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SUMMARY

This paper critically assesses the design implications for the analysis of surveys of infections.

It indicates the danger of not accounting for the study design in the statistical investigation of

risk factors. A stratified design often implies an increased precision while clustering of infection

results in a decreased precision. Through pseudo-likelihood estimation and linearisation

of the variance estimator, the design effects can be taken into account in the analysis. The

intra-cluster-correlation can be investigated through a logistic random effect model and a

generalised estimating equation (GEE), allowing the investigation of the extent of spread of

infections in a herd (cluster). The advantage of using adaptive Gaussian quadrature in a logistic

random effect model is discussed. Applicable software is briefly reviewed. The methods are

illustrated with data from a bovine herpesvirus 1 (BHV-1) serosurvey of Belgian cattle.

INTRODUCTION

An important aspect of veterinary epidemiology is

the quantitative investigation of disease occurrence

[1]. This includes surveys, monitoring, and surveil-

lance that often deal with binary data. Three import-

ant characteristics of survey data are stratification,

clustering and sampling weights.

Stratification is a sampling method aimed at re-

ducing variance, when a known factor causes sig-

nificant variation in the outcome variable but is not

the target of analysis. For example, in the case of

beef production in a population of two different

breeds, sampling variation of estimates will be sub-

stantial, largely due to genetic differences affecting

beef production between the two breeds. Stratification

by breed will allow reduction of the overall vari-

ation in the beef production estimate. The technique

also allows easy access to information about the

sub-populations represented by the strata. For

stratified sampling to be effective at reducing vari-

ation, the elements within the strata should be hom-

ogenous and variance between the strata should be

large. A possible disadvantage, however, is that the

status of the sampling units with respect to the

stratification factor must be known and more com-

plex methods are required to obtain correct variance

estimates [2].

Clustering of data may be due to repeated measure-

ments of subjects over time or due to sub-sampling

of the primary sampling units. Livestock disease

clustering is a consequence of unequal distribution

of the disease agents throughout the animal popu-

lation [3]. Interest primarily concerns individual-level* Author for correspondence.
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characteristics, such as the disease status of the ani-

mal, but the sampling unit becomes a grouping of

individual animals such as the herd to which they

belong. The groups or clusters can represent natural

groupings such as litters or herds, or they can be

based on artificial groupings such as geographic areas

or administrative units. The random selection of the

clusters as the sampling units can be performed using

simple random, systematic or stratified random sam-

pling. Clustering can help to reduce the sampling

and data collection costs. However, since indepen-

dence among sample observations is a key assumption

underlying standard statistical procedures, the pres-

ence of clustering in the data may raise important

statistical issues, which should be addressed in the

analysis. With data collected on the basis of clusters,

the variance is largely influenced by the number of

clusters, not the number of animals in the sample.

Cluster sampling can lead to an increased sampling

variance, in which case a larger sample size would be

required to reduce the variance to acceptable levels

[2]. Unfortunately, scientific reports often present, for

example, confidence intervals that assume simple

random sampling whereas the design involved clus-

tered units.

In sample surveys observations are selected through

a random process, but different observations may

have differing selection probabilities. These prob-

abilities should be accounted for in the analysis of

the survey, otherwise biased estimates may be ob-

tained [4].

The objective of this paper is to present methods for

analysing survey data where clustering, stratification

and differing sampling probabilities may be present.

The emphasis is directed towards the estimation of

the effect of risk factors on the presence of infectious

diseases. As the main tool, logistic regression models,

taking into account the effects of clustering and

stratification, are considered. Furthermore, ways of

calculating the intra-cluster correlation are presented.

Various software packages, which can be used to

apply these methods of analysis, are considered. The

effect of ignoring sampling design characteristics is

demonstrated and discussed. The techniques are illus-

trated using data from a bovine herpesvirus 1 (BHV-1)

serosurvey of Belgian cattle, reported by Boelaert et al.

[5]. BHV-1 causes infectious bovine rhinotracheitis,

an enzootic disease. Programs to eradicate BHV-1

have been implemented in several European countries

to facilitate the free trade of cattle within the Eur-

opean Union.

METHODS

The data

Figures 1a–d present the design of the BHV-1 sero-

survey of the Belgian cattle population. The survey

was conducted on cattle herds of all types from

December 1997 toMarch 1998 in Belgium. The sample

was stratified by province (ten provinces in Belgium).

