
12
Charge and current

The idea of charge intuitively relates to that of fields and forces. Charge is
that quality or attribute of matter which determines how it will respond to a
particular kind of force. It is thus a label which distinguishes forces from one
another. The familiar charges are: electric charge, which occurs in Maxwell’s
equations; the mass, which occurs both in the laws of gravitation and inertia; the
colour charge, which attaches to the strong force; and a variety of other labels,
such as strangeness, charm, intrinsic spin, chirality, and so on. These attributes
are referred to collectively as ‘quantum numbers’, though a better name might
be ‘group numbers’.

Charge plays the role of a quantity conjugate to the forces which it labels.
Like all variables which are conjugate to a parameter (energy, momentum etc.)
charge is a book-keeping parameter which keeps track of a closure or conserva-
tion principle. It is a currency for the property it represents. This indicates that
the existence of charge ought to be related to a symmetry or conservation law,
and indeed this turns out to be the case. An important application of symmetry
transformations is the identification of conserved ‘charges’, and vice versa.

12.1 Conserved current and Noether’s theorem

As seen in section 11.3, the spacetime variation of the action reveals a structure
which leads to conservation equations in a closed system. The conservation
equations have the generic form

∂tρ + 
∇ · J = ∂µ Jµ = 0, (12.1)

for some ‘current’ Jµ. These are continuity conditions, which follow from the
action principle (section 2.2.1). One can derive several different, but equally
valid, continuity equations from the action principle by varying the action with
respect to appropriate parameters. This is the essence of what is known as
Noether’s theorem.
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326 12 Charge and current

In practice, one identifies the conservation law ∂µ Jµ = 0 for current Jµ by
varying the action with respect to a parameter, conjugate to its charge. This
leads to two terms upon integration by parts: a main term, which vanishes (either
with the help of the field equations, or by straightforward cancellation), and a
surface term, which must vanish independently for stationary action δS = 0.
The surface term can be written in the form

δS =
∫
(dx)(∂µ Jµ)δλ = 0 (12.2)

for some Jµ; then we say that we have discovered a conservation law for the
current Jµ and parameter λ.

This is most easily illustrated with the aid of examples. As a first example, we
shall use this method to prove that the electric current is conserved for a scalar
field. We shall set c = h̄ = 1 for simplicity here. The gauged action for a
complex scalar field is

S =
∫
(dx)

{
h̄2c2(Dµφ)∗(Dµφ)+ m2c4φ∗φ

}
. (12.3)

Consider now a gauge transformation in which φ → eiesφ, and vary the action
with respect to δs(x):

δS =
∫
(dx)h̄2c2

{
(Dµ(−ieδs)e−iesφ)∗(Dµeiesφ)

+(Dµe−iesφ)(Dµ(ieδs)eiesφ)
}
. (12.4)

Now using the property (10.41) of the gauge-covariant derivative that the phase
commutes through it, we have

δS =
∫
(dx)

{
(Dµ(−ieδs)φ)∗(Dµφ)+ (Dµφ)(Dµ(ieδs)φ)

}
. (12.5)

We now integrate by parts to remove the derivative from δs and use the equations
of motion (−D2 + m2)φ = 0 and −(D∗2 + m2)φ∗ = 0, which leaves only the
surface (total derivative) term

δS =
∫
(dx)δs(∂µ J ν), (12.6)

where

Jµ = ieh̄2c2(φ∗(Dµφ)− (Dµφ)∗φ). (12.7)

Eqn. (12.2) can be written

1

c

∫
dσµ Jµ = const. (12.8)

https://doi.org/10.1017/9781009289887.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.015


12.1 Conserved current and Noether’s theorem 327

In other words, this quantity is a constant of the motion. Choosing the canonical
spacelike hyper-surface for σ , eqn. (12.8) has the interpretation

1

c

∫
dσ J0 =

∫
dx1 . . . dxnρ = Q, (12.9)

where ρ is the charge density and Q is therefore the total charge. In other words,
Noether’s theorem tells us that the total charge is conserved by the dynamical
evolution of the field.

