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Abstract

Background. Major depressive disorder (MDD) and psychostimulant use disorder (PUD) are
common, disabling psychopathologies that pose a major public health burden. They share a
common behavioral phenotype: deficits in inhibitory control (IC). However, whether this is
underpinned by shared neurobiology remains unclear. In this meta-analytic study, we aimed to
define and compare brain functional alterations during IC tasks in MDD and PUD.

Methods. We conducted a systematic literature search on IC task-based functional magnetic
resonance imaging studies in MDD and PUD (cocaine or methamphetamine use disorder) in
PubMed, Web of Science, and Scopus. We performed a quantitative meta-analysis using seed-
based d mapping to define common and distinct neurofunctional abnormalities.

Results. We identified 14 studies comparing IC-related brain activation in a total of 340 MDD
patients with 303 healthy controls (HCs), and 11 studies comparing 258 PUD patients with
273 HCs. MDD showed disorder-differentiating hypoactivation during IC tasks in the median
cingulate/paracingulate gyri relative to PUD and HC, whereas PUD showed disorder-
differentiating hypoactivation relative to MDD and HC in the bilateral inferior parietal lobule.
In conjunction analysis, hypoactivation in the right inferior/middle frontal gyrus was common
to both MDD and PUD.

Conclusions. The transdiagnostic neurofunctional alterations in prefrontal cognitive control
regions may underlie IC deficits shared by MDD and PUD, whereas disorder-differentiating
activation abnormalities in midcingulate and parietal regions may account for their distinct
features associated with disturbed goal-directed behavior.

Introduction

Major depressive disorder (MDD) and psychostimulant use disorder (PUD) are two distinct yet
often co-occurring psychiatric conditions (Filip et al., 2014; Lin et al., 2012). MDD, characterized
by depressed mood, loss of interest and pleasure, and impaired cognitive function (Otte et al.,
2016), affects 6% of adults worldwide each year (Bromet et al., 2011). Psychostimulants, notably
cocaine and methamphetamine, are the second most commonly used illicit substances (Patel
et al, 2016). The global prevalence of psychostimulant use is reportedly 0.3-1.1% (Ashok,
Mizuno, Volkow, & Howes, 2017), with PUD affecting 16% of cocaine users and 11% of
amphetamine-like stimulant users (Farrell et al., 2019). Prolonged abuse of psychostimulants
can lead to cognitive deficits (D’Souza, 2019) and mental health issues such as depression,
anxiety, and psychosis (Ibanez, Caceresa, Brucher, & Seijas, 2020). Epidemiologic studies
indicated that 35.7% of cocaine users have a lifetime history of depression (Conway, Compton,
Stinson, & Grant, 2006; Glasner-Edwards et al., 2009), and depressive symptoms among
methamphetamine users are even more severe and persistent compared to cocaine users (Kay-
Lambkin et al., 2011). On the other hand, according to the ‘self-medication hypothesis’ (Markou,
Kosten, & Koob, 1998), patients with MDD may turn to drugs to compensate for their anhedonia
and motivational impairment (Lin et al., 2012). The co-occurrence of MDD and PUD can
exacerbate the clinical symptoms and increase the risk of relapse, imposing a great burden on
both individuals and society (Zilkha, Barnea-Ygael, Keidar, & Zangen, 2020).

Among the factors contributing to disability in people with depression and psychostimulant
use, cognitive deficits, especially inhibitory control (IC) deficits, is a shared core feature of these
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disorders and considered a common risk factor (Hildebrandt, Diet-
erich, & Endrass, 2021; Yitzhak et al., 2023). IC is the ability to
suppress inappropriate prepotent responses and resist interference
of irrelevant information to enable goal-directed behaviors (Aron,
2007; Diamond, 2013), which may be associated with the failure to
inhibit ruminative thoughts in MDD (Shimony et al., 2021) and
higher levels of impulsivity and attentional deficits in PUD
(Jovanovski, Erb, & Zakzanis, 2005; Verdejo-Garcia, Lawrence, &
Clark, 2008). Cognitive models for depression highlight IC deficits
as a key component in a proposed mechanism for MDD (Yitzhak
et al,, 2023), and a meta-analysis showed that among all cognitive
domains, IC deficits had the strongest effect size in children and
adolescents with MDD compared to healthy controls (HCs;
Wagner et al, 2015). According to the established impaired
response inhibition and salience attribution model of addiction
(Goldstein & Volkow, 2002), IC deficits serve as a critical psycho-
logical mechanism in the development and persistence of substance
addiction (Dai et al., 2022). Among substance use disorders, PUD
shows the most common and severe IC deficits (Frazer, Richards, &
Keith, 2018; Lee, Hoppenbrouwers, & Franken, 2019), while users
of other substances, such as opioids, often exhibit more severe
mood disturbances (Ahn & Vassileva, 2016). Numerous empirical
studies have demonstrated IC alterations in both MDD and PUD
(Elton et al., 2014; Liu et al., 2021a; Nestor, Ghahremani, Monter-
0sso, & London, 2011). Meta-analytical studies provide consistent
evidence that depressed patients (Dotson et al.,, 2020) and PUD
(Smith, Mattick, Jamadar, & Iredale, 2014) performed poorly on the
IC paradigms such as Stroop, Go/NoGo, and stop-signal task (SST)
compared to HC, suggesting that impaired IC might be a trans-
diagnostic behavioral phenotype.

While both MDD and PUD involve deficient IC, their IC
deficits may arise from divergent neural mechanisms. Functional
magnetic resonance imaging (fMRI) studies of IC in MDD have
reported altered brain activation in inferior/medial/posterior
frontal, anterior cingulate, midcingulate, and inferior parietal
regions during Go/NoGo and SST (Langenecker et al., 2019; Liu
et al., 2021a), but with inconsistent results (Bobb et al., 2012;
Piani, Maggioni, Delvecchio, & Brambilla, 2022a), for example,
both greater activation (Langenecker et al., 2007; Langenecker
et al,, 2019) and lesser activation (Jenkins et al., 2018) in anterior
cingulate cortex (ACC) during IC tasks. Two meta-analyses in
MDD reveal consistent hypoactivation in ACC and anterior
insula during executive control (Diener et al., 2012; Miller, Ham-
ilton, Sacchet, & Gotlib, 2015), although they examined activation
across a range of tasks and did not isolate IC. In PUD, both
cocaine and methamphetamine users show hyperactivation in
motor control regions such as the precentral gyrus (Brewer
et al., 2008; Fassbender, Lesh, Ursu, & Salo, 2015; Morein-Zamir
et al,, 2015) and self-referential processing areas such as the
precuneus (Morein-Zamir et al., 2015; Nestor et al., 2011), as well
as hypoactivation in frontoparietal control regions including the
inferior parietal lobule (IPL; Barrds-Loscertales et al., 2011; Zil-
verstand, Huang, Alia-Klein, & Goldstein, 2018) and dorsolateral
prefrontal cortex (DLPFC; Moeller et al., 2014; Nestor et al., 2011),
and conflict monitoring regions such as the ACC (Hester &
Garavan, 2004; Zerekidze et al., 2023) in Stroop, Go/NoGo, or
SST tasks. Furthermore, a recent meta-analysis revealed hypoac-
tivation of the left dorsal ACC (dACC) and right middle frontal
gyrus (MFG) in individuals with active drug addiction during IC
tasks (Le, Potvin, Zhornitsky, & Li, 2021). An earlier review
suggested that dysfunction of prefrontal regions (including
dACC, DLPFC, and inferior frontal gyrus [IFG]) may contribute
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to impaired response inhibition in these individuals (Goldstein &
Volkow, 2011).