Within each province, 1% of the total number of

herds was sampled. In the selected herds, all animals

were blood sampled. The sera were tested for anti-

bodies against BHV-1 by using a commercially avail-

able blocking ELISA (HerdCheck1, Idexx, France),

specific for BHV-1 glycoprotein B [6]. The age and sex

of 11 284 animals originating from 309 BHV-1 un-

vaccinated herds were collected. Also, the type (dairy,

mixed or beef) and size of the herds were registered.

Due to computational problems, the variable ‘herd

size ’ was dichotomised as 0 (or 1) for farms smaller

(or larger) than the average herd size (=36.5) in the

final models presented in Section 3.

The survey is an example of a one-stage cluster

sampling design. The individual subjects (animals)

still remain the target units so that animal-level dis-

ease can be studied, but the primary sampling unit

becomes a group of individuals (the herd). All elements

within a randomly selected group are included in the

sample. This technique requires a sampling frame for

the groups, but not for the members within the groups.

In the present example, the random selection of clus-

ters (herds) as the sampling units was performed using

stratified random sampling, but it can also be per-

formed using systematic or simple random sam-

pling [2].

Important features of survey data

In this section, the following features of survey data

are shortly discussed: stratification, clustering and

sampling probabilities.

Stratification

The argument in favour of stratification can be illus-

trated using a simple example. Consider a population

of three male animals, all of which are infected, and

three females that are not, then clearly the prevalence

of the disease is 50%. Now, assume that from the

above population independent samples of size 2

are to be taken using simple random sampling with-

out replacement. Within the above population, the
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probability of estimating prevalences as 0% is 0.2,

as 50% is 0.6 and as 100% is 0.2. As a consequence

there is a probability of 0.4 that the estimated preva-

lence differs markedly from the true value. However,

if we consider sampling stratified by sex, with one

animal sampled from males and one from females, the

prevalence will be estimated as 50% for every sample,

the variability of the estimate thus being greatly

reduced.

In real settings, stratification is an effective method

for reducing variability of an estimator if a known

factor, which is not the target of analysis, causes

substantial variation in the outcome variable such

that the elements within the strata are homogeneous

and variability between the strata is large. Stratified

sampling also leads to a straightforward computation

of estimates for the sub-populations represented by

the strata. Obviously, the technique requires that the

Province 1

Farm 1

Farm 2

Farm 3

Farm 4
Farm 5

Farm 6

Farm 1

Farm 2

Farm 3

Farm 4 Farm 5

Farm 6

Province 1

Province 1

(a)

(b)

(c) (d )
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Fig. 1(a–d ).Design of the BHV-1 serosurvey of the Belgian cattle population, 1998. (a) In every province the farms are listed.
(b) A same proportion of the farms is selected in each province. (c) In each selected farm all the animals are sampled. (d ) A

total overview of the survey: a same proportion of the farms is selected in each province and in each selected farm all the
animals are sampled.
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status of the sampling units with respect to stratifi-

cation factors be known. Also, more complex methods

are required to obtain precision estimates referring to

the global population [2].

Clustering

Clustering can be seen as a form of stratified design,

where instead of selecting some individuals from each

(large) stratum, we aim at selecting some (from a large

number of relatively small) strata with, possibly, each

individual within a selected group included in the

sample [7]. To reflect this difference, the strata are

called clusters. If all individuals in a sampled cluster

are included in the sample, as in the BHV-1 survey,

this is referred to as one-stage cluster sampling.

If a disease is contagious, the clustering (or group-

ing) of animals within herds may result in a higher

chance for an animal becoming infected once the in-

fection is introduced into the herd. Consequently,

individual responses, i.e., whether the animals are

infected or not, are more homogeneously distributed

within herds than in the whole population. If the re-

sponse is distributed in a homogeneous way within

a cluster, considering the sample as a simple random

sample can lead to erroneous conclusions. Assume for

example the extreme case of herds in which either all

or none of the animals are infected. In this situation,

the calculation of the standard errors of the parameter

estimates should be based on the number of farms

rather than on the number of animals since the in-

formation provided by a single animal would amount

to the total information provided by the whole herd to

which the animal belongs.

