuania and changes of its
genetic structure related with evolution and common
diseases’ (acronym: LITGEN) (Uktveryté et al., 2013).
Sequencing data of 96 self-reported healthy unre-
lated individuals (equal male:female ratio) from the
Lithuanian population with at least three generations
living in Lithuania was used for the analysis. DNA
was extracted from venous blood using either the
phenol-chloroform method or MagneSil® Genomic,
Large Volume System (Promega Corp., USA) on
TECAN Freedom EVO® (Tecan, Switzerland).

(i1) Sequencing

The 5500 SOLiD™ System (Applied Biosystems;
Thermo Fisher Scientific, Inc., USA) was used to
sequence the samples. Sequencing was carried out
according to the manufacturer’s protocols (Thermo
Fisher Scientific, Inc., USA) using the SureSelect®T
Target Enrichment System (Agilent Technologies,
Inc., USA) or the TargetSeq™ Exome Enrichment
System (Life Technologies; Thermo Fisher Scientific,
Inc., USA). Using the 5500 SOLiD System, 75-bp
short-read sequences were generated.

(iii) Bioinformatic analysis

The SOLiD System uses a specific ligation-based
sequencing strategy and is colour-space encoded.
Since previous studies have shown that proprietary
software for the SOLiD System is most appropriate
for the computational pipeline of data generated by
the SOLiD System, LifeScope™ 2.5-1 genomic ana-
lysis software was used for mapping to reference gen-
ome and variant calling (PranckeviCiené et al., 2015).

Analysis of sequenced data showed that rate of
transitions/transversions was 2-2-2-8. These values
indicate that obtained data was not generated ran-
domly. In this study 80% of target exons were covered
at more than 20X.
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To achieve the overview of genomic variance in the
sample group representing the Lithuanian population,
the Genome Analysis Toolkit’s (GATK) Combine
Variants software was used to pool all 96 individuals’
.vef files (DePristo et al, 2011). The Integrative
Genomics Viewer (IGV) was used for visualization of
data (Thorvaldsdottir et al, 2013). Functional anno-
tation of genomic variants was performed by using
ANNOVAR and included frequencies of genomic var-
iants from the 1000 Genomes Project (1000G) and
The Exome Aggregation Consortium (ExAC) data-
bases and frequencies of pathogenic variants from
the ClinVar database (Wang et al., 2010).

Filtering processes were based on the ClinVar data-
base’s overall clinical significance of genome variants.
It includes both rare and common variants if they
were interpreted as pathogenic.

(iv) Statistics

Pathogenic variants with distribution not following
Hardy—Weinberg equilibrium, were excluded from
this study.

In the comparative frequency analysis of patho-
genic variants in the Lithuanian population study
group and of other population data (1000G, ExAC),
Fisher’s exact test was used.

3. Results and discussion

Each individual exome had an average of 42139
single-nucleotide variants (SNVs) and 2306 short
INDELSs (up to 19 nucleotide deletions, up to four
nucleotide insertions) that differed from the reference
genome (hgl9). In the 96 Lithuanian exomes that
were sequenced, 321 SNVs and 30 short INDELs
were identified that were classified as likely pathogenic
or pathogenic in the ClinVar database at least by one
submitter. Thirteen of them did not following Hardy—
Weinberg equilibrium, leaving 308 genome variants in
total. An average of 39 SNVs per individual exome
were indicated as likely pathogenic or pathogenic by
the ClinVar database (Table 1).

In the dataset of this study, 40 genomic variants that
were indicated as likely pathogenic or pathogenic by
ClinVar had 25% and higher frequencies in the 1000
G and ExAC data. Pathogenic variants with such
high frequency in the global population are highly ques-
tionable, and therefore these variants were excluded
from further analysis. Of all the genomic variants indi-
cated as likely pathogenic or pathogenic, 277 genomic
variants had a frequency lower than 25%, and 147 gen-
omic variants had a frequency lower or equal to 1% in
the 1000 G and ExAC data (Table 2).