Taken together, these studies suggest partly overlapping IC-
related frontoparietal abnormalities in MDD and PUD. However,
the findings are mixed, and the common and distinct neurobio-
logical underpinnings of IC between these disorders have not been
systematically determined. Given their shared phenotype and in
line with the National Institute of Mental Health Research Domain
Criteria framework (Kozak & Cuthbert, 2016), this study aimed to
dissect shared and distinct neural substrates underlying inhibition
processes within the construct of ‘cognitive control’ in a cognitive
systems domain. By comparing IC-related dysfunctions in MDD
and PUD, we can identify common and disorder-differentiating
neuroimaging markers of IC that may potentially serve as thera-
peutic targets for the development of new treatments for MDD
and PUD.

To this end, we conducted a quantitative meta-analysis com-
paring brain activation during IC tasks between MDD and PUD,
using all eligible case—control whole-brain fMRI studies in both
disorders. We used voxel-wise anisotropic effect size signed dif-
ferential mapping (AES-SDM, https://www.sdmproject.com/soft
ware/), which allows coordinate-based meta-analyses of neuroi-
maging studies with unbiased estimation of effect sizes (Radua &
Mataix-Cols, 2009; Radua et al., 2014). A three-step approach was
employed: first, separate meta-analyses within each patient group
to characterize robust activation abnormalities relative to HC;
second, a quantitative comparison of activation abnormalities
between MDD and PUD; and third, a conjunction/disjunction
analysis of shared/contrasting abnormalities across both groups.
As IC is a construct of two distinct but interconnected dimensions
(Uhre et al., 2022), that is, cognitive inhibition (the suppression of
competing cognitive processing) and response inhibition (the sup-
pression of a prepotent motor response), we first examined these
two dimensions together and then separately. Based on previous
literature, we hypothesized that these two disorders manifest com-
mon alterations in prefrontal regions (e.g. MFG, IFG) that are
engaged in cognitive control and inhibitory processes (McTeague
et al., 2017; McTeague, Goodkind, & Etkin, 2016; Yan et al., 2022).

Methods
Literature search and selection

The meta-analyses were conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses guide-
lines (Moher et al., 2009). A comprehensive search was conducted
in PubMed, Web of Science, and Scopus databases up to March
25,2024, for fMRI studies involving inhibition-related tasks, which
compared patients with MDD or PUD with HC, respectively. The
search terms are provided in the Supplementary Materials.

Studies were included if (a) a whole-brain activation comparison
of patients with MDD or PUD (cocaine or methamphetamine use
disorder) with HC was conducted, (b) an IC task was performed
measuring cognitive inhibition (e.g. Stroop) or response inhibition
(e.g- Go/NoGo, SST), (c) the t-map or coordinates in Talairach or
Montreal Neurological Institute (MNI) space were provided, and
(d) the study was published in a peer-reviewed English-language
journal. Studies were excluded if (a) they were nonempirical studies
(e.g. review, meta-analysis) or preliminary studies (e.g. meeting
abstract), (b) they were nonhuman studies, (c) the sample repeated
that in a previous study, (d) only the region-of-interest approach
was used, and (e) there was no IC contrast.
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Data selection and extraction

Two authors (Y.L. and X.L.) independently screened and assessed
all search results, achieving 100% agreement. From the selected
articles, these authors independently extracted peak coordinates of
significant activation differences and effect sizes; demographic and
clinical information (e.g. sample size, mean age, comorbidity, medi-
cation, age of onset, and duration of illness); and scanning techni-
calities (e.g. scanner field strength, smoothing, and task).

Meta-analyses

The voxel-wise meta-analyses were conducted using AES-SDM
v.5.15 (https://www.sdmproject.com/software/). AES-SDM is a
powerful statistical technique to synthesize diverse neuroimaging
findings (Radua et al., 2012) and has been widely used in previous
meta-analyses (Liloia et al., 2024; Liu et al., 2021b; Pan et al., 2024;
Schrammen et al., 2022). It utilizes reported peak coordinates and ¢-
values from included studies to recreate mean effect-size maps
using an anisotropic Gaussian kernel; the mean maps are then
weighted by sample size, intrastudy variance, and interstudy het-
erogeneity and compared to a null distribution with a random-
effect model (Radua et al., 2012; Radua et al,, 2014).

We employed a three-step meta-analytic approach to deter-
mine distinct and shared brain activation alterations during IC
tasks in patients with MDD and PUD. First, to assess robust brain
activation alterations for each patient group relative to their HC,
separate meta-analyses (MDD vs. HC and PUD vs. HC) were
conducted using results from IC-related contrasts (e.g. NoGo vs.
Go, incongruent vs. congruent, and stop vs. failed-stop). Second,
to investigate differentiating activation alterations, a quantitative
comparative meta-analysis comparing brain activation between
patients with MDD and PUD was conducted, while covarying for
age and gender. Third, to identify overlapping/contrasting neu-
rofunctional alterations between patients with MDD and PUD, a
conjunction/disjunction analysis was performed, taking into
account the error in estimating the p-values from individual
meta-analyses. Prior to meta-analyses, Talairach coordinates were
converted to MNI space, and other effect-size measures (e.g.
z-values) were converted to t-values using the online calculator
provided by AES-SDM. In the separate-group meta-analyses and
between-group comparative analyses, we applied default param-
eters and thresholds (full-width at half-maximum = 20 mm,
voxel-wise p < 0.005, SDM-Z > 1, and a cluster extent size of
>10 voxels (Radua et al., 2012; Radua et al., 2014). In the con-
junction/disjunction analysis, in line with previous studies (Bore
etal., 2023; Liu et al., 2022), we used a more stringent threshold of
P <0.0025 and a cluster extent size of 210 voxels.