Consequently, in the presence of clustering, the

calculation of the variance of the prevalence using for-

mulae for simple random sampling may yield overly

optimistic estimates. Unfortunately, it appears that

in surveillance studies investigating prevalence of dis-

eases the precision of the prevalence is often over-

estimated [8].

Sampling probabilities

As a result of the choice of a sampling design, each

individual member of a population is assigned a prob-

ability with which it can be included in the sample.

If these probabilities differ between members they

should be accounted for in the analysis of the survey.

Consider the BHV-1 survey. Since in the sampled

herds, all animals were included in the sample, the

probability of being sampled was the same for each

animal in the population, as the herds were sampled

with equal probabilities. Suppose, however, that from

each of the sampled herds only one animal would

have been sampled. (In such a case the sampling

would have been an example of two-stage sampling,

with herds considered as primary sampling units and

the animals as secondary sampling units.) Then the

probability of being selected would have been higher

for animals from small herds than for those from

large herds. As a result, the animals from small herds

would have been over-represented in the sample. It

follows that the estimates obtained from the analysis

ignoring the sampling probabilities would have been

biased towards the characteristics of the sub-popu-

lation of small-herd animals. This was not the case for

the BHV-1 survey.

The analysis of a survey can be adjusted for un-

equal sampling probabilities by applying appropriate

weights to the observed results [4]. In general, different

sampling probabilities arise most naturally in multi-

stage sampling designs. Such designs, in combination

with stratification, are recommended by the Office

International des Epizooties as part of the official

pathway to declaration of freedom from infection

with the rinderpest virus.

In short, adjusting for unequal sampling prob-

abilities allows unbiased point estimates to be ob-

tained from survey data. Taking into account cluster-

ing and stratification results in appropriate precision

measures for the point estimates. Adjusting for sam-

pling probabilities can also influence the precision.

Statistical methodology

We will consider the situation of a binary response

variable Y. In our example, Y will indicate whether

an animal is infected (Y=1) or not (Y=0). To inves-

tigate the effect of explanatory variables (age or sex

of an animal, for example) on the probability of in-

fection, we will consider a logistic regression model.

Denoting as p(covariates) the probability of infection

as a function of covariates, we can write the model

symbolically as follows:

logit{p(covariates)}= log {p(covariates)=

[1xp(covariates)]}=a+b* covariates (1)

The parameters a and b (which is a vector) have to be

defined.

For the BHV-1 survey, age and sex of the animals,

as well as type (dairy, mixed, beef) and size of the

herd, will be used as covariates.

994 N. Speybroeck and others

https://doi.org/10.1017/S095026880300102X Published online by Cambridge University Press

https://doi.org/10.1017/S095026880300102X


Adjustment for sampling probabilities

and stratification

In general, this is done by appropriate weighting of

the data. The weights are taken as the inverse of the

sampling probabilities [9, 10]. Here, we will not dis-

cuss the techniques any further; the interested reader

can find them in any textbook on survey sampling

[11–13].

Using a ‘pseudo’ likelihood [9] and deriving the

variance estimator through ‘ linearisation’ is one way

to account for the effects of sampling probabilities

and stratification as well as clustering (see next sec-

tion) in the analysis. A pseudo-likelihood is needed

since the standard ML estimator does not give a true

‘ likelihood’ under a complex design and therefore

estimates of model parameters are obtained by solv-

ing weighted analogues of likelihood equations based

on the probability sampled data. The full MLE would

require an expression for the exact likelihood, which

may be very complicated and require many assump-

tions since it involves modelling the relationship be-

tween the response and the design variables [9]. With

probability sampling, each unit in the survey popu-

lation has a known, positive probability of selection.

This property of probability sampling avoids selection

bias and enables one to use statistical theory to make

valid inferences from the sample to the survey popu-

lation. As a consequence of these issues, the like-

lihood-ratio test is invalid with weighted data of this

kind.

Adjustment for clustering

There are many methods available for the analysis of

clustered binary data. In general, one can distinguish

between marginal, conditional and random-effects

approaches, which can be applied using different in-

ferential methods (likelihood, quasi- or pseudo-like-

lihood, generalised estimating equations). Unlike the

Gaussian setting, they tend to give dissimilar results.

Reviews can be found in Diggle, Liang and Zeger [14],

Fahrmeir and Tutz [15] or Pendergast [16]. We will

discuss only the approaches used most frequently in

the survey context.

