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In this paper, we showcase how flow obstruction by a deformable object can lead to
symmetry breaking in curved domains subject to angular acceleration. Our analysis is
motivated by the deflection of the cupula, a soft tissue located in the inner ear that is used
to perceive rotational motion as part of the vestibular system. The cupula is understood
to block the rotation-induced flow in a toroidal region with the flow-induced deformation
of the cupula used by the brain to infer motion. By asymptotically solving the governing
equations for this flow, we characterise regimes for which the sensory system is sensitive
to either angular velocity or angular acceleration. Moreover, we show the fluid flow is
not symmetric in the latter case. Finally, we extend our analysis of symmetry breaking
to understand the formation of vortical flow in cavernous regions within channels. We
discuss the implications of our results for the sensing of rotation by mammals.
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1. Introduction
Rotational motion of the head in humans is perceived through the vestibular system,
which is located in the inner ear (Paulin & Hoffman 2019). For mathematical modelling
purposes, this system can be described as a set of three mutually orthogonal, nearly circular
canals, known as the semicircular canals (SCCs) in the anatomical literature (Curthoys &
Oman 1987; Oghalai & Brownell 2020). These canals resemble deformed tori, where the
slender regions are filled with a Newtonian fluid called endolymph. The larger region
comprises two cavities, the utricle and the ampulla. The latter houses a gelatinous protein-
polysaccharide elastic membrane known as the cupula (Casale et al. 2024), which is
innervated by hair cells (cilia); the innervated cilia transmit mechanical deflections of
the cupula to the nervous system via the vestibular nerve (Waxman 2024). In mechanical
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Figure 1. Schematic of the vestibular system. (a) Inner ear and vestibular apparatus: Three mutually orthogonal
semicircular canals (SCCs), each containing a cupula, send information to the nervous system about the
rotational motion of the head. (b) Zoom-in of the obstruction within each SCC caused by the cupula.
Information about the rotation of each SCC is inferred from the deflection of its cupula – the inertia of the
fluid that fills the SCC (endolymph) causes the cupula to deform. (Cupula deformation is sensed via innervated
cilia that are embedded within the cupula.)

terms, a change in angular velocity about a given axis drives a fluid flow in that canal,
which generates a pressure gradient, deforming the cupula (and hence, the innervated
hairs) and thus allowing the brain to sense the motion. Specifically, as the walls of the
canal rigidly rotate with the head, the fluid in the centre is left behind, causing the cupula
to deform in the opposite direction to the imposed rotation. The mutually orthogonal
structure of the semicircular canals allows the detection of any three-dimensional rotation
of the head. A schematic diagram of the vestibular system is provided in figure 1.

The vestibular system can be affected by several pathologies that disrupt its normal
function. One of the most common disorders is benign paroxysmal positional vertigo
(BPPV), in which brief episodes of vertigo are triggered by specific head movements.
BPPV occurs when calcium carbonate crystals (otoconia) dislodge from the utricle and
move into the semicircular canals, causing abnormal stimulation of the vestibular nerve
(Hornibrook 2011). Another significant condition is vestibular neuritis, an inflammation
of the vestibular nerve, usually caused by viral infections, which leads to acute vertigo,
imbalance and nausea (Royal & Vargas 2014). Ménière’s disease also affects the vestibular
system, causing episodic vertigo due to abnormal fluid buildup in the inner ear, leading
to disturbances in balance (Harcourt, Barraclough & Bronstein 2014). Early diagnosis and
appropriate treatment of these vestibular pathologies are essential to improving quality
of life and preventing chronic balance issues. Here, mathematical modelling has great
potential in enabling quantitative predictions of balance response and in elucidating the
sensitivity of the vestibular system to material changes, for instance, as may occur with
ageing (Konrad, Girardi & Helfert 1999).