As a second example, let us consider dynamical variations of the field δφ.
Anticipating the discussion of the energy–momentum tensor, we can write
eqn. (11.43) in the form

δS =
∫
(dx)(∂µ Jµ) = 0, (12.10)

where we have defined the ‘current’ as

Jµδλ ∼ !µδq − θµνδxν. (12.11)

This is composed of a piece expressed in terms of the canonical field variables,
implying that canonical momentum is conserved for field dynamics,

∂µ!µ = 0, (12.12)

and there is another piece for the mechanical energy–momentum tensor, the
parameter is the spacetime displacement δxµ. This argument is usually used to
infer that the canonical momentum and the energy–momentum tensor,

∂µθµν = 0, (12.13)

are conserved; i.e. the conservation of mechanical energy and momentum.
If the action is complete, each variation of the action leads to a form which

can be interpreted as a conservation law. If the action is incomplete, so that
conservation cannot be maintained with the number of degrees of freedom
given, then this equation appears as a constraint which restricts the system. In a
conservative system, the meaning of this equation is that ‘what goes in goes out’
of any region of space. Put another way, in a conservative system, the essence
of the field cannot simply disappear, it must move around by flowing from one
place to another.

Given a conservation law, we can interpret it as a law of conservation of an
abstract charge. Integrating the conservation law over spacetime,∫

(dx) ∂µ Jµ =
∫

dσµ Jµ = const. (12.14)
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328 12 Charge and current

Table 12.1. Conjugates and generators.

Q v

Translation pi xi

Time development −H t
Electric phase e θ = ∫

Aµdxµ

Non-Abelian phase gT a θa = ∫
Aa
µdxµ

If we choose dσµ, i.e. µ = 0, to be a spacelike hyper-surface (i.e. a surface of
covariantly constant time), then this defines the total charge of the system:

Q(t) =
∫

dσρ(x) =
∫

dnx ρ(x). (12.15)

Combining eqns. (12.14) and (12.15), we can write∫
dnx ∂µ Jµ = −∂t

∫
dσρ +

∫
dσ i Ji = 0. (12.16)

The integral over Ji vanishes since the system is closed, i.e. no current flows in
or out of the total system. Thus we have (actually by assumption of closure)

dQ(t)

dt
= 0. (12.17)

This equation is well known in many forms. For the conservation of electric
charge, it expresses the basic assumption of electromagnetism that charge is
conserved. In mechanics, we have the equation for conservation of momentum

dpi

dt
= d

dt

∫
dσ θ i

0 = 0. (12.18)

The conserved charge is formally the generator of the symmetry which leads to
the conservation rule, i.e. it is the conjugate variable in the group transformation.
In a group transformation, we always have an object of the form:

eiQv, (12.19)

where Q is the generator of the symmetry and v is the conjugate variable which
parametrizes the symmetry (see table 12.1). Noether’s theorem is an expression
of symmetry. It tells us that – if there is a symmetry under variations of a
parameter in the action – then there is a divergenceless current associated with
that symmetry and a corresponding conserved charge. The formal statement is:
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12.2 Electric current Jµ for point charges 329

The invariance of the Lagrangian under a one-parameter family
of transformations implies the existence of a divergenceless current

and associated conserved ‘charge’.

Noether’s theorem is not the only approach to finding conserved currents, but
it is the most well known and widely used [2]. The physical importance of
conservation laws for dynamics is that

A local excess of a conserved quantity cannot simply
disappear –it can only relax by spreading slowly

over the entire system.