The analysis at herd level

In an attempt to account for clustering of the animals,

one may consider analysing the data at herd level. In

such an analysis, a herd with at least one seropositive

animal is called positive, otherwise it is called nega-

tive. A logistic regression with binary response Z,

indicating whether a herd is positive (Z=1) or not

(Z=0), can be carried out. Only herd-level covariates

can be used in such a model, for example, the type and

size of the herd, the average age of the animals and the

proportion of males by herd. A herd-prevalence could

be defined as the proportion of herds with at least

one positive animal.

An advantage of the herd-level analysis is that it

focuses on the probability of infection in a herd,

which is economically important information. How-

ever, there are several disadvantages. As already

mentioned, only herd-level covariates can be con-

sidered in the analysis. Moreover, the associations

detected at the herd level do not necessarily corre-

spond to those existing at the animal level. Thus, there

might be some confusion between aggregate and

individual effects, an issue that is often referred to as

the ecological fallacy [17].

Marginal model fitted using generalised

estimating equations

One way to address the disadvantages associated with

the herd-level analysis is to fit the logistic regression

model (1), while correcting estimated standard errors

of parameters b for clustering. The approach can be

applied using the generalised estimating equations

(GEE) technique developed by Zeger and Liang [18].

Logistic random-effects model

The use of a random-effects model approach (see

Agresti et al. [19] for a recent review in the broader

context of categorical response data) can be motiv-

ated by arguing that animals belonging to a herd

share the same environment (physical location), as

well as characteristics such as the type of farm (milk-

or meat-oriented). These shared factors, whose ef-

fects can change from herd to herd, create depen-

dencies between responses observed for the individual

animals.

In its simplest form, the model can be symbolically

written as follows (with bi random variable represen-

ting the effect of factors shared by the animals be-

longing to herd i) :

logit{p(covariates, bi)}=a+b* covariates+bi, (2)

where i is an index for herds, p(covariates, bi) denotes

the conditional probability of infection (conditionally

on the covariates and the random effect bi). Usually,

these random variables are assumed to be normally

distributed. Likelihood inference in this type of model
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can proceed by integrating over the random effects bi
to derive the marginal likelihood, which can practi-

cally be done by numerical integration (Gaussian

quadrature for instance). Note that the interpretation

of the b coefficients in this model is conditional on the

(unobserved) value of the random variable bi and is,

therefore, called ‘ individual-specific’. In model (1), on

the other hand, b can be interpreted as describing

marginal (so-called ‘population-averaged’) effects of

the covariates. This model does not take into account

clustering and other design effects.

It should also be noted that model (2) assumes that,

conditionally on the value of bi, the response has a

binomial error distribution. A different kind of ‘ran-

dom-effects’ model would be to assume that con-

ditional on each herd, the response is binomial and

that the response probabilities follow, for instance, a

b distribution (thus yielding the so-called b-binomial

model). We will not illustrate this approach in the

present paper. A description of the approach can be

found in Kleinman [20].

Comparison with pseudo-likelihood methodology

Unlike pseudo-likelihood methodology [4], standard

marginal and random-effects models cannot directly

account for survey-related issues but simply afford a

more flexible way to account for clustering in the

analysis of the data. Note, however, that for the data

at hand, one way to take the stratification into con-

sideration would be to incorporate strata indicators as

covariates.

Quantifying the influence of sampling design on

the precision: design effect

The influence of sampling design on the precision of

estimates can be quantified using the measure of

design effect [13]. It is defined as

deff=V̂V=V̂Vsrswor (3)

where V̂V is the design-based estimate of the parameter

variance and V̂Vsrswor is an estimate of the variance for

a hypothetical simple-random-sampling design in

place of the complex design that was actually used.

V̂V can be computed by adapting the formulae for

variance estimation by using techniques such as

(balanced) replicated sampling, jackknife repeated

replication and the Taylor series method [21].

In cases where the quantity of interest is a pro-

portion (such as the prevalence discussed so far) the

design effect is directly proportional to the size of

the intra-cluster-correlation and the cluster size [22] :

deff=1+r(mx1), (4)

where m denotes the cluster size (assumed to be con-

stant) and r is the intra-cluster correlation. For a

variable cluster size, a reasonable approximation for

m is the average cluster size.