A debatable issue is that there were individuals who
had homozygous genotypes for alleles identified as
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Table 1. The total number of genomic variants from 96 exomes and an average number of them in a single exome,
together with clinical significance provided by the ClinVar database.

Groups of clinical significance by ClinVar

Total genomic Non-pathogenic Likely Likely Pathogenic
variants non-pathogenic pathogenic
Genomic variants from 96 243192 SNVs 3983 SNVs 1374 SNVs 28 SN'Vs 280 SNVs
Lithuanian exomes 31623 INDELSs 85 INDELs 14 INDELs 5 INDELs 25INDELs
Genomic variants in 42139 SNVs 748 SNVs 317 SNVs 1 SNVs 39 SNVs
average exome 2306 INDELs 13 INDELSs 3 INDELs less than 1 less than 1

Table 2. Statistics of SNVs and short INDELs
considered as likely pathogenic or pathogenic in the
ClinVar database in self-reported healthy Lithuanian
individuals compared to other population data.

SNV

Frequency in 1000 G and ExAC <25% 277
Intronic variants 10
Splicing variants 6
Exonic variants 261
Nonsynonymous 250
Synonymous 11
Frequency in 1000 G and ExAC <1% 147
Intronic variants 2
Splicing variants 6
Exonic variants 138
Nonsynonymous 135
Synonymous 3
Short INDEL

Frequency in 1000 G and ExAC <25% 30
Intronic variants 2
Splicing variants -
Exonic variants 28
Frameshift variants 25
Nonframeshift variants 3
Frequency in 1000 G and EXAC <1% 24
Intronic variants 0
Splicing variants -
Exonic variants 24
Frameshift variants 23
Nonframeshift variants 1

pathogenic by ClinVar, meaning that these individuals
may have disease symptoms. Since data in this study is
acquired from self-reported healthy Lithuanian indivi-
duals, a possible explanation is that the pathogenic
variant causes a very subtle alteration, or that the
phenotype was not determined in detail, or that the
variant is incorrectly attributed as pathogenic. For
some pathogenic variants, this homozygous state is
seen both in our data and in the data of large-scale
population studies (Lek et al., 2016).

Pathogenic variants identified in Lithuanians were
grouped according to medical disease classification
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‘International Statistical Classification of Diseases and
Related Health Problems’ 10th revision (ICD-10). In
the Lithuanian individuals, the most common diseases
associated with the pathogenic variants studied are
endocrine, nutritional and metabolic diseases (which
account for 30-5% of diseases), diseases of the blood
and blood-forming organs, including disorders of
the immune mechanism (which account for 15-2% of
diseases), and congenital malformations, congenital
deformations and chromosomal abnormalities (which
account for 14-3% of diseases) (Table 3).

A relatively high number (7-6%) of diseases were of
ophthalmic origin. Further analysis showed that sev-
eral pathogenic genome variants related to ophthal-
mic diseases have a higher frequency in Lithuanian
individuals.

For further comparative analysis, if SNVs or short
INDELSs in the Lithuanian individuals were assigned
as pathogenic, then frequency comparison with other
population data from the ExAC and 1000 G projects
was performed. Comparison with ExAC data without
psychiatric cohorts (from 45376 unrelated indivi-
duals) showed that as many as 95 likely pathogenic
or pathogenic variants in our study differed in a stat-
istically significant manner from ExAC data. To
acquire more Lithuanian-specific pathogenic variants,
comparison with the 1000 G European data was per-
formed for all assigned pathogenic variants (1000
Genomes Project Consortium et al., 2012).

