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Abstract
Liquid crystal microwave phased arrays (LC-MPAs) are regarded as an ideal approach to real-
ize compact antennas owing to their advantages in cost, size, weight, and power consumption.
However, the shortcoming in low radiation deflection efficiency has been one of LC-MPAs’
main application limitations. To optimize the steering performance of LC-MPAs, it is essen-
tial to model the channel imperfections and compensate for the phase errors. In this paper,
a phase error estimation model is built by training a neural network to establish a nonlinear
relationship between the near-field phase error and the far-field pattern, hence realizing fast
calibration for LC-MPAs within several measured patterns. Simulations and experiments on
a 64-channel, two-dimensional planar antenna were conducted to validate this method. The
results show that this method offers precise phase error estimations of 3.58∘ on average, real-
izes a fast calibration process with several field-measured radiation patterns, and improves the
performances of the LC-MPA by approximately 4%–10% in deflection efficiency at different
steering angles.

Introduction

Microwave phased arrays (MPAs) have ubiquitous applications in wireless communications
due to their performances in precision, speed, and stability [1, 2]. However, traditional MPAs
consisting of transmitting and receiving components are costly, bulky, and energy-intensive,
limiting their wide applications in commercial markets [3]. In contrast, liquid crystal (LC)
MPAs, with advantages in size, weight, power consumption, and monetary cost, have become a
topical approach to realizing compact antennas in recent years [4]. LC has been widely used in
optical modulators [5–7], yet its application inMPA is still in its infancy. One of themain short-
comings of LC-MPAs is their low deflection efficiency. It is caused by various factors, including
manufacturing imperfections, channel crosstalk, and measurement errors [8]. All of these are
manifested as phase errors in the near-field phased array (PA) channels, resulting in decreased
deflection efficiency in the far-field radiation pattern.

There are two main approaches to MPAs’ performance optimization: improving devices’
design [9–12] and compensating for phase errors by adjusting the driving voltages applied to
each channel through control algorithms.Many control algorithms have been proposed,mainly
divided into two categories: iteration methods and noniteration methods. Iteration methods,
such as the stochastic parallel gradient descent (SPGD) algorithm [13], the particle swarm opti-
mization [14], and the genetic algorithm [15], use the real-time far-field radiation pattern as an
evaluation function to adjust the driving voltages iteratively. However, this approach is imprac-
tical for LC antennas since the response of LC phase shifters is relatively slow. It takes minutes
to measure a far-field pattern [16], and the time consumption for iteration will be unacceptable.
Therefore, noniteration methods, dispensing with the iteration process, and compensating for
the phase errors based on the model of the near-field phase aberrations [17] are more viable
for LC-MPAs, in which the precision of phase distortions is critical. Nonetheless, the near-
field phase errors can be neither directly measured nor mathematically modeled due to their
complexity and randomness.

Machine learning provides a promising solution to the model of phase aberrations. The
neural networks (NNs) have the ability to extract the nonlinear relations between input and
output datasets [18]. By adjusting the weights of nodes in different layers of the NN, a
phase estimation model that infers near-field phase error with the given far-field radiation
pattern is established, hence calibrating the LC-MPA. Many proposals have been reported
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Figure 1. Structure of the LC-MPA antenna.

to optimize the PA using NNs, such as the radial basis function
neural network in weather radar [19], the graph neural network in
communication systems [20], and the deep neural network in the
analysis and beamforming of power patterns [21].

In this paper, a fast phase calibration method is proposed
to optimize the steering performance of a 64-channel, two-
dimensional planar LC-MPA antenna. A phase error estimation
model is built by training an NN to establish a nonlinear relation-
ship between the near-field phase error and the far-field pattern.
Simulations show that thismodel offers precise phase error estima-
tions of 3.58∘ on average. Numerical simulation and experiments
were conducted to verify this method. The results show that the
calibration to the near-field phase aberrations is realized with sev-
eral measured far-field patterns, leading to a considerable increase
in the antenna’s deflection efficiency and laying a foundation for
LC-MPA’s in-situ optimization in practical application.