Marginal logistic regression models fitted using

GEE and random-effect models allow r to be esti-

mated. Apart from indicating the amount of as-

sociation between responses within a cluster, the

intra-cluster correlation can be interpreted as mea-

suring the part of the total variance explained by the

clusters [13, 23].

In the following section, software, which can be

used to carry out the aforementioned models, is pres-

ented.

Software

There are several commercially available statistical

software packages where methods for analysing

survey data are implemented: STATA, SAS and

SUDAAN, amongst others. Since the last was not

available to us, wewill only consider STATAand SAS.

STATA

STATA (Stata Corporation, Texas, USA) is a multi-

purpose interactive statistical package. It includes a

set of so-called svy commands implementing methods

for analysing surveys.

A pseudo-likelihood method is used to calculate

estimates of model parameters by solving weighted

analogues of likelihood equations based on the prob-

ability sampled data. For all models, STATA can

adapt standard errors and confidence intervals for

estimates taking into account clustering, stratification

and sampling probabilities. All svy commands can

compute design effects for their estimates. STATA

currently uses the Taylor series linearisation estimator

as the variance estimation method. This method ap-

proximates the complex formula for the adapted

variance, by writing it as a series of functions. Lee

et al. [21] give a detailed account of this method.

Multistage designs are handled by the ‘ultimate’

cluster sample selection paradigm [4]. Kish [13] de-

fines the term ultimate clusters. The ultimate cluster

is a grouping of sampled cases for variance estimation

purposes. In general, the use of ultimate clusters for

sampling error estimation reflects the gains in pre-

cision from stratification and the loss in precision
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from the clustering of cases within primary sampling

units. Under the ultimate cluster-sampling model,

elements within primary sampling units are divided

into ultimate clusters and a sample of these clusters is

drawn without replacement across the primary sam-

pling units. Variance estimates are computed using

only between first stage unit totals without having to

compute the variance components at each stage of

selection.

Svylogit fits logistic regression models for survey

data and is able to incorporate probability sampling

weights, stratification and clustering (one level only)

or any combination of these three. Associated vari-

ance estimates and design effects (deff ) are computed.

Clustering is taken into account by pseudo-likelihood

estimation and precision estimates are calculated in

a way similar to the sandwich estimator in GEE.

The xtlogit command can fit marginal (using GEE)

as well as random-effects logistic regression models.

In the latter case, numerical integration is based on

simple Gaussian quadrature, although a limitation

of the command is that it cannot handle more than

30 quadrature points.

SAS

SAS (SAS Institute Inc., North Carolina, USA) is

also a multi-purpose statistical package. From version

7 of the SAS system onwards, some procedures have

been available for the analysis of data from complex

sample surveys. In particular, the SURVEYSELECT

procedure selects probability samples using various

sampling designs; the SURVEYMEANS procedure

computes descriptive statistics for sample survey

data; and the SURVEYREG procedure fits linear

regression models for such data.

Two other procedures are of interest in the present

context. These are the GENMOD procedure, which

can fit models for correlated data using the GEE

method, and the NLMIXED procedure, which fits

nonlinear mixed models, that is, models in which

both fixed and random effects enter nonlinearly.

NLMIXED can, in particular, handle logistic ran-

dom-effects regression models and use adaptive

Gaussian quadrature to approximate the likelihood,

which are preferable to simple Gaussian quadrature

in general [24].

RESULTS

In this section, we illustrate the issues previously

discussed using the data from the BHV-1 survey. At

first, the data are analysed at herd level and this is

compared with a naı̈ve analysis at the animal level.

Thereafter, the data are analysed at the animal level,

using the more sophisticated methods described in

Section 2.

Analysis at the animal level vs. analysis at the

herd level

The herd seroprevalence was estimated at 67% (207

of 309 farms had at least one animal infected). The

estimated proportion of seropositive animals was

36%, which confirms the figure of Boelaert et al. [5].