A number of mathematical models exist for the vestibular dynamics, both numerical
and analytical. On the analytical side, beyond the early phenomenological oscillator
models from the 1930s (Steinhausen 1933), recent models can be classified into two broad
categories. The first approach is that of Obrist and co-authors (Buskirk, Watts & Liu 1976;
Obrist 2008; Vega et al. 2008) in which the geometry is idealised to allow a solution
to be found under arbitrary forcing of the system, i.e. arbitrary rotational motion. The
second approach is that of Rabbitt & Damiano, who maintain a more realistic geometry
but require strong assumptions on the form of the forcing to make analytical progress. In
particular, in their series of papers (Rabbitt & Damiano 1992; Damiano & Rabbitt 1996;
Damiano 1999), Rabbitt & Damiano assume that the forcing is sinusoidal, as might be
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expected when tilting the head up or down (for instance, when nodding). Fully numerical
investigations of the vestibular system also exist (Boselli, Obrist & Kleiser 2009; Grieser,
Obrist & Kleiser 2012; Boselli, Obrist & Kleiser 2013) – these generally implement a
realistic channel geometry, but do not model the cupular deformation as a fluid–structure
interaction. Instead, they incorporate the effect of cupular deformation via a periodic
boundary condition for the flow coupled to a time dependent pressure jump. Recent studies
have also modelled the fluid–structure interaction (Kassemi, Deserranno & Oas 2005;
Chung et al. 2010; Wu et al. 2011; Goyens et al. 2019); however, the high computational
cost of such simulations often restricts them to a single manoeuvre and a single set of
parameters, rather than enabling a broader exploration of parameter space to uncover the
flow and deformation regimes of the vestibular system.

In this paper, we present both numerical simulations and an analytical approach
for cupular dynamics. Our analytical model is derived from first principles, including
explicitly both toroidal fluid flow and the mechanics of the cupula. By exploiting the
slenderness of the semicircular canals, and applying a detailed asymptotic analysis, we
obtain a reduced model that allows us to incorporate both arbitrary geometry and arbitrary
forcing, combining the best of previous approaches. Moreover, unlike previous work
(Rabbitt & Damiano 1992; Obrist 2008), we model the cupula as a full three-dimensional
elastic solid, without making a small thickness assumption. We complement this with
numerical computations, specifically including fluid–solid couplings. Our combined
numerical and analytical approach enables us to validate the reduced analytical model and
uncover a number of novel features, including characterising flow regimes and identifying
regions of parameter space with distinct system response.

One of the key motivating issues underlying our study concerns the mechanical
properties of the cupula. Although the anatomy of the vestibular system is well understood,
the architecture itself is incredibly delicate and fragile, which prohibits the possibility
of direct mechanical testing. For this reason, the stiffness of the cupula has only ever
been obtained through indirect measurement, a procedure that has produced both some
uncertainty and surprisingly low values; for example, a Young’s modulus of approximately
5 Pa has been reported (Selva, Oman & Stone 2009), which is well below values typically
associated with soft biological tissues (see Budday et al. 2015, where they estimate the
Young’s modulus of brain matter to be 1 kPa). Nevertheless, the stiffness of the cupula
is a key mechanical parameter, as it dictates the degree of deformation under a given
flow and, therefore, the potential for and degree of stimulus. In fact, as we will show, this
parameter plays an even stronger role, impacting not just the degree of deformation, but
the qualitative nature of the flow induced by motion as well. By examining the behaviour
of our model as the relative stiffness of the cupula varies, we will demonstrate the presence
of two distinct regimes: for ‘soft’ cupulas, the deformation follows the angular velocity of
the imposed motion, while for ‘stiff’ cupulas, the deformation instead tracks the angular
acceleration.

Moreover, we will explain how the second of these regimes is connected to a symmetry
breaking of the flow in the endolymph. As we shall demonstrate in our numerical
simulations, presented in § 2.2, the flow in the endolymph is only axisymmetric (relative
to the duct’s centreline or axis) under particular conditions. Despite this observation,
many existing models have implicitly assumed a radially symmetric flow. Examination
of our analytical solution enables us to explain exactly when and how symmetry breaking
occurs. This feature is interesting in the context of the broader literature on flow through
curved pipes. Although the effect of curvature on pipe flow was first discussed by Dean
(1928), the plethora of subsequent studies have focused mostly on steady flows (Pedley
1980; Siggers & Waters 2005; Chupin & Stepanov 2008) – there have been much fewer
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Figure 2. Problem set-up. (a) Plan view of a semicircular canal showing the spatially varying canal radius,
â(ŝ), and the cupula (shaded in grey), which is situated in the enlarged portion, or utricle. (b) Schematic of the
chosen coordinate system. (c) Close-up of the region around the cupula, highlighting the cupula’s thickness, th ,
and its attachment to the canal walls via the ‘crista’ (black region) (The toroidal flow is shown schematically
here to allow the zoom-in on the cupula.).

investigations into unsteady fluid phenomena (though see Siggers & Waters (2008), for
an example). We shall show that the essential coupling between the Euler force and
the (a priori) unknown pressure gradient can lead to the annihilation of the symmetric
leading order velocity – a situation that distinguishes this problem from classical studies
of flow in curved pipes. We conclude our study with an investigation of the emergence of
vortical flow in the utricle. This feature has been reported previously, but only in numerical
simulations (Grieser et al. 2012; Boselli et al. 2013); our model provides both an analytical
understanding and an explicit characterisation for when vortical flow will emerge.