Sensitivity analyses

To examine the potential confounding effects of demographics and
clinical variables on brain activation alterations, we conducted
meta-regression analyses within each patient group, with regressor
variables that were reported in at least nine studies (Radua &
Mataix-Cols, 2009): mean age, gender ratio, and comorbidity ratio
for both groups; and abstinence days and duration of psychosti-
mulant use additionally for PUD. The threshold was set at voxel-
wise p < 0.0005 and a cluster extent size of 220 voxels, and only
regions found in the main meta-analyses were included (Radua
et al., 2012). Several subgroup analyses were performed to control
for potential confounding effects of medication, psychostimulant
type (cocaine vs. methamphetamine) and dimension of inhibition
(response inhibition vs. cognitive inhibition). Considering that
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comorbidity may influence both common and distinct brain acti-
vation patterns, we also controlled for the comorbidity ratio in the
comparative and conjunctive meta-analyses (for detailed descrip-
tions and results, see Supplementary Methods and Table S3).

We used a leave-one-out jackknife sensitivity analysis to evaluate
the impact of each study on the overall results. We used a random-
effect model with Q statistics to quantify interstudy heterogeneity.
The heterogeneous brain regions were identified using the default
threshold parameters (full-width at half-maximum = 20 mm, voxel-
wise p < 0.005, peak height SDM-Z > 1, and a cluster extent size of
210 voxels). Funnel plots and Egger’s test were used to assess
potential publication bias, setting significance at p < 0.05.

Results
Included studies and sample characteristics

A literature search yielded 3560 studies (2163 MDD and 1397
PUD), of which 14 MDD and 11 PUD studies met all the inclusion
criteria for meta-analysis (Figure 1).

Tables 1 and 2 summarize demographic and clinical informa-
tion for participants. The MDD studies (Table 1) comprised 17 data-
sets comparing activation in IC tasks between 340 patients with
MDD (228 females, mean age 30.8 years) and 303 HCs
(192 females, mean age 28.4 years). The PUD studies (Table 2)
comprised 12 datasets comparing 258 patients with PUD
(71 females, mean age 37.7 years) and 273 HCs (88 females, mean
age 35.8 years). Among the PUD studies, three studies (including
three datasets) focused on methamphetamine users, and the
remaining eight studies (including nine datasets) investigated
cocaine users.

There were no significant differences in mean age or gender
ratio between patients with MDD and HC (mean age: t = 0.030,
p=0.766; gender ratio: t = 1.111, p = 0.276) or between patients with
PUD and HC (mean age: t = 1.007, p = 0.326; gender ratio:
t=—0.810, p = 0.936) using a weighted two-sample ¢-test. Between
the two patient groups, there was no significant difference in mean
age (t = —1.440, p = 0.165); however, MDD studies had a higher
proportion of females than that in PUD studies (¢t = 5.706,
p < 0.001).

Brain activation alterations

Comparing MDD versus HC

Relative to HC, MDD showed hyperactivation in the left ventral
anterior cingulate cortex/medial prefrontal cortex (VACC/mPFC),
bilateral IPL, right temporal pole/superior temporal gyrus (STG)
and left fusiform gyrus (FG), and hypoactivation in median cingu-
late/paracingulate gyri (MCG) and right IFG (Figure 2a; Table 3).

Comparing PUD versus HC

Relative to HC, PUD showed hyperactivation in the left precentral
gyrus, right precuneus, left FG and right superior frontal gyrus
(SFG), and hypoactivation in the right IPL, left IPL/angular gyrus
(AG), and right MFG (Figure 2b; Table 3).

Comparing MDD versus PUD

Covarying for mean age and gender ratio, MDD showed hyper-
activation relative to PUD in the bilateral IPL, and hypoactivation
relative to PUD in the MCG, left parahippocampal gyrus (PHG),
left MFG, and left inferior temporal gyrus (ITG) (Figure 2¢
Table 3). Moreover, the differential results between MDD and
PUD remained robust even after additionally controlling for the
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Figure 1. PRISMA flowchart. Literature searching and selection process for (a) major depressive disorder (MDD) and (b) psychostimulant use disorder (PUD).

comorbidity ratio (together with mean age and gender ratio) in
comparative meta-analyses (Supplementary Table S3).

Conjunction/disjunction analyses

In conjunction analysis, there was convergent hypoactivation in the
right IFG/MFG (MNI: 46, 44, 6; voxels: 1002; BA45; Figure 2d) in
both patient groups. In disjunction analysis, MDD showed hyper-
activation, while PUD showed hypoactivation in the right IPL
(MNI: 60, —44, 34; voxels: 1653; BA40; Figure 2e) and left IPL
(MNI: —48, —50, 42; voxels: 1423; BA40; Figure 2e¢). In the reverse
pattern, PUD showed hyperactivation and MDD showed hypoac-
tivation in the MCG (MNI: 0, —42, 32; voxels: 591; BA23; Figure 2f).
Excluding studies with comorbid patients confirmed the highly
robust patterns (Supplementary Table S3).

Mapping results onto large-scale networks

To provide a functional interpretation of the results, we mapped the
identified brain regions onto the seven large-scale brain cortical
functional networks in the Yeo 7-network parcellation atlas (Yeo
et al., 2011): visual network (VN), somatomotor network (SMN),
dorsal attention network (DAN), salience network (SAN), limbic
network (LN), frontoparietal network (FPN), and default mode
network (DMN). As identified clusters often span several networks,
we calculated the percentage of voxels in each cluster that fall into
each of the seven networks (results are provided in Supplementary
Table S1).