Table 1 shows the average seroprevalence for animals

and herds by type of farm. Interestingly, beef farms

show a much lower herd seroprevalence. The lower

seroprevalence in beef farms can be explained by the

fact that these farms are typically small as shown in

Table 2, but carry the same weight in the calculation

of the herd-seroprevalence. As the prevalence tends

to increase with size, the large number of small beef

farms results in a lower herd-prevalence for this type

of farm. This illustrates how size of the farm acts as

Table 1. Average seroprevalence of animals and herds,

by type of farm, BHV-1 serosurvey, Belgium, 1998

Type of
farm

Seroprevalence

Animal level
(n=11 284)

Herd level
(n=309)

Dairy 0.345 0.864

Mixed 0.429 0.907
Beef 0.320 0.541

Table 2. Frequency distribution of farm size per type of

farm, BHV-1 serosurvey, Belgium, 1998

Size (number
of animals)

Dairy
farms

Mixed
farms

Beef
farms

f20 6 5 152

f40 8 5 21
f60 16 19 8
f80 5 8 7
f100 9 8 2

f120 8 4 1
f140 4 2 0
f160 1 0 0

f180 1 1 1
>180 1 2 2

Total 59 54 194
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a confounding factor in the analysis at herd level. This

was confirmed by the logistic regression at the herd

level, which indicated that beef farms had a signifi-

cantly (P<0.001) lower prevalence than the other

types of farms. However, including size of the farm in

the model showed that a larger size was significantly

(P<0.001) related to a higher risk of herd sero-

prevalence and that beef farms had no longer a sig-

nificantly lower prevalence than the other types of

farms (P=0.331).

At the animal level, the difference in seropreva-

lence between the different types of farms was not so

pronounced. This can be explained by the stronger

weight of big farms in the final seroprevalence calcu-

lations. The seroprevalence at animal level in large

farms is close to the figures obtained for animal level

in Table 1.

Effects of the sampling design on confidence intervals

Figure 2 presents, by type of farm, the estimated sero-

prevalence at animal level together with 95% confi-

dence intervals (in brackets) computed with and

without the effects of clustering and stratification

having been taken into account. The results were

obtained using the command svymean in STATA.

Clearly, if the sampling design is not accounted for,

the precision of the estimates is considerably over-

estimated.

For the data at hand, it is interesting to investigate

which of the sampling design features, (stratification

or clustering) is mainly responsible for the adjustment

of the confidence intervals. The estimates of BHV-1

seroprevalence by province (proportion of animals

infected by province) ranged from 2 to 42.2%. A

strong difference between provinces indicate that in-

cluding this factor in the analysis could improve

the estimation in terms of efficiency. However, with

the command svymean of STATA the design effect for

stratification was only 0.96, while the design effect

for clustering was 45.6, which is very similar to the

design effect for clustering and stratification together

(45.5).

A similar effect of adjustment for sampling design

on the precision estimates can be seen when con-

sidering a logistic regression model with type and size

(binary variable) of the farm, and age and sex of the

animal, included as co-variates. Table 3 presents

the coefficients of the model as well as estimates of

their standard errors obtained using the STATA

command svylogit with and without adjustment for

clustering and stratification. Without adjusting for

sampling design, Table 3 (misleadingly) indicates that

the seroprevalence among animals in mixed farms is

significantly higher than in dairy and beef farms.

Also, the naı̈ve model suggests significant effects of

size of the farm, age and sex of animals.

When sampling design is accounted for, the results

change substantially, owing to the increase in stan-

dard errors of the coefficients. Conclusions for the

herd-level covariates are mostly affected: the effect of

mixed farms becomes non-significant, while the effect

of size of the farm becomes borderline significant at

the 5% level.

As in the case of the overall BHV-1 seroprevalence,

design effect associated with adjusting the logistic

regression model for stratification was small (0.96).

It seems that the homogeneity in the strata was not

high enough compared to the variability between the

strata.

Marginal GEE model

Using the same covariates as in the previous model,

a marginal model (GEE with exchangeable work-

ing correlation structure) was fitted with the xtlogit

Dairy
[24–44.5]

34.5

20 24 28 32 36 40 44 48 52 56

[33–36]

Mixed
[31.5–54.5]

42.9

20 24 28 32 36 40 44 48 52 56

[41.2–44.6]

Beef
[21.5–42.5]

32

20 24 28 32 36 40 44 48 52 56

[30.4–33.6]

Fig. 2. BHV-1 seroprevalence by type of farm: estimates and 95% confidence intervals, respectively taking into account
(confidence intervals as top-bar) and not taking into account (confidence intervals as bottom-bar) the effects of the sampling
design.
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command in STATA and the results are shown in

Table 4. The value of the intra-herd correlation coef-

ficient was estimated as 0.526.