Method

Principle of LCmicrowave antennas

The LC-MPA used in the following simulations and experiments
is shown in Fig. 1, with a detailed structure of its patch antenna,
which consists of six layers [22]. The LC layer and the serpentine
microstrip combine to be an LC phase shifter. In the default state,
the LC permittivity is 𝜖r,⊥, and the directors of the nematic LC are
perpendicular to the polarization of the microwave field. When
a properly driven voltage is applied to the LC, the directors are
forced to orient parallel to it. When the driven voltage is higher
than the saturated voltage, the permittivity of LC is 𝜖r,∥. The maxi-
mum phase shift of an LC phase shifter is described as follows [23]:

ΔΦ = 2𝜋f
c0
L (√𝜖r,∥ − √𝜖r,⊥), (1)

where f is the center frequency, L is the length of the serpentine
microstrip, and c0 is the vacuum speed of the wave.

The microwave signal is transmitted into the antenna through
a coaxial interface, and the signal will reach the phase shifter after
passing the power distribution network. At the same time, the con-
trol voltage drives the antenna through the flexible printed circuit
(FPC) interface. The dielectric constant of LC changes in response
to the electric field, and therefore, the phase of the transmitted sig-
nal alters according to the driven voltage valuewhenpassing the LC

phase shifter. The microwave signal transmits from the LC phase
shifter to the patch on top of the element and then radiates.

Antennamodeling and dataset generation

To obtain the dataset of radiation power patterns and the corre-
sponding phase errors, an LC-MPA simulation model was built,
in which a specific range of uniformly selected random errors was
applied to each phase shifter element. The simulation model is a
uniform 8×8-element rectangular planar array, with a center fre-
quency of 28.6 GHz and the element gap of 0.75 wavelengths,
the same as the structure of LC-MPA in Fig. 1. The phase shifter
elements in the simulation model are treated as a set of dots.

The simulated antenna model outputs a radiation field pattern
when a desired deflection angle is inputted, which is expressed as
follows:

E (𝜃, 𝜙) = ej*𝝈 * ej*𝝁, (2)

where EdB = 20 × lgE is the output pattern, and

𝜎 = 𝝈ideal (𝜃0,𝜙0) + 𝝈error (3)

is the near-field phase vector consisting of the phase values of
the individual antenna elements, which can also be described as
follows:

𝜎 = [𝜎1, 𝜎2, … , 𝜎N ], (4)

where 𝜎k is the phase value of the kth element, 𝜃 is the azimuth
angle, 𝜙 is the elevation angle, and 𝝁 is the spatial transformation
factor for the far field. N is the number of the PA elements.

The ideal phase of the antenna 𝝈ideal is decided only by the
target steering angle(𝜃0,𝜙0):

𝝈ideal (𝜃0, 𝜙0) = [𝛽(1,1), 𝛽(1,2), … , 𝛽(8,8)] (5)

where 𝛽(m,n) is the phase shift of the element in the n-column of
them-row and is calculated as follows:

𝛽(m,n) = −kdsin𝜙0 [(m − 1) cos𝜃0 + (n − 1) sin𝜃0], (6)

where k is the wavenumber and d is the element gap.
As for the phase error 𝝈error , it derives from several factors.

For example, the nonideal power distribution network results in
the initial phase imbalance of the microwave signal before passing
the phase shifter. The phase shifters’ inconsistent responses to the
driven voltage lead to a phase distortion in the near-field. All these
errors are random, and for the antenna used in the experiments,
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Figure 2. A set of phase errors applied to 64 elements.

its phase errors are within ±0.5 rad. Therefore, the applied phase
error 𝝈error uniformly takes values over a range of −0.5 to 0.5 rad
randomly (Fig. 2).

A comparison of LC-MPA’s radiation patterns with and without
phase errors is shown in Fig. 3, inwhich 𝜃- and𝜙-cut of the far-field
radiation patterns are presented. To evaluate the radiation pattern,
beam efficiency, side-mode suppression ratio (SMSR), and main
lobe gain were calculated. Beam efficiency is described as follows:

𝜂 = Pmain lobe

Ptotal
, (7)

where Pmain lobe is the energy of the main lobe and Ptotal is the total
energy of the far field.