12.2 Electric current Jµ for point charges

Electric current is the rate of flow of charge

I = dQ

dt
. (12.20)

Current density (current per unit area, in three spatial dimensions) is a vector,
proportional to the velocity v of charges and their density ρ:

J i = ρev
i . (12.21)

By adding a zeroth component J 0 = ρc, we may write the spacetime-covariant
form of the current as

Jµ = ρeβ
µ, (12.22)

where βµ = (c, v). For a point particle at position x0(t), we may write the
charge density using a delta function. The n-dimensional spatial delta function
has the dimensions of density and the charge of the particle is q. The current per
unit area J i is simply q multiplied by the velocity of the charge:

J 0/c = ρ(x) = q δn(x− xp(t))

J i = ρ(x)dxi (t)

dt
. (12.23)

Relativistically, it is useful to express the current in terms of the velocity vectors
βµ and Uµ. For a general charge distribution the expressions are

Jµ(x) = ρcβµ

= ρcγ−1Uµ. (12.24)
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330 12 Charge and current

Table 12.2. Currents for various fields.

Field Current

Point charges, velocity v J 0 = eρc
J = eρv

Schrödinger field J 0 = eψ∗ψ
J = i eh̄

2m (ψ
∗(Dψ)− (Dψ)∗ψ)

Klein–Gordon field Jµ = ieh̄c2(φ∗(Dµφ)− (Dµ)∗φ)
Dirac field Jµ = iecψγµψ

Thus, for a point particle,

Jµ = qcβµ δn(x− xp(t))

= qc
∫

dt δn+1(x − x p(t))β
µ

= q
∫

dτ δn+1(x − x p(τ ))U
µ. (12.25)

12.3 Electric current for fields

The form of the electric current in terms of field variables is different for each
of the field types, but in each case we may define the current by

Jµ = δSM

δAµ
(12.26)

where SM is the action for matter fields, including their gauge-invariant coupling
to the Maxwell field Aµ, but not including the Maxwell action (eqn. (21.1))
itself. The action must be one consisting of complex fields, since the gauge
symmetry demands invariance under arbitrary complex phase transformations.
A single-component, non-complex field does not give rise to an electric current.
The current density for quanta with charge e may be summarized in terms of
the major fields as seen in table 12.2. The action principle displays the form of
these currents in a straightforward way and also clarifies the interpretation of the
source as a current. For example, consider the complex Klein–Gordon field in
the presence of a source:

S = SM + SJ =
∫
(dx)

{
h̄2c2(Dµφ)∗(Dµφ)− JµAµ

}
, (12.27)
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12.3 Electric current for fields 331

where terms independent of Aµ have been omitted for simplicity. Using
eqn. (12.26), and assuming that Jµ is independent of Aµ, one obtains

δSM

δAµ
= ieh̄c2

[
φ∗(Dµφ)− (Dµφ)∗φ

] = Jµ. (12.28)

Note carefully here: although the left and right hand sides are numerically equal,
they are not formally identical, since Jµ was assumed to be independent of Aµ
under the variation, whereas the left hand side is explicitly dependent on Aµ
through the covariant derivative. Sometimes these are confused in the literature
leading to the following error.

It is often stated that the coupling for the electromagnetic field to matter can
be expressed in the form:

SM = SM[Aµ = 0]+
∫
(dx)JµAµ. (12.29)

In other words, the total action can be written as a sum of a matter action
(omitting Aµ, or with partial derivatives instead of covariant derivatives), plus
a linear source term (which is supposed to make up for the gauge parts in the
covariant derivatives) plus the Maxwell action. This is incorrect because, for any
matter action which has quadratic derivatives (all fields except the Dirac field),
one cannot write the original action as the current multiplying the current, just
as

x2 �=
(

d

dx
x2

)
x . (12.30)

In our case,

δS

δAµ
Aµ �= S. (12.31)

The Dirac field does not suffer from this problem. Given the action plus source
term,

S = SM + SJ =
∫
(dx)

{
−1

2
ih̄cψ(γ µ

→
Dµ −γ µ

←
Dµ

†

)ψ

}
, (12.32)

the variation of the action equals

δSM

δAµ
= iqcψγµψ = Jµ. (12.33)

In this unique instance the source and current are formally and numerically
identical, and we may write

SM = SM[Aµ = 0]+ JµAµ. (12.34)
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332 12 Charge and current

12.4 Requirements for a conserved probability

According to quantum theory, the probability of finding a particle at a position
x at time t is derived from an invariant product of the fields. Probabilities must
be conserved if we are to have a particle theory which makes sense. For the
Schrödinger wavefunction, this is simply ψ∗ψ , but this is only true because this
combination happens to be a conserved density N (x) for the Schrödinger action.