Pathogenic variants can have a very low frequency
and even in large-scale population studies can appear
in small numbers. Since a small number of alleles
cannot impartially represent a statistically significant
difference in the present study group or other popula-
tions, the criteria of a minimum of four alleles was set
for further analysis. Out of an overall 30 unique short
INDELS, 25 did not pass this requirement and the fre-
quency of the other five INDELs demonstrated no
statistically significant difference from the 1000 G
European data. The SNV comparison of pathogenic
variant frequencies in studied individuals with fre-
quencies of pathogenic variants from the genomic
data of Europeans identified five pathogenic genomic
variants that are inherited in an autosomal recessive
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Table 3. Classification of diseases potentially related to pathogenic variants in self-reported healthy Lithuanian

individuals.
Disease classification ICD-10 code Frequency in the
group Lithuanian group
Endocrine, nutritional and metabolic diseases E 30-5%
Diseases of the blood and blood-forming organs and certain D 15-2%
disorders involving the immune mechanism
Congenital malformations, congenital deformations and Q 14-3%
chromosomal abnormalities
Diseases of the eye and adnexa H 7-6%
Diseases of the nervous system G 6-7%
Diseases of the circulatory system I 6-7%
Diseases of the digestive system K 4-8%
Malignant neoplasms C 2:9%
Symptoms, signs, and abnormal clinical and laboratory R 2:9%
findings not classified elsewhere
Infectious diseases B 1-8%
Diseases of the musculoskeletal system and connective tissue M 1-8%
Diseases of the genitourinary system N 1-8%
Diseases of the ear and mastoid process H 1-0%
Diseases of the respiratory system J 1-0%
Complications of surgical and medical care not classified elsewhere T 1-0%

Table 4. dbSNP database codes of pathogenic variants which have autosomal recessive inheritance and which
frequencies statistically significantly differ in comparison of Lithuanian individuals’ data with 1000 Genomes

Project’s European data.

dbSNP Gene Disorder 1000G LTU Fisher
Genomic variants with statistically significantly higher frequencies in Lithuanian individuals

rs1800553 ABCA4 Stargardt disease 0-40 2-55 801 %1073
rs142181517 PHYKPL Phosphohydroxy lysinuria 0-40 3.57 521%x107*
rs113298164 LIPC Hepatic lipase deficiency 0-50 204 0-0447
rs34526199 AMPDI Muscle AMP deaminase deficiency 3-68 7-14 0-053
rs104895094 MEFV Familial Mediterranean Fever 0-55 6-63 116 x 107°

1000G: genomic variants’ frequency in 1000 Genomes Project, dbSNP: data from build 149 dbSNP database; Fisher: Fisher’s
exact test; LTU: genomic variants’ frequency in LITGEN project.

manner and have no conflicting interpretation in the
ClinVar database (Table 4).

In addition, another seven genome variants, which
are inherited in an autosomal recessive manner, show
a statistically significant difference; however, they
have conflicting interpretation in the ClinVar database.

4. Conclusions

The study results represent statistically significant dif-
ferences in frequencies of genomic variants between
individuals from the Lithuanian population and
other populations.

When the data of the present study was compared
with all EXAC project data, a statistically significant
difference was observed for 95 out of 308 likely patho-
genic or pathogenic variants, but most of them
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correlated with the frequencies of European data.
Comparison with the European data of the 1000
Genomes Project revealed five statistically significant
pathogenic variants that differed from the European
population data and have no conflicting interpretation
in the ClinVar database.

The study showed that whole-exome sequencing
and analysis of the general population is an effective
way to find pathogenic variants with statistically sign-
ificant differences in a particular population even if
the cohort studied is relatively small. This could be
valuable information for genetic counselling and
may benefit clinical diagnosis by focusing on the
specific variants that are more frequent in a particular
population.

Based on the present study data, ClinVar is curren-
tly the best freely available database of genomic var-
iants of different clinical significance. A considerable
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amount of the variants classified as pathogenic in
ClinVar have a high frequency in 1000 G and
ExAC. We observed a similar pattern in LITGEN
data.

Another matter of concern is that there were indivi-
duals who had homozygous genotypes for alleles iden-
tified as pathogenic, thus cautious interpretation of the
ClinVar data for pathogenic variants should be under-
taken by researchers and medical specialists.
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