SMSR is given as follows:

SMSR = Pmain lobe

Pmax side
, (8)

where Pmax side is the energy of the max side lobe.
The near-field phase errors resulted in considerable deterio-

ration in the far-field, in which the beam efficiency of the radi-
ation pattern with phase errors was reduced by approximately

3% and 16% in the azimuthal and elevational patterns, respec-
tively. The SMSR of the 𝜃-cut radiation pattern decreased around
3 dB, and the main lobe gain of both 𝜃- and 𝜙-cut of the far-field
radiation patterns also reduced.

The dataset was generated using the simulation model. About
10,800 sets of patterns EdB and the corresponding phase errors
𝜎error were obtained, of which 10,000 sets were set to deflect along
the normal vector (0∘). The other 800 were deflected by 0.05∘ for
every 100 patterns to include the non-normal directions, as the
main lobe may not precisely point to 0∘ in experiments. Here, the
amplitude imbalance of each phase channel was not included in the
dataset. This is because, for a phase-only modulation antenna, the
phase imbalance dominates the deterioration of LC-MPA’s radia-
tion pattern compared to the amplitude imbalance. Besides, recent
progress showed that even theNNmodel constructedwithout con-
sidering amplitude imbalance is able to cope with the imbalance up
to about 1.4 dB [17].

Meanwhile, 100 sets of data for validation were generated.
The pattern EdB (𝜃, 𝜙) is an array of size 91 × 361, 𝜃 has a
value of (0, 360), 𝜙 has a value range of (0, 90), both with angle
step of 1. The training label is the phase error vector 𝜎error =
[𝜎error1, 𝜎error2, … , 𝜎errorN ]. Therefore, the dataset put into the NN
for training consists of inputs of size (10800, 91, 361) and labels of
size (10800, 64, 1).

NN construction

The schematic diagram of the constructed NN and its training and
validation process are presented in Fig. 4. The NN is a fully con-
nected network with 10 layers, and the number of nodes per layer
is shown in Table 1.

In the training process, the training data, which is the radiation
pattern, is input to theNN.Theoutput is the calculated phase errors
through the NN, which is used to compute the loss function with
the training label, and the value of the loss function determines
how the weights between nodes change. This process repeats, and
the weights of the NN keep updating until the loss value declines
to a certain value. In the validation process, the test data are put
into the NN, which has completed training. The output is the esti-
mated phase errors, which are then compared with the test label,
calculating the estimation error.

Figure 3. A comparison of the far-field radiation patterns before and after applying phase errors: (a) 𝜙-cut (b) 𝜃-cut.
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Figure 4. Schematic diagram of the NN along with its training and validation process.

Table 1. Structure of the NN

Layer (type) Output shape

Input layer (91, 361)

Flatten (32,851)

Dense 1 (361)

Dense 2 (3000)

Dense 3 (3000)

Dense 4 (3000)

Dense 5 (3000)

Dense 6 (3000)

Dense 7 (3000)

Output layer (64)

The activation function used in dense layers is the rectified lin-
ear unit (ReLU) function, and the loss function is the mean square
error (MSE), which is given as follows:

𝛿MSE = ∑N
i=1 (�̂�error i−𝜎error i)

2

N
(9)

where �̂�error i is the predicted phase error of the ith element and
𝜎error i is the actual phase error. The MSE function is used in the
validation process as well, and the value of this function is the
estimated error.

Adetailed parameter configuration is presented inTable 2.After
350 epochs, training loss converged at 4.5e−3. The trained NN is
considered a phase error estimation model.