Sensitivity analyses

Meta-regression analysis was performed to identify brain regions
where activation abnormalities were modulated by demogra-
phic and clinical variables in MDD and PUD, respectively
(Supplementary Table S2). For MDD, a higher proportion of
women was associated with greater activation in the right MFG,
and there was no significant effect of mean age and comorbidity
ratio. For PUD, older patients showed less activation in the right
SFG; a higher comorbidity ratio was associated with greater acti-
vation in the right IPL; longer duration of psychostimulant use was
primarily associated with less activation in the left IPL; longer
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abstinence was mainly associated with increased activation in the
left MFG; and there was no significant effect of the gender ratio.
Subgroup meta-analyses showed no consistent evidence for the
influence of medication in MDD, whereas the PUD results were
mainly driven by studies on cocaine users and response inhibition
tasks, possibly due to their larger numbers (Supplementary Results
and Tables S4-S6). We further controlled for comorbidity effects in
the comparative and conjunctive meta-analyses, which yielded
robust results as reported above (see also Supplementary Table S3).
According to jackknife sensitivity analyses, the main results were
highly replicable (>14 combinations for MDD and >9 combin-
ations for PUD; Table 3). In heterogeneity analysis (Supplementary
Table S7), MDD studies showed significant heterogeneity in the left
cerebellum and right IPL; PUD studies showed significant hetero-
geneity mainly in the left SFG, right postcentral gyrus, and pre-
cuneus. In Egger’s test (Table 3), PUD studies showed significant
publication bias in the left IPL/AG (p = 0.012), right MFG
(p = 0.002), and right SFG (p = 0.001); in MDD studies, there was
no evidence of publication bias (p > 0.05).

Discussion

To our knowledge, this is the first neuroimaging meta-analysis to
define shared and distinct neurofunctional abnormalities of IC in
MDD and PUD. During IC tasks, MDD and PUD shared hypoac-
tivation relative to HC in the right IFG/MFG, while MDD-
differentiating hypoactivation was found in MCG relative to both
HC and PUD, and PUD-differentiating hypoactivation was found
in bilateral IPL relative to both HC and MDD. PUD also showed
hyperactivation in the left PHG, MFG, and ITG relative to MDD.
These results provide novel insights into the common and distinct
neural basis of IC in MDD and PUD, which may facilitate a
mechanistic understanding of the two disorders.

Common brain activation abnormalities in MDD and PUD

The overlapping hypoactivation in the right IFG/MFG in MDD and
PUD during IC tasks supports our hypothesis and aligns with
several previous studies. Transdiagnostic neuroimaging meta-
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Table 1. Demographic and clinical characteristics of the 14 task-fMRI MDD studies included in the meta-analysis (17 datasets, 340 patients with MDD)

MDD HC
Mean (SD) Scanner/
Number Mean (SD)  Medication Diagnosis age at Mean (SD) Number  Mean (SD) FWHM
Study (female) age (y) (Yes/No) (type) Comorbidity onset (y) duration (y) (female) age (y) (mm)  Task Threshold Summary findings
Bobb et al. 15(12) 60.7(4.7) No Research No NA NA 13 (9) 62.0(53) 3T/6 SST p<0.01 (corr) HC<MDD: L ACC, L MFG, L MOFG,
(2012) criteria L Cd, L MFG
(MDD)
Cha et al. 28 (24) 23.1(3.5) No NA Twenty-eight STM 14.7 (4.3) 8.4 (5.6) 29 (18) 248 (3.4) 3T/8 Go/NoGo  p <0.05 -
(2021) (Bonferroni)
41(27)  25.1(3.8) NA 15.3 (4.4) 9.8 (5.4) HC < MDD: R TP
Chechko 18 (13) 36.5(10.8) Yes (n=12) DSM-IV (MDD) No 30.3 (7.5) NA 18 (13) 36.0 (10.3) 3T/8 Stroop p <0.05 (FWE) HC>MDD:RCB,LCB,LIFG,RIFG
etal. MFG, L IPL, RIPL, L SMA,RITG
(2013)
Crane et al. 29 (21) 33.2(11.3) No DSM-IV (MDD) Twelve anxiety, five NA NA 54 (38) 33.8(11.6) 3T/5 Go/NoGo  p <0.005 HC > MDD: R PCC
(2016) SOP, four GAD, (Alphasim)
four NA, two PD,
two SIP
18 (11)  34.3(11.7) NA HC > MDD: R SFG, R MFG, R PCC,
R Cuneus, L FG, L Cd
Diler et al. 10 (8) 15.9(1.1) Yes(n=6) DSM-IV (MDE) Six Anxiety, two NA 0.27 (0.12)° 10 (8) 156(1.1) 3T/6 Go/NoGo  p<0.008 (corr) HC<MDD: L STG, L Cd, L
(2014) ADHD Occipital
Halarietal.  21(11) 16.2(0.8) No DSM-IV (MDD) No NA 0 21(11) 163(1.1) 15T/7.2 SST p<0.05(NA)  HC> MDD: R DLPFC, R SPL,
(2009) ACC/MFL
Langenecker 22 (15)  41.0 (122) No DSM-IV (MDD) NA 27.9 (15.1) 13 (NA) 22(14) 342(11.0) 3T/NA  Go/NoGo p <0.0001 HC < MDD: L ACC, R IFG STG, L
et al. (uncorr) Postcentral, R Insula, R MTG, L
(2007) FG
Langenecker 21 (14) 21.0(1.4) Yes(n=9) NA NA 16.3 (3.7) NA 39 (23) 14.83(1.25) 3 T/NA Go/NoGo  p<0.0001 (NA) HC < MDD: L SGAC
et al.
(2018)
Malejko etal. 13 (10) 16.2(1.4) Yes(n=10) DSM-V (MDD) Five minor NSSI, NA NA 14 (11) 14.4(1.8) 3T/8 Go/NoGo  p<0.05 HC < MDD: L AIC, L Postcentral, L
(2022) two anxiety, two (uncorr) Precuneus, L IPC, L CB
ED, one ADHD,
four PTSD
Matthews 15 (12) 24.5 (NA) No DSM-IV (MDD) Three dysthymia, NA NA 16 (10) 243 (NA)  3T/6 SST p <0.05 (NA) HC < MDD: SGAC
etal. one PD and GAD,
(2009) two PTSD, one PD

and dysthymia

(Continued)
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Table 1. (Continued)

MDD HC
Mean (SD) Scanner/
Number Mean (SD)  Medication Diagnosis age at Mean (SD) Number  Mean (SD) FWHM
Study (female) age (y) (Yes/No) (type) Comorbidity onset (y) duration (y)  (female) age (y) (mm)  Task Threshold Summary findings
Pan et al. 15 (8) 15.87 (1.55) Yes(n=7) DSM-IV (MDD) No NA NA 14 (6) 15.21(1.42) 3T/6 Go/NoGo  p<0.05 (corr) HC<MDD: LACC,RACC, L Insula
(2011)
Piani et al. 12 (5) 66.5(9.1) VYes(n=11) DSM-V(MDD) No NA NA 12 (7) 68.7 (12.3) 3T/4 Go/NoGo  p <0.001 (NA) HC <MDD: R LG
(2022b)
Richard- 26 (15) 403 (9.7) No DSM-IV (MDE) No 30.6 (13.2) NA 28 (17) 33.8(7.1) 3T/8 Go/NoGo  p<0.05 (FWE) HC > MDD: precuneus MCC/PCC.
Devantoy HC < MDD: R IFG MPFC&
et al. bilateral MFG, L IFG, bilateral
(2015) SMA AG PCC, precuneus
23(15)  41.3(11.4) 37.9 (10.1) HC > MDD: SMA, MCT; HC < MDD:
LIPL, R IPL
Yang et al. 13 (7) 16.0 (1.5) No DSM-IV (MDD) No NA NA 13 (7) 15.8 (1.5) 37T/4 SST p <0.05 (corr) HC > MDD: MFG, L VC; HC < MDD:
(2009) L ACC