In order to establish a probability interpretation for other fields, one may use
Noether’s theorem. In fact, we have already done this. A conserved current is
known from the previous section: namely the electric current, but there seems to
be no good reason to require the existence of electric charge in order to be able to
speak of probabilities. We would therefore like to abstract the invariant structure
of the conserved quantity without referring specifically to electric charge – after
all, particles may have several charges, nuclear, electromagnetic etc – any one
of these should do for counting particle probabilities.

Rather than looking at local gauge transformations, we therefore turn to
global phase transformations1 and remove the reference in the argument of the
phase exponential to the electric charge. Consider first the Schrödinger field,
described by the action

S =
∫

dσdt

{
− h̄2

2m
(∂ iψ)†(∂iψ)− Vψ∗ψ + i

2
(ψ∗∂tψ − ψ∂tψ

∗)
}
.

(12.35)

The variation of the action with respect to constant δs under a phase transforma-
tion ψ → eisψ is given by

δS =
∫
(dx)

{
− h̄2

2m

[−iδs(∂ iψ∗)(∂iψ)+ (∂ iψ∗)iδs(∂iψ)
]

+ i
[−iδsψ∗∂tψ + iδsψ∗∂tψ

] }
. (12.36)

Note that the variation δs need not vanish simply because it is independent of x ,
(see comment at end of section). Integrating by parts and using the equation of
motion,

− h̄2

2m
∇2ψ + V = i

∂ψ

∂t
, (12.37)

we obtain the expression for the continuity equation:

δS =
∫
(dx)δs

(
∂t J t + ∂i J i

) = 0, (12.38)

1 Global gauge transformations are also called rigid since they are fixed over all space.
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12.4 Requirements for a conserved probability 333

where

J t = ψ∗ψ = ρ
J i = ih̄2

2m

[
ψ∗(∂ iψ)− (∂ iψ∗)ψ

]
, (12.39)

which can be compared to the current conservation equation eqn. (12.1). ρ is the
probability density and J i is the probability current. The conserved probability,
by Noether’s theorem, is therefore

P =
∫

dσψ∗(x)ψ(x), (12.40)

and this can be used to define the notion of an inner product between two
wavefunctions, given by the overlap integral

(ψ1, ψ2) =
∫

dσψ∗1 (x)ψ2(x). (12.41)

Thus we see how the notion of an invariance of the action leads to the
identification of a conserved probability for the Schrödinger field.

Consider next the Klein–Gordon field. Here we are effectively doing the same
thing as before in eqn. (12.4), but keeping s independent of x and setting Dµ→
∂µ and e → 1:

S =
∫
(dx)h̄2c2

{
(∂µe−isφ∗)(∂µeisφ)

}
δS =

∫
(dx)h̄2c2

[
(∂µφ∗(−iδs)e−is)(∂µφeis)+ c.c.

]
=

∫
(dx)δs(∂µ Jµ), (12.42)

where

Jµ = −ih̄2c2(φ∗∂µφ − φ∂µφ∗). (12.43)

The conserved ‘charge’ of this symmetry can now be used as the definition of
the inner product between fields:

(φ1, φ2) = ih̄c
∫

dσσ (φ∗1∂σφ2 − (∂σφ1)
∗φ2), (12.44)

or, in non-covariant form,

(φ1, φ2) = ih̄c
∫

dσ(φ∗1∂0φ2 − (∂0φ1)
∗φ2). (12.45)