To further account for omitted aspects of the sam-

pling design, we could, in principle, incorporate indi-

cator variables for provinces in the above model but

this led to convergence problems.

Random-effects logistic regression

With simple Gaussian quadrature, the estimated co-

efficients and their standard errors were strongly de-

pendent on the number of quadrature points specified

in the algorithm. This is a typical sign that Gaussian

quadrature works poorly and that adaptive Gaussian

quadrature should be utilised instead. In fact, the

latter should be preferred as it has, in general, better

numerical properties than simple Gaussian quadra-

ture. For this reason, we illustrate the fitting of the

random-effects model solely with the SAS procedure

NLMIXED. The results are shown in Table 5.

The value of s2, the between-herd variance, was

estimated as 5.964 (S.E.=0.732). From this model, the

derived value of the intra-herd correlation coefficient

can be calculated as:

r=
s2

p2=3+s2
,

which gives 0.645 (S.E.=0.028).

Model comparison

The conclusions reached by the pseudo likelihood

model, the marginal model and the random effect

model are similar: Herd size, age and sex are signifi-

cantly associated with the seroprevalence of BHV-1 at

the 5% level. The signs of the coefficients differ only

for non-significant parameters : the type of the farm.

The intra-cluster correlation is above 50% with a

marginal model as well as with a random effect model.

DISCUSSION

In general, while adjusting for the sampling design

effects in a complex survey, two approaches might

be considered to analyse data from a survey with

(clustered) binary responses indicating, for example

whether animals are seropositive or not. First, one

Table 5. Estimates with standard errors and

significance level for a random-effects logistic model,

BHV-1 serosurvey

Variable Coefficient S.E. P>|t|

Herd size (binary) 1.024 0.416 0.014

Age 0.424 0.016 0.000
Sex 0.301 0.100 0.003
Mixed 0.284 0.478 0.553

Beef x0.069 0.472 0.884

Table 4. Estimates with standard errors and

significance level for a marginal model, BHV-1

serosurvey, Belgium, 1998

Variable Coefficient S.E. P>|t|

Herd size (binary) 0.838 0.245 0.001

Age 0.214 0.007 0.000
Sex 0.137 0.050 0.006
Mixed x0.365 0.276 0.187

Beef x0.285 0.275 0.300

Table 3. Effect of type and size of the farm, and age and sex of the

animal, on the BHV-1 seroprevalence in Belgian cattle, with and without

adjustment for clustering and stratification

Variable Coefficient

Without design effect With design effect

S.E. P>|t| S.E. P>|t|

Herd size (binary) 0.691 0.066 0.000 0.283 0.015
Age 0.215 0.011 0.000 0.024 0.000
Sex 0.324 0.067 0.000 0.153 0.035
Mixed 0.348 0.048 0.000 0.332 0.296

Beef 0.072 0.056 0.201 0.365 0.845

Sex : 0=female, 1=male ; Herd size (binary)=0 if herd size f36.5, and =1
otherwise.
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might consider clusters (herds) as the units of analysis.

Information at the herd-level may be sufficient when

one aims to eradicate disease from the herd. This is

particularly true for BHV-1, because control and

eradication measures implicate the herd, not the ani-

mal [25]. In the analysis at herd level of the BHV-1

survey, the smaller size of the majority of the beef

farms resulted in a lower herd seroprevalence for

beef farms. This was due to the confounding effect of

the size of the farm, and demonstrates the importance

of correcting for such covariates. Secondly, one might

treat animals as the units of analysis and adjust the

results for the effects of clustering, stratification and

weighting. Such an analysis at animal level offers an

additional and vital insight into the epidemiology,

since analysis only at herd level does not allow

consideration of the factors measured at animal level.

The adjustment for the effects of clustering, stratifi-

cation and weighting can be done using pseudo-likeli-

hood methods with a linearisation estimator for the

variance.