Abbreviations: ACC, ‘anterior cingulate cortex’; ADHD, ‘attention deficit and hyperactivity disorder’; AG, ‘angular gyrus’; AIC, ‘anterior insula cortex’; CB, ‘cerebellum’; Cd, ‘caudate’; corr, ‘corrected’; DLPFC, ‘dorsolateral prefrontal cortex’; ED, ‘eating disorders’; FG,
‘fusiform gyrus’; DSM, ‘Diagnostic and Statistical Manual of Mental Disorders’; FWHM, ‘full width at half maximum’; FWE, ‘family-wise error’; GAD, ‘generalized anxiety disorder’; HC, ‘healthy control’; IFG, ‘inferior frontal gyrus’; IPC, ‘inferior parietal cortex’; IPL, ‘inferior
parietal lobule’; ITG, ‘inferior temporal gyrus’; L, ‘left’; LG, ‘lingual gyrus’; MCC, ‘middle cingulate cortex’; MCT, ‘midline caudate thalamus’; MDD, ‘major depressive disorder’; MDE, ‘major depressive episode’; MFG, ‘middle frontal gyrus’; MFL, ‘mesial frontal lobe’;
MOFG, ‘middle orbitofrontal gyrus’; MPFC, ‘medial prefrontal cortex’; MTG, ‘middle temporal gyrus’; NA, ‘not available’; NSSI, ‘non-suicidal self-injury’; PCC, ‘posterior cingulate cortex’; PD, ‘panic disorder’; PTSD, ‘post-traumatic stress disorder’; R, ‘right’; SD, ‘standard
deviation’; SGAC, ‘subgenual anterior cingulate’; SFG, ‘superior frontal gyrus’; SIP, ‘simple phobia’; SMA, ‘supplementary motor area’; SOP, ‘social phobia’; SPL, ‘superior parietal lobe’; SST, ‘stop-signal task’; STG, ‘superior temporal gyrus’; STM, ‘subthreshold mania’;
TP, ‘temporal pole’; uncorr, ‘uncorrected’; VC, ‘visual cortex’; y, ‘years’.

Indicates current illness episodes.
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Table 2. Demographic and clinical characteristics of the 11 task-fMRI PUD studies included in the meta-analysis (12 datasets, 258 PUD)

PUD HC
Mean Mean (SD) Years
Number  (SD) age Diagnosis Length of  age at (SD) of  Number Mean (SD) Scanner/
Study (female) (y) Substance (type) Comorbidity abstinence onset (y) use (y) (female) age (y) FWHM (mm) Task Threshold Summary findings
Barros- 16 (0)  34.4(7.2) Cocaine DSM-IV (NA)  No >2-4d 19.9 (6.3) 13.9(5.9) 16(0) 342(89) 15T/9 Stroop p <0.005 HC > PUD: R IFG, R
Loscertales (corr) IPG, R STG
et al. (2011)
Ceceli et al. 26 (4) 44.1 (8.2) Cocaine DSM-IV (SUD)  Five IED, two Mean 293  NA 16.0 (8.2) 26 (5) 42.7(11) 3T/5 SST p <0.005 HC>PUD: L LOC, L
(2022) specific d (42% (corr) FP/DMPFC
phobias, one users)
marijuana
dependence
Connolly et al. 9(2) 36.4 (6.6) Cocaine NA NA Mean2.4w NA 12.1 (5.0) 9(2) 30.5(6.7) 15T/4.2 Go/NoGo  p<0.05(corr)  HC<PUD:RMFG,R
(2012) (short-term SFG, R
abstinent) precentral, R
MTG
9(2) 32.8 (8.3) Cocaine (long- NA Mean 69w NA 10.6 (7.6) HC > PUD: L STG;
term HC <PUD: R IFG,
abstinent) R MFG, R
Precentral,
bilateral
cerebellar tonsil
Fassbender 30 (15) 35.5(7.9) MA DSM-IV (MA-D) No Mean 14 m 17.7 (4.4) 14.0 (6.4) 27(11) 285(72) 3T/8 Stroop p<0.05(FWE) HC<PUD:L
et al. (2015) precentral, PCC,
L MTG/ITG
Ide et al. (2016)  75(25) 39.9 (7.6) Cocaine DSM-IV (C-D)  No Mean18d NA 18.0(8.2) 88(39) 38.7(10.9) 3T/6 SST p<0.05(FWE)  HC>PUD: R AG, R
IFG, R SMG, L
MOG, L SMG, L
MOC, L IFG, L IFC,
R LOC, R LFC
Janetal. (2014) 15 (4) 353 (7.00 MA DSM-IV (MA-D) No Current 23.3(7.2) 10.8 (5.8) 18 (6) 31.1(8.1) 15T/8 Stroop p <0.05(corr)  HC <PUD: R SFG, R
MFG
Li et al. (2007) 15(0)  37.7(6.8) Cocaine DSM-IV (C-D)  No >2w NA 102 (7.3) 15(0) 36.6(6.0) 3T/10 SST p <0.001 HC > PUD: L AG, L
(uncorr) SMG, L PACG, L
LG, RSMG
Ma et al. (2015) 13 (1) 37.4 (5.3) Cocaine DSM-IV (C-D) No Current NA NA 10 (3) 352 (7.3) 3T/8 Go/NoGo  p<0.05(FWE)  HC=>PUD: R
precentral, R
MFG, R MCC, R
SFG, R

paracentral lobe

(Continued)
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Table 2. (Continued)

PUD

HC

Number

Study (female)

Mean
(SD) age
(v)

Substance

Diagnosis

(type) Comorbidity

Mean (SD)
Length of  age at
abstinence onset (y)

Years
(SD) of
use (y)

Number
(female)

Mean (SD)
age (y)

Scanner/

FWHM (mm) Task Threshold

Summary findings

Morein-Zamir
etal. (2015)