This is now our notion of probability.
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334 12 Charge and current

Here we have shown that a conserved probability can be attributed to any
complex field as a result of symmetry under rigid (global) phase transformations.
One should be somewhat wary of the physical meaning of rigid gauge transfor-
mations, since this implies a notion of correlation over arbitrary distances and
times (a fact which apparently contradicts the finite speed of communication
imposed by relativity). Global transformations should probably be regarded as
an idealized case. In general, one requires the notion of a charge and associated
gauge field, but not necessarily the electromagnetic gauge field. An additional
point is: does it make physical sense to vary an object which does not depend on
any dynamical variables x, t? How should it vary without any explicit freedom
to do so? These points could make one view rigid (global) gauge transformations
with a certain skepticism.

12.5 Real fields

A cursory glance at the expressions for the electric current show that Jµ vanishes
for real fields. Formally this is because the gauge (phase) symmetry cannot exist
for real fields, since the phase is always fixed at zero. Consequently, there is no
conserved current for real fields (though the energy–momentum tensor is still
conserved). In the second-quantized theory of real fields (which includes the
photon field), this has the additional effect that the number of particles with a
given momentum is not conserved.

The problem is usually resolved in the second-quantized theory by distin-
guishing between excitations of the field (particles) with positive energy and
those with negative energy. Since the relativistic energy equation E2 = p2c2 +
m2c4 admits both possibilities. We do this by writing the real field as a sum of
two parts:

φ = φ(+) + φ(−), (12.46)

where φ(+)∗ = φ(−). φ(+) is a complex quantity, but the sum φ(+) + φ(−) is
clearly real. What this means is that it is possible to define a conserved current
and therefore an inner product on the manifold of positive energy solutions φ(+),

(φ
(+)
1 , φ

(+)
2 ) = ih̄c

∫
dσµ(φ(+)∗1 ∂µφ

(+)
2 − (∂µφ(+)1 )∗φ(+)2 ), (12.47)

and another on the manifold of negative energy solutions φ(−). Thus there is
local conservation of probability (though charge still does not make any sense)
of particles and anti-particles separately.
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12.6 Super-conductivity 335

12.6 Super-conductivity

Consider a charged particle in a uniform electric field Ei . The force on the
particle leads to an acceleration:

q Ei = mẍi . (12.48)

Assuming that the particle starts initially from rest, and is free of other
influences, at time t it has the velocity

ẋ i (t) = q

m

∫ t

0
Ei dt ′. (12.49)

This movement of charge represents a current (charge multiplied by velocity).
If one considers N such identical charges, then the current is

J i (t) = Nqẋi = Nq2

m

∫ t

0
Ei dt ′. (12.50)

Assuming, for simplicity, that the electric field is constant, at time t one has

J i (t) = Nq2t

m
Ei

≡ σ Ei . (12.51)

The last line is Ohm’s law, V = I R, re-written in terms of the current density
J i and the reciprocal resistance, or conductivity σ = 1/R. This shows that a
free charge has an ohmic conductivity which is proportional to time. It tends to
infinity. Free charges are super-conducting.

The classical theory of ohmic resistance assumes that charges are scattered
by the lattice through which they pass. After a mean free time of τ , which is a
constant for a given material under a given set of thermodynamical conditions,
the conductivity is σ = Nq2τ/m. This relation assumes hidden dissipation,
and thus can never emerge naturally from a fundamental formulation, without
modelling the effect of collisions as a transport problem. Fundamentally, all
charges super-conduct, unless they are scattered by some impedance. The
methods of linear response theory may be used for this.

If one chooses a gauge in which the electric field may be written

Ei = −∂t Ai , (12.52)

then substitution into eqn. (12.50) gives

J i = − Ai , (12.53)

where  = Nq2/m. This is known as London’s equation, and was originally
written down as a phenomenological description of super-conductivity.
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336 12 Charge and current

The classical model of super-conductivity seems naive in a modern, quantum
age. However, the quantum version is scarcely more sophisticated. As noted
in ref. [135], the appearance of super-conductivity is a result only of symmetry
properties of super-conducting materials at low temperature, not of the detailed
mechanism which gives rise to those symmetry properties.