Although a BHV-1 risk factor study was outside of

the scope of this paper, the influence of four different

parameters on the serological results was investigated

with the sole aim of illustrating the impact of the de-

sign on the analysis ; type and size (binary variable) of

the farm, and age and sex of the animal. Size of the

farm and age of the animals seemed to be statistically

important predictors for BHV-1 seropositivity of an

animal. The older an animal is, or the larger the farm

it belongs to, the higher is the chance of it having

a positive serological result. Both risk factors can be

explained from a biological viewpoint. The risk of

BHV-1 transmission among cattle within herds is

higher in larger herds. This may be explained by

the within-herd contact structure. In smaller herds the

number of susceptible animals is smaller throughout

the year, so infection may not be sustained. Larger

herds usually have loose-housing barns, creating

more contact between infected and susceptible ani-

mals. These herds possibly also have more visits by

animal handlers (farmers, inseminators, veterinarians,

traders) [26]. Also the life cycle of herpesviruses pro-

vides a further explanation of herd size being a risk

factor. During primary infection, herpesviruses are

disseminated within susceptible populations, which

raise strong immune responses and overcome in most

cases the diseases associated with the infections. The

latent viruses represent a long-term reservoir that

becomes epidemiologically meaningful upon reacti-

vation. Then, seemingly healthy animals are able to

re-excrete and transmit the virus to non-immune as

well as to immune hosts [27–29].

The advantage of the pseudo-likelihood methods is

that they take account of all the design effects simul-

taneously. However, they do not provide an estimated

intra-cluster correlation and do not allow for more

than one level of clustering in STATA. Variance esti-

mation for multistage sample data is carried out

through the customary between-primary sampling

units-differences calculation. The generalised esti-

mating equations and the random-effects logistic

regression model that can be carried out with re-

spectively the commands GENMOD and NLMIXED

in SAS cannot directly take into account stratifi-

cation. However, these commands are not specially

designed to analyse survey data and by using the

stratum as a fixed effect in the model, the stratification

variable is accounted for in a somewhat less efficient

way.

The sampling design must be taken into account

when analysing surveys. Otherwise, wrong con-

clusions may be drawn. In general, stratification may

lead to an increase of the precision of the estimates,

while clustering may decrease the precision. This was

illustrated using the pseudo-likelihood methods with

a Taylor series linearisation estimator as the variance

estimation method. The type of farm can erroneously

be considered as significantly related to the sero-

prevalence by not including an adjustment for the

design. Adjusting for unequal sampling probabilities

results in unbiased point estimates. Accounting for

stratification and clustering allows correct standard

errors to be made. Thrusfield [1] stated that the group

of animals which is of most epidemiological import-

ance in terms of the transmission and maintenance

of infection, and therefore for disease control and

eradication, is the herd. In the above methods for

analysis at animal level, the herd was still considered

as the primary sampling unit.

It should be mentioned that SUDAAN is also

suitable for the analysis of data from complex sample

surveys. In particular, in addition to the Taylor series

linearisation as a robust variance estimation method,

it allows also for the use of replication methods.

The precision of the estimates for the data of

BHV-1 was slightly increased by including the effect

of stratification at the province level. However, this

had only a minor effect (0.96, with 1 meaning no

effect) on the parameter estimates, which might be

explained by the variability within provinces not

being smaller than the overall variability. The effect of
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clustering was much stronger, as could be seen from

the widened confidence intervals (pseudo-likelihood

approach) or by the relatively high values obtained

for the intra-herd correlation coefficient in the mar-

ginal and random-effects model. Also, the sampling

design effects influenced mostly the herd-level (e.g.

type of farm) rather than the animal-level covariates

(e.g. age of the animal). Cattle in Belgian farms are

kept together in lots. This constitutes conditions

for the infection to spread, which results in more

homogeneous clusters with respect to the presence or

absence of the infection. This was supported, in the

analysis, by the value of the intra-cluster correlation,

which was higher than 50%. As an alternative to

using pseudo-likelihood methods, logistic random

effect models were used. The importance of using

adaptive Gaussian quadrature for the random effect

models was illustrated. By not using it, different con-

clusions with respect to the significance and signs of

the coefficients are reached depending on the number

of quadratures used.

Additionally, the testing procedure had inherent

probabilities of misclassification, due to diagnostic

test inaccuracy. If the diagnostic sensitivity and

specificity of a test are known, the true prevalence can

be estimated. Unfortunately, the test characteristics

are, in general, not known. Moreover, these test

characteristics vary among sub-populations [30]. The

impact of this misclassification on the BHV-1 risk

factor analysis is currently being investigated. In

conclusion, cross-sectional surveys based on diag-

nostic test results will always be concealed by the

inaccuracy of the diagnostic test and this cannot be

solved by a complex analysis.
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