24 (12)

28.5 (6.8)

Cocaine

NA No

Current 20.42 (3.39)

81(62) 31(14) 309(81) 3T/8 SST p <0.001

(uncorr)

HC < PUD: RACC, L
FG R pre-SMA, L
precentral R
MCC, R SFG, L
SFG, R
hippocampus, R
SMG, L SMG, R
Occipital, R 10G

Moeller et al. 16 (1)

(2012)

463 (7.8)

Cocaine

One heroin
dependence

DSM-IV (C-D)

<25d 27.4(7.2)

15.6 (8.3)

15(1) 389(7.1) 4T/8 Stroop

p <0.05 (FDR)

HC>PUD: RIFG, R
SMG, R
precentral,
SMA/ACC, RFOC,
RICROP,RLOC,
R IFG, R TCFC, R
MTG, R TP,

Nestor et al.
(2011)

10 (5)

33.5(9.3)

MA

DSM-IV (MA-D) No

83(3.7) 18(7) 36.4(104) 3T/6 Stroop

p < 0.05 (corr)

HC < PUD: L
putamen, R
cerebellum,
bilateral insula,
R LG, L CF, L FG,
R cuneus, R SOG,
bilateral DLPFC,
L LG, LIOC,
SMFG, R
precuneus

Abbreviations: ACC, ‘anterior cingulate cortex’; AG, ‘angular gyrus’; C-D, ‘cocaine dependence’; CF, ‘calcarine fissure’; corr, ‘corrected’; DLPFC, ‘dorsolateral prefrontal cortex’; DMPFC, ‘dorsal medial prefrontal cortex’; d, ‘days’; DSM, ‘Diagnostic and Statistical Manual
of Mental Disorders’; FG, ‘fusiform gyrus’; FOC, frontal operculum cortex’; FP, ‘frontal pole’; FWE, ‘family-wise error’; FWHM, ‘full width at half maximum’; HC, ‘healthy control’; IC, ‘insula cortex’; IED, ‘intermittent explosive disorder’; IFC, ‘inferior frontal cortex’; IFG,
‘inferior frontal gyrus’; 10C, ‘inferior occipital cortex’; 10G, ‘inferior occipital gyrus’; IPG, ‘inferior parietal gyrus’; ITG, ‘inferior temporal gyrus’; LFC, ‘lateral frontal cortex’; LG, ‘lingual gyrus’; LOC, ‘lateral occipital cortex’; MA, ‘methamphetamine’; MA-D,

‘methamphetamine dependence’; MCC, ‘middle cingulate cortex’; MFG, ‘middle frontal gyrus’; MOC, ‘middle occipital cortex’; m, ‘months’; MTG, ‘middle temporal gyrus’; NA, ‘not available’; OP, ‘occipital pole’; PACG, ‘perigenual anterior cingulate gyrus’; PTSD, ‘post-
traumatic stress disorder’; PUD, ‘psychostimulant use disorder’; SD, ‘standard deviation’; SFG, ‘superior frontal gyrus’; SMG, ‘supramarginal gyrus’; SMA, ‘supplementary motor area’; SMFG, ‘superior medial frontal gyrus’; SOG, ‘superior occipital gyrus’; SST, ‘stop-
signal task’; STG, ‘superior temporal gyrus’; SUD, ‘substance use disorder’; TCFC, ‘temporal occipital fusiform cortex’; THC, ‘delta-9-tetrahydrocannabinol’; TP, ‘temporal pole’; uncorr, ‘uncorrected’; w, ‘weeks’.
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(a) MDD vs HC
=.25 z=-9

R TP (STG) L vACC/mPFC

LIPL RIPL

(b) PUD vs HC
z2=35
L Precentral

(c) MDD vs PUD
z=-24

SDM z-value
(d) MDD- & PUD- (e) MDD+ & PUD- (f) MDD- & PUD+
z=5 z=40 z=34
R IFG/MFG
LIPL R IPL

Figure 2. Shared and distinct brain activation alterations between groups during inhibitory control tasks. The first three panels show brain activation alterations (a) in major
depressive disorder (MDD) relative to healthy controls (HCs), (b) in psychostimulant use disorder (PUD) relative to HC, and (c) between MDD (vs. HC) and PUD (vs. HC) covarying for
mean age and gender ratio. The heat scale reflects the (positive and negative) SDM z-value. The last three panels show conjunction/disjunction in changes (vs. HC):
(d) hypoactivation in both groups, (e) hyperactivation in MDD and hypoactivation in PUD, and (f) hypoactivation in MDD and hyperactivation in PUD. Separate-group meta-
analyses and between-group comparative analyses are shown at p < 0.005, and conjunctive meta-analyses at p < 0.0025. Other abbreviations: AG, ‘angular gyrus’; FG, ‘fusiform
gyrus’; IFG, ‘inferior frontal gyrus’; IPL, ‘inferior parietal lobule’; ITG, ‘inferior temporal gyrus’; L, ‘left’; MCG, ‘median cingulate/paracingulate gyri’; MFG, ‘middle frontal gyrus’; mPFC,
‘medial prefrontal cortex’; PCC, ‘posterior cingulate cortex’; PHG, ‘parahippocampal gyrus’; R, ‘right’; SFG, ‘superior frontal gyrus’; STG, ‘superior temporal gyrus’; TP, ‘temporal
pole’; vVACC, ‘ventral anterior cingulate cortex’.
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Table 3. Whole-brain meta-analysis results for task-fMRI studies in MDD and PUD

Yuanyuan Li et al.

Regions (voxel threshold p < 0.005,

MNI coordinates ~ SDM-Z Voxels  cluster size = 10 voxels) BA  Egger’sbias  Egger'sp  Jackknife sensitivity

Comparison of MDD vs. HC

MDD > HC

—6,28, -8 1.432 196 L ventral anterior cingulate cortex/medial prefrontal 11 —0.00 ~1 15/17
cortex

—48, —50, 42 1.336 197 L inferior parietal lobule 40 —0.37 0.71 15/17

40, 22, —26 1.200 70 R temporal pole/superior temporal gyrus 38 —1.23 0.38 16/17

58, —46, 30 1.177 59 R inferior parietal lobule 48 -0.19 0.89 14/17

—38, —52, —24 1.159 18 L fusiform gyrus 37 1.75 0.16 16/17

MDD < HC

0, —24, 32 —1.865 1320 Median cingulate/paracingulate gyri \ 135 0.06 17/17

50, 34, 14 —1.384 663 R inferior frontal gyrus, triangular part 45 —0.99 0.41 15/17