Super-conductivity arises because of an ordered state of the field in which the
inhomogeneities of scattering centres of the super-conducting material become
invisible to the average state. Consider such a state in a scalar field. The super-
conducting state is one of great uniformity, characterized by

∂µ〈φ(x)〉 = 〈A0〉 = 0. (12.54)

The average value of the field is thus locked in a special gauge. In this state, the
average value of the current is given by

〈Ji 〉 = 〈ieh̄c2(φ∗(Dµφ)− (Dµ)∗φ)〉. (12.55)

The time derivative of this is:

∂t〈Ji 〉 = −e2c2∂t〈Ai 〉
= e2c2〈Ei 〉. (12.56)

This is the same equation found for the classical case above. For constant
external electric field, it leads to a current which increases linearly with time,
i.e. it becomes infinite for infinite time. This corresponds to infinite conductivity.
Observe that the result applies to statistical averages of the fields, in the same
way that spontaneous symmetry breaking applies to statistical averages of the
field, not individual fluctuations (see section 10.7). The individual fluctuations
about the ground state continue to probe all aspects of the theory, but these are
only jitterings about an energetically favourable super-conducting mean field.
The details of how the uniform state becomes energetically favourable require,
of course, a microscopic theory for their explanation. This is given by the
BCS theory of super-conductivity [5] for conventional super-conductors. More
recently, unusual materials have given rise to super-conductivity at unusually
high temperatures, where an alternative explanation is required.

12.7 Duality, point charges and monopoles

In covariant notation, Maxwell’s equations are written in the form

∂µFµν = −µ0 J ν

εµνρσ ∂
νFρσ = 0. (12.57)

If one defines the dual F∗ of a tensor F by one-half its product with the anti-
symmetric tensor, one may write

F∗µν =
1

2
εµνρσ Fρσ , (12.58)
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12.7 Duality, point charges and monopoles 337

and Maxwell’s equations become

∂µFµν = −µ0 J ν

∂µF∗µν = 0. (12.59)

The similarity between these two equations has prompted some to speculate as
to whether a dual current, Jµm , could not exist:

∂µFµν = −µ0 J ν

∂µF∗µν = −µ0 J νm . (12.60)

This would imply an equation of the form

∇ · B = (∂i Bi ) = µ0ρm (12.61)

and the existence of magnetic monopoles. The right hand side of these equations
is usually thought of as a source term, or forcing term, for the differential terms
on the left hand side. The existence of pointlike singularities is an interesting
issue, since it touches the limits of the smooth differential formalism used to
express the theory of electromagnetism and drives home the reasoning behind
the model of pointlike charges which physicists have adopted.

Consider a Coulomb field surrounding a point. Up to a factor of 4πε0, the
electric field has the vectorial form

Ei = xi

|x|m , (12.62)

in n dimensions. When n = 3 we have m = 3 for the Coulomb field, i.e. a 1/r2

force law. The derivative of this field is

∂i E j = ∂i

(
x j√
(xk xk)

)

=
(
δi j − m

xi x j

xk xk

)
. (12.63)

From this, we have that


∇ · E = ∂ i Ei = (n − m)

|x|m ,

( 
∇ × E)k = εi jk ∂i E j = 0. (12.64)

The last result follows entirely from the symmetry on the indices: the product
of a symmetric matrix and an anti-symmetric matrix is zero. What we see is
that, in n > 2 dimensions, we can find a solution n = m where the field
satisfies the equation of motion identically, except at the singularity xi = 0,
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where the solution does not exist. In other words, a field can exist without a
source, everywhere except at the singular point.