2. Governing equations
We consider a single semicircular canal, as portrayed schematically in figure 2(a): the
endolymph fills a toroidal structure whose centreline forms a circle of radius R, and whose
radius is small and spatially varying, denoted â(ŝ)� R, where ŝ is an arc length parameter
along the centreline. The canal is subjected to a rotation defined by angular velocity Ω̂(t̂)
around the centre of the toroid with rotation axis normal to the plane of the centreline.
We remark that this angular velocity will be the same as, say, the angular velocity of
motion not centred around the toroid, like, say, the flow driven by riding a merry-go-
round or a cornering car, as explained in Appendix A. The endolymph is assumed to be
an incompressible Newtonian fluid of dynamic viscosity μ and density ρ. The elastic, gel-
like cupula occupies a thin region (shown in grey in figure 2) and has density ρs , Young’s
modulus E , thickness th and Poisson ratio νs . In the absence of detailed observations, the
cupula is assumed to occupy the entire cross-section of the canal, so that it is attached to
the wall all the way around its circumference, as can be seen in figure 2(c), where the solid
cupula is shaded in yellow and the liquid endolymph is shaded in blue. (The region shaded
in black represents a structure called the crista which attaches the cupula to the canal wall.)

2.1. Equations for the bulk
The Navier–Stokes equations for the dimensional fluid velocity û and modified pressure p̂
in the co-rotating frame are given by (Landau & Lifshitz 1987)

∇ · û = 0, (2.1a)

ρ

(
Dû

Dt̂
+ ∂Ω̂

∂ t̂
× x̂ + 2Ω̂ × û + Ω̂ × (Ω̂ × x̂)

)
= −∇ p̂ +μ∇2û. (2.1b)
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Here, the first of the extra terms on the left-hand side is the Euler force, the second term
is the Coriolis force and the final additional term is the centrifugal force, each due to the
imposed rotation. The pressure p̂ is a modified pressure in the sense that it incorporates
the linear fictitious force associated with the linear acceleration of the SCC (Buskirk et al.
1976). The fluid is assumed to satisfy the no-slip condition at the edges of the walls, so that
û(r̂ = â(ŝ))= 0 for ŝ ∈ (0, 2πR). Motivated by the small strains in the cupula (Selva et al.
2009), it is modelled as a linearly elastic material, satisfying the steady Navier equations:

ρs

(
∂2ûs

∂t2 + ∂Ω̂

∂ t̂
× x̂ + 2Ω̂ × ∂ ûs

∂ t̂
+ Ω̂ × (Ω̂ × x̂)

)
= ∇ · τ̂ , (2.2a)

τ̂ = 2μs Ê + λs tr(Ê)1, 2Ê = ∇ûs + (∇ûs)
ᵀ, (2.2b)

alongside a linear Hookean constitutive law relating stress τ̂ and the cupular displacement
field ûs(x, t). The Lamé constants are μs = E/(2(1 + νs)) and λs = νs E/((1 + νs)

(1 − 2νs)) (Bower 2009). Finally, we model the fluid–structure interaction at the cupula–
endolymph boundary in the usual way, imposing continuity of velocity and stress
(Gkanis & Kumar 2006).

2.2. Numerical simulations
The system of (2.1)–(2.2) was simulated in COMSOL for different values of the Young’s
modulus of the cupula and with a Poisson ratio νs = 0.48. We impose a simple sinusoidal
forcing, given by Ω̂(t̂)=Ω0 sin(2π t̂/T ), withΩ0 = 1 rad/s and T = 1 s. The geometrical
parameters are a = 1.6 × 10−4 m, R = 3.2 × 10−3 m and th = 0.8 × 10−4 m (Daocai
et al. 2014).

The equations were solved for a solid cupula of finite size, i.e. with no thin cupula as-
sumption. Further details on the numerical simulations are available in Appendix B.1. This
includes deformation profiles of the solid cupula (figure 13). Moreover, figure 13 shows
that the magnitude of cupula deformation is inversely proportional to Young’s modulus.

Flow profiles on either side of the cupula produced by these numerical simulations are
shown in figure 3. Here, a top view of the mid-plane of the flow around the canal is
plotted, with colour indicating the speed of the flow, normalised by the maximum speed
throughout the flow, and with fast regions coloured red and stagnant regions coloured blue.
The cupula appears as the central region and is shown in its deformed configuration. This
deflection is imperceptible for all except the E = 102 Pa case and so the relative magnitude
of the cupula deformation is indicated by the grey scale colouring, which shows that it is
maximum at the centre. Figure 3 shows the velocity field at time t̂ = 0.25 s, a stage at
which transients from the initial condition remain significant. However, it is not necessary
to wait for these transients to decay completely to observe the emergence of a distinctly
asymmetric velocity profile.