Comparison of PUD vs. HC

PUD > HC

—48,12, 46 1.750 470 L precentral gyrus 9 1.08 0.27 11/12

6, —64, 34 1.243 195 R precuneus 7 0.47 0.54 11/12

—32, —68, —6 1.222 34 L fusiform gyrus \ 0.18 0.83 10/12

18, 46, 28 1.201 15 R superior frontal gyrus, dorsolateral \ 1.19 0.25 9/12

PUD < HC

52, —54, 44 —2.998 1577 R inferior parietal lobule 40 0.76 0.30 12/12

—46, —70, 36 —2.927 1168 L inferior parietal lobule/angular gyrus 39 1.50 0.01 12/12

42,48,0 —-1.967 30 R middle frontal gyrus 46 1.79 ~0 12/12

36, 58, 10 —1.887 18 R middle frontal gyrus 10 1.97 ~0 11/12

Comparison of MDD vs. PUD

MDD > PUD

52, —58, 46 2.611 2477 R inferior parietal lobule 40 0.38 0.55

—50, —50, 42 2.622 1493 L inferior parietal lobule 40 0.98 0.05

—36, —78, 46 1.391 10 L inferior parietal lobule \ 2.22 ~0

MDD < PUD

0, —26, 32 —2.081 1707 Median cingulate/paracingulate gyri \ 0.30 0.45

—34, —46, —4 —1.519 113 L parahippocampal gyrus \ 0.02 0.96

—46, 12, 44 —1.346 107 L middle frontal gyrus 9 0.51 0.37

—54, —24, —24 —1.087 19 L inferior temporal gyrus 20 0.00 ~1

Abbreviations: BA, ‘Brodmann areas’; HC, ‘healthy control’; L, ‘left’; PUD, ‘psychostimulant use disorder’; SDM, ‘seed-based d mapping’; R, ‘right’.

analyses have reported hypoactivation in the right IFG/MFG dur-
ing cognitive control or IC tasks across multiple nonpsychotic
disorders (including MDD, substance use disorders, bipolar dis-
order, and anxiety disorders) (McTeague et al., 2017; Yan et al,,
2022). The hypoactivation patterns of right IFG/MFG during IC
tasks have also been widely reported in other individual studies on
MDD (Kikuchi et al., 2012) and PUD (Elton et al., 2014; Zerekidze
et al., 2023). Evidence from structural MRI studies has suggested
the right IFG recruitment in executive function in MDD (Vasic,
Walter, Hose, & Wolf, 2008) and motor IC in PUD (Tabibnia et al.,
2011). The right IFG is part of the frontoparietal cognitive control
network (see Supplementary Table S1 for large-scale network map-
ping results), which is thought to be directly involved in inhibition

https://doi.org/10.1017/50033291725101141 Published online by Cambridge University Press

and attentional control (Hampshire et al., 2010), whereas the right
MEG - corresponding to the right DLPFC — supports goal main-
tenance and top-down cognitive control (Cole & Schneider, 2007).
In a broader range of nonpsychotic disorders, the IFG/MFG serves
as a critical node in the multiple-demand cognitive control/pro-
cessing network, which functions as a ‘common core’ recruited
across diverse cognitive challenges (McTeague et al., 2016; McTea-
gue et al., 2017). Dysfunction in the IFG/MFG may disrupt the
coordination with other networks, thereby impairing information
processing and response selection in goal-directed behavior
(McTeague et al., 2016; McTeague et al., 2017). Notably, the over-
lapping results remain highly stable when studies with comorbid
samples were excluded in the conjunction meta-analyses, arguing
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against the comorbidity effects on the common activation alter-
ations during IC. Together, the convergent hypoactivation pattern
in the right IFG/MFG extends previous findings and suggests this
region as a transdiagnostic marker of IC in MDD and PUD.

Distinct brain activation abnormalities in MDD versus PUD

The finding of MDD-differentiating hypoactivation in MCG rela-
tive to PUD and HC adds to previous literature demonstrating
reduced MCG activation during Go/NoGo in the negative context
in MDD compared with generalized anxiety disorder and HC
(Li, Chen, & Yan, 2022; Liu et al., 2021a). The MCG serves as a
convergence hub for multiple important networks, including FPN,
DMN, and SAN (Shackman et al., 2011), as supported by our large-
scale network analysis (Supplementary Table SI). It has been
involved in brain resource allocation (Touroutoglou, Andreano,
Dickerson, & Barrett, 2020), particularly in executive function
(Fedeli et al.,, 2022) and negative emotion regulation (Chen et al.,
2007; Pereira et al., 2010). Previous meta-analytic evidence suggests
that MCG is activated during a range of response-inhibition tasks in
healthy populations (Zhang, Geng, & Lee, 2017), while a transdiag-
nostic meta-analysis demonstrated abnormal MCG activation in
cognitive control across psychiatric disorders, including MDD
(McTeague et al.,, 2017). The present comparative meta-analysis
extends previous studies by showing that the IC-related MCG
activation was lower in MDD (vs. HC) compared with PUD
(vs. HC), and the disjunctive analysis further revealed increased
MCG activation in PUD relative to HC, which may be related to
different pathophysiological mechanisms in MDD and PUD des-
pite their shared IC deficits. MDD is characterized by a rumination-
related persistent state of negative mood (Marx et al., 2023), which
has been found to be associated with reduced gray matter volume in
MCG (Kiihn, Vanderhasselt, De Raedt, & Gallinat, 2012; Liu et al.,
2022). Given that the MCG has been a pivotal node of interaction
between negative emotion and motor signals (Pereira et al., 2010)
and negative emotion and IC competes for limited MCG resources
(Tolomeo et al., 2016), the MCG-differentiating hypoactivation
during IC tasks in MDD may reflect a failure to reallocate attention
and effort from internal, ruminative processes to external, goal-
directed cognitive demands. Conversely, increased MCG activation
in PUD may reflect a compensatory overengagement of salience
and control networks to suppress impulsive tendencies (Roberts &
Caravan, 2010), a key feature of PUD (Verdejo-Garcia et al., 2008).