Phase calibration method

There are two parts to the phase calibration method, calibration
and compensation process, as illustrated in Fig. 5. In the calibra-
tion process, nine characteristic patterns were obtained initially,
all steering at the normal vector but driven with different specific
control voltages.These voltages correspond to phases from 0 to 2𝜋,
stepping by 𝜋

4
. The smaller the phase step is set, the more patterns

will be tested to offermore precise error information, yet withmore
time consumption. Practically, a trade-off between precision and
speed is required. After several tries, nine measurements were set
as an empirical value, which is the smallest number of patterns that

Table 2. Parameters of the NN

Parameter Output shape

Activation function in dense layers ReLU

Initial learning rate 1e-5

Number of training epochs 350

Decay rate of learning rate 0.99

Optimizer Adam

Loss function MSE

Batch size 100

maintains the precision of calibration. Then, the relation between
voltages and phasewas given by a curve truncated from the original
voltage–phase curve (also called the “u-phi curve”) (Fig. 6), which
was obtained by testing a single phase shifter identical to the phase
shifters in the antenna used in the experiment. To leave space for
subsequent voltage adjustment, the truncation did not start at both
ends of the original curve but in a range of relatively linear curves
with 2𝜋 phase retardation.

The measured characteristic radiation patterns were then put
into the phase error estimation model, and the estimated phase
errors of each element at specific voltages were obtained. Hence,
a voltage–phase error curve for every element was fitted, in which
two fitting methods were applied (Fig. 7), interpolation and linear
fitting. Voltage–phase error curves for all elements were combined
to become a PA calibration file used in the compensation process.
With a desired steering angle, the compensation for each element’s
phase error was obtained from the file by indexing the location of
the element and the uncalibrated voltage. By subtracting the esti-
mated phase errors, the compensated phase and the corresponding
calibrated control voltages were obtained, which were then applied
to the antenna. Both optimized and unoptimized control volt-
ages were applied to compare the performance of the proposed
calibration method.

Simulation and experimental verification

Simulation results

Simulation results for the phase error estimation model valida-
tion are shown in Fig. 8. Radiation patterns in the validation
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Figure 5. Flow chart of the proposed LC-MPA calibration method.

Figure 6. Voltage–phase relation curve of an LC-MPA.

dataset were put into the estimation model to obtain their pre-
dicted phase errors. The predicted phase errors are compared
with those in the validation dataset, and their corresponding
radiation patterns are compared as well. The average case of
𝛿MSE is shown in Fig. 8(a, b), and the worst case is shown
in Fig. 8(c, d). The average phase estimation error 𝛿MSE is 3.9e−3
(approximately 3.58∘), and the worst is 1.1e−2 (approximately 6∘),
which are comparable with the results in previous works
[17, 24].

To demonstrate the precision of the proposed phase calibration
method, another simulation was conducted. In the simulation, a
simulated LC-MPA antenna was constructed first. Each element of
the simulated antenna was applied a phase error over a range of
−0.5 to 0.5 rad randomly and an extra phase error over a range
of −0.1 to 0.1 rad, which changed with different driven voltages.

Figure 7. Fitting voltage–phase error curves for the second element.

Through carrying out the described experiment process, calibrated
radiation patterns were obtained, including the one using the inter-
polation fittingmethod and the one using the linear fittingmethod,
which are shown in Fig. 9. In addition, radiation power patterns
generated by the uncalibrated phases, the ideal phases, and the cal-
ibrated phases obtained by applying the SPGD method are also
demonstrated. Here, the ideal radiation patterns set a benchmark
for MPA optimization and can be used to evaluate the quality of
the calibrated patterns. The difference between linear and inter-
polation calibrated patterns is negligible, due to the linearity of
the u-phi curve of the antenna used in the simulation and the
subsequent experiments.

Figure 10 shows the root of mean square errors (RMSE)
between the SPGD calibrated pattern and the ideal pattern, which
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Figure 8. Simulation validation results. Comparisons of (a) near-field phase error distributions and (b) far-field radiation patterns in the average case of 𝛿MSE; (c) and (d)
Comparisons in the worst case of 𝛿MSE.