In fact, this is an illusion of the differential formulation of Maxwell’s
equations; it highlights a conceptual difficulty. The core difficulty is that the
equations are really non-local, in the sense that they relate a field at one point to
a source at another. This requires an integration over the intermediate points to
be well defined differentially. The differential form of Maxwell’s equations is
really a shorthand for the integral procedure.

At the singular point, the derivative does not exist, and Maxwell’s equation
becomes meaningless. We can assign a formal meaning to the differential form
and do slightly better, as it turns out, by using the potential Aµ, since this can
be regularized choosing variables in which the singularity disappears. In that
way we can assign a formal meaning to the field around a point and justify
the introduction of a source for the field surrounding the singularity using an
integral formulation. The formulation we are looking for is in terms of Green
functions. Green functions are, in a sense, a regularization scheme for defining
the meaning of an ambiguous, irregular (infinite) expression. This is also the
first in a long litany of cases where it is necessary to regularize, or re-formulate
infinite, badly defined expressions in the physics of fields, which result from
assumptions about pointlike structure and Green functions.

In terms of the vector potential Aµ, choosing the so-called Coulomb gauge
∂i Ai = 0, we have

Ei/c = −∂0 Ai − ∂i A0, (12.65)

so that the divergence of the electric field is

∂i Ei = −∇2φ = ρ. (12.66)

Note that we set ε0 = 1 for the purpose of this schematic. The charge density
for a point particle with charge q at the origin is written as

ρ = qδ3(x)

= qδ(x)δ(y)δ(z)

= q

4πr2
δ(r). (12.67)

Thus, in polar coordinates, about the origin,

−∇2 φ(r) = qδ(r)

4πε0r
. (12.68)

The Green function G(x, x ′) is defined as the object which satisfies the equation

−∇2 G(x, x ′) = δ(x − x ′). (12.69)
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If we compare this definition to the Poisson equation for the potential φ(x) in
eqn. (12.68), we see that G(x, x ′) can interpreted as the scalar potential for a
delta-function source at x = x ′, with unit charge. Without repeating the content
of chapter 5, we can simply note the steps in understanding the singularity at the
origin. In the case of the Coulomb potential in three dimensions, the answer is
well known:

φ(r) = 1

4πr
. (12.70)

We can use this to verify the consistency of the Green function definition of
the field, in lieu of a more proper treatment later. By multiplying the Poisson
equation by the Green function, one has∫

d3x′ (−∇2φ(x))G(x, x ′) =
∫

d3x′ ρ(x ′)G(x, x ′). (12.71)

Integrating by parts, and using the definition of G(x, x ′),

φ(x) =
∫

d3x′ ρ(x ′)G(x, x ′). (12.72)

Substituting the polar coordinate forms for φ(r) and using the fact that G(r, r ′)
is just φ(r − r ′) in this instance, we have

φ(r) = 1

4πr
=

∫
1

4π(r − r ′)
δ(r ′)
4πr ′2

4πr ′2dr. (12.73)

This equation is self-consistent and avoids the singular nature of the r ′ integra-

tion by virtue of cancellations with the integration measure
∫

d3x′ = 4πr ′2dr .
We note that both the potential and the field are still singular at the origin.
What we have achieved here, however, is to show that the singularity is
related to a delta-function source (well defined under integration). Without
the delta-function source ρ, the only consistent solution is φ = const. in the
equation above. Thus we do, in fact, need the source to explain the central
Coulomb field.

In fact, the singular structure noted here is a general feature of central fields,
or conservative fields, whose curl vanishes. A non-vanishing curl, incidentally,
indicates the presence of a magnetic field, and thus requires a source for the
magnetism, or a magnetic monopole.

The argument for magnetic monopoles is based on the symmetry of the
differential formulation of Maxwell’s equations. We should pay attention to
the singular nature of pointlike sources when considering this point. If we view
everything in terms of singularities, then a magnetic monopole exists trivially:
it is the Lorentz boost of a point charge, i.e. a string of current. The existence
of other monopoles can be inferred from other topological singularities in the
spacetime occupied by the field.
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