In contrast, the disorder-differentiating hypoactivation in bilat-
eral IPL during IC in PUD relative to patients with MDD may be
related to motor impulsivity and more pronounced control-related
attentional deficits in PUD (Barrds-Loscertales et al., 2011; Bell,
Garavan, & Foxe, 2014). This finding extends a previous systematic
review reporting decreased recruitment of IPL during tasks in
people with drug addiction (Zilverstand et al., 2018). The disorder-
differentiating IPL, especially the right IPL, is mainly located within
the FPN and DAN (Singh-Curry & Husain, 2009), which accords
with our large-scale network analysis (Supplementary Table S1).
The right IPL has been implicated in processes of stimulus-driven
attentional reorienting (Numssen, Bzdok, & Hartwigsen, 2021),
detecting salient or novel events (Singh-Curry & Husain, 2009),
and response inhibition and switching (Swick, Ashley, & Turken,
2011). Previous large-scale neuroimaging meta-analyses have
revealed converging activity of the IPL in different inhibition
components in healthy subjects (Hung, Gaillard, Yarmak, & Arsa-
lidou, 2018), whereas altered IPL activity during IC and error
processing was reported in people with substance dependence
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and behavioral addictions (Luijten et al, 2014). The PUD-
differentiating attenuated IPL activation observed in this study
may thus explain their impairments in shifting attention away from
automatic or impulsive responses due to the neurocognitive effects
of chronic stimulant use.

Notably, the disorder-differentiating regions were only present
in response inhibition tasks, but not in cognitive inhibition tasks,
according to subgroup meta-analyses. Response/motor inhibition
has been suggested to be an observable aspect of a general higher-
order neurocognitive factor associated with goal maintenance
(Friedman & Miyake, 2017; Miyake & Friedman, 2012). Together,
the disorder-differentiating circuits of IC (particularly response
inhibition) in MDD and PUD highlight distinct pathways that
may lead to disrupted goal maintenance, which affects IC perform-
ance. However, these findings need to be interpreted with caution as
differences in task paradigms and clinical conditions may limit our
comprehensive understanding of the distinct neural substrates of
IC in MDD and PUD.

Brain activation abnormalities in MDD and PUD versus HC

This study also found hyperactivation in the left vACC/mPFC and
right temporal pole/STG in MDD relative to HC, which is consist-
ent with a recent review reporting altered activation of these regions
in Go/NoGo tasks in MDD (Piani et al., 2022a). The vACC/mPFC
is a key node of the DMN (Andrews-Hanna et al,, 2010; Li et al,,
2023) (see Supplementary Table S1 for large-scale network map-
ping results), which has long been implicated in mind-wandering,
rumination, and self-referential processing (Ferdek, van Rijn, &
Wyczesany, 2016) and is deactivated in goal-oriented tasks
(Smallwood et al., 2021). The right temporal pole/STG plays an
important role in emotional processing and social cognition
(Harada et al., 2018; Takahashi et al., 2010) and shows weakened
connectivity with prefrontal executive regions (e.g. IFG) during
response inhibition in MDD (Sheng et al., 2025). Hyperactivation
in the left vACC/mPFC and right temporal pole/STG during IC in
MDD may index difficulty in suppressing internally oriented think-
ing and enhanced emotional and social processing in response to
task demands, which may interfere with task-focused control
(Takahashi et al., 2010; Wang et al., 2023).

The overactivated left precentral gyrus and right precuneus
during IC tasks in PUD relative to HC mainly overlapped with
the DMN (Supplementary Table S1). The precentral gyrus is pri-
marily responsible for voluntary motor control (Banker & Tadi,
2024), and the precuneus is integral to a broad array of higher-level
cognitive functions, including self-reflection, mental imagery, and
conscious awareness (Murray, Schaer, & Debbané, 2012). There-
fore, hyperactivation in these regions may reflect enhanced motor
reactivity and dysregulated self-related processing during goal-
directed tasks in PUD. Notably, most of the findings were present
only for cocaine users in terms of subgroup meta-analysis, possibly
due to the limited statistical power to detect significant effects in
methamphetamine users, given the relatively small sample size.

Effects of demographic and clinical variables

Meta-regression indicated that MDD studies with a higher propor-
tion of women showed increased brain activation in the right MFG,
which aligns with previous findings that females showed greater
activation in bilateral MFG in Go/NoGo tasks (Garavan et al.,
2006). This correlation may be partly attributed to the higher
female ratio in MDD. In PUD, older patients showed less activation
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in the right SFG relative to younger ones, implying that they may
have more pronounced dysfunction in executive control (Cabeza &
Dennis, 2013). We also observed a modulatory effect of duration of
psychostimulant use in the left IPL. The long-term abuse of a
psychostimulant can disrupt dopaminergic pathways, which may
impair the function of attention and cognitive control networks
(Smith et al., 2014). Moreover, longer abstinence was associated
with increased activation in the left MFG, suggesting a potential
recovery of top-down control systems that are typically impaired in
active psychostimulant users (Le et al., 2021). Notably, although
comorbidity had modulatory effects on PUD, which may indicate
that co-occurring psychiatric conditions may exacerbate impair-
ments in cognitive control and attentional processing in individuals
with PUD (Miguel et al., 2023), further control analyses suggested
no comorbidity effects on common and distinct activation abnor-
malities in MDD and PUD.

Limitations of this study

Several important caveats should be taken into account when
interpreting the results of this study. First, the meta-analyses
depend on peak coordinates extracted from individual studies.
Incorporating original statistical maps, combined with more
original studies, will increase the power to detect smaller but
meaningful results in future studies. Second, the representative-
ness of our meta-analysis results may be limited due to study
heterogeneity in factors such as gender ratio, task paradigm,
comorbidity, cocaine or methamphetamine users, and abstinence
length. Although we accounted for these confounding factors via
meta-regression or subgroup analyses, future meta-analyses
matching the demographics and clinical conditions of these
disorders might be of great interest when more studies emerge.
Third, although we employed a series of control analyses to
explore the potential impact of comorbidity, some of the original
studies may not have screened for comorbidity with another, and
subclinical symptoms (such as depression or anxiety) may have
been present, particularly in the PUD group. This may confound
the interpretation of the disorder-differential findings and war-
rants further investigation. Finally, we were unable to delineate
the neural systems of cognitive inhibition or compare them with
those of response inhibition due to the limited number of studies,
especially in MDD, which requires further research to address
this issue.

Conclusion

This meta-analysis, to the best of our knowledge, is the first to
focus on the common and distinct neurofunctional mechanisms
of IC in MDD and PUD. The convergent alteration in the right
IFG/MFG consolidates its role as a transdiagnostic marker of IC
across psychiatric disorders, and the disorder-differentiating
neurofunctional dysregulations in MCG in MDD and in bilateral
IPL in PUD point to distinct mechanisms underlying shared IC
deficits in MDD and PUD. Our findings may have implications
for the development of novel intervention strategies to enhance
IC in MDD and PUD by precisely matching the therapeutic
targets.
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