Figure 9. Simulation results: comparison of radiation power patterns generated by ideal, uncalibrated, and calibrated phases. The calibrated phases are obtained by
applying SPGD and the proposed fast phase calibration method: (a) 𝜙-cut (b) 𝜃-cut.

converges at approximately 7.5∘. The calibrated patterns obtained
by applying SPGD have a similar quality to the results obtained by
applying the proposed method, but it takes more than 4,000 iter-
ations to reach convergence, which is impractical in experiments

due to LC-MPA’s slow response speed. Compared to thousands
of iterations, the proposed method is more time-saving with only
several measurements and offers comparable optimization perfor-
mances.
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Figure 10. The RMSE curve of LC-MPA phase calibration by SPGD.

Experiment

The experimental setup is shown in Fig. 11. The PC was used to
send the control signals, the voltage code, to the circuit board,
which links to the antenna via FPC, applying voltages to every ele-
ment separately. The vector network analyzer provided excitation
to the antenna, and the probe in the anechoic chamber, which was
set to be approximately six times the wavelength away from the
antenna, scanned an area containing 41 × 41 scanning points and
measured the radiation signal.Thismeasured data were then trans-
mitted to the vector network analyzer for analysis and calculated to
convert to the radiation power patterns.

Experiments at different steering angles were conducted to ver-
ify the calibration method. The experimental results are shown
in Fig. 12, in which both 𝜃- and 𝜙-cut of the radiation patterns are
presented.

In Fig. 12, there are two radiation power patterns in each fig-
ure, the uncalibrated pattern with the original voltages applied,
and the calibrated pattern using the NN-adjusted driven voltages.

Overall, the LC-MPA’s deflection performance at different angles
was improved. The deflection efficiency of the ϕ = 6∘, 12∘, and
−20∘ azimuth patterns increased by approximately 9%, 4%, and
6%, respectively, and all of the SMSRs increased by around 2 dB.
For the elevation patterns, it can be seen that with the increase of
deflection angles, the radiation power patterns had a more con-
siderable improvement. This is because the deflection efficiency of
the antenna decreases drastically at large elevation angles, which
allows for a greater potential for optimization.The efficiency of the
𝜃 = 6∘ and 12∘ elevation patterns slightly improved by 1–2.5%,
whereas 𝜃 = −20∘ saw considerable increases in efficiency by 10%,
the SMSR by 4 dB, and the main lobe gain by 2 dB, which are
comparable with the state-of-the-art LC-MPAs [4].

Conclusion

In this paper, a fast phase calibrationmethodwas proposed to opti-
mize the deflection performance of LC-MPAs. First, an antenna
simulation model was built to generate a dataset of radiation pat-
terns and phase errors. Then, the phase error estimation model
was obtained by training the NN with the simulated dataset.
After inputting several measured characteristic radiation patterns
into the estimation model, the estimated phase errors for each
antenna element at several driven voltages were obtained, which
then became the PA calibration files. The PA calibration file pro-
vided phase errors for each antenna element at different driven
voltages and was then used for the LC-MPA’s phase calibration
and deflection performance optimization. At last, simulations and
experiments on a 64-channel, two-dimensional planar LC-MPA
were conducted to verify this method.

Results show that the method offered precise phase estima-
tion with an average error of 3.58∘, realized a fast calibration
process with only several field-measured radiation patterns and
improved the performances of the LC-MPA by approximately
4–10% in deflection efficiency at different steering angles. This
method provided a viable approach to calibrate the LC-MPAs
within only several in-situ measured patterns, laying a foundation
for applications. Further improvement to the proposed method

Figure 11. Diagram of the experimental setup.
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Figure 12. Experiment results of far-field radiation patterns deflected at different angles: (a) 𝜙- and 𝜃-cut patterns at 𝜙 = 6∘, 𝜃 = 6∘; (b) 𝜙 = 12∘, 𝜃 = 12∘; (c) 𝜙 = −20∘,
𝜃 = 60∘.

may include enhancing the accuracy of the phase error estimation
model by increasing the categories of phase errors in the dataset
and conducting a second-stage NN training using the measured
characteristic patterns.
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