In the panels of figure 3, the Young’s modulus, E , of the cupula increases from
left to right. As should be expected, the magnitude of the deflection decreases as the
material becomes stiffer. This is confirmed quantitatively in figure 13 of Appendix B.1.
Surprisingly, however, we also observe a significant change in flow behaviour: for small
values of E , the flow is axially symmetric about the centreline of the tube, but as E
increases, the flow transitions, losing its axisymmetry and exhibiting vortical structures.
It is worth noting that these plots use values of the Young’s modulus that cover a typical
physiological range for soft biological tissues (Goriely 2017). Notwithstanding our remark
in the introduction that even lower values have been suggested via indirect methods, a flow
transition with physiologically relevant values of E suggests that asymmetric flow may be
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(a) (b) (c) (d)

Figure 3. Cross-section of the velocity fields in the cupula as computed using COMSOL simulations. Results
are shown for a range of cupula stiffnesses. Colour represents the relative magnitude of the fluid speed, with red
denoting regions in which the flow is fast and blue representing stagnant regions; streamlines are represented
by solid black curves. As the stiffness of the cupula increases, a symmetry-breaking of the flow occurs. In
particular, for values of the Young’s modulus E > 103 Pa, the flow is usually not axially symmetric. Here,
Ω̂(t̂)=Ω0 sin(2π t̂/T ) and the snapshots are taken at t̂ = 0.25 s, with Ω0 = 1 rad s−1 and T = 1 s. The
geometrical parameters are a = 1.6 × 10−4 m, R = 3.2 × 10−3 m and th = 0.8 × 10−4 m. (a) E = 102 Pa, (b)
E = 103 Pa, (c) E = 104 Pa and (a) E = 105 Pa.

present in a physiological vestibular system. If so, this would contradict the assumption
of axial symmetry that is typical in previous models (Rabbitt & Damiano 1992; Obrist
2008), and raises interesting questions about what impact such asymmetry might have on
the mechanics of balance and rotational sensing. To study this behaviour further, we thus
turn now to a theoretical analysis of the governing system.

2.3. Theoretical model
To investigate the symmetry breaking observed in the numerical simulations, and to obtain
a qualitative understanding of flow and deformation characteristics, in this section, we use
asymptotic analysis to derive a reduced order equation for the deformation of the cupula.

To capture the geometry of the semicircular canal, we introduce toroidal coordinates
(r̂ , θ, ŝ), in which ŝ ∈ (0, 2πR) is the arc-length along the centreline of the torus. A
sketch of this coordinate system is provided in figure 2(b). Cartesian coordinates are related
to toroidal coordinates via (Pedley 1980)⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̂ = (R + r̂ cos θ) cos
(
ŝ

R

)
,

ŷ = (R + r̂ cos θ) sin
(
ŝ

R

)
,

ẑ = −r̂ sin θ.

(2.3)

The negative sign in the last equation ensures that the orthonormal basis vectors
{er , eθ , es} follow the right-hand rule. We can now rewrite the Navier–Stokes equations
(2.1) in component form. Writing the velocity vector as û = ûer + v̂eθ + ŵes , the
continuity equation becomes (see Pedley 1980, for example)

∂ û

∂ r̂
+ û

r̂
+ 1

r̂

∂v̂

∂θ
+ 1

h

∂ŵ

∂ ŝ
− v̂ sin θ

Rh
+ û cos θ

Rh
= 0, (2.4)

where h = 1 + r̂ cos(θ)/R is a scale factor. The momentum equations are (see Pedley 1980
for the equations expressed in an inertial frame)

ρ

(
∂ û

∂ t̂
+ û

∂ û

∂ r̂
+ v̂

r̂

∂ û

∂θ
+ ŵ

h

∂ û

∂ ŝ
− v̂2

r̂
− ŵ2

h

cos θ
R

− 2Ω̂ŵ cos θ − Ω̂2Rh cos θ
)

= −∂ p̂
∂ r̂

+ μ

r̂ h

[
r̂

h

∂

∂ ŝ

(
∂ û

∂ ŝ
− ∂

∂ r̂
(hŵ)

)
− ∂

∂θ

(
h

r̂

∂

∂ r̂
(r̂ v̂)− h

r̂

∂ û

∂θ

)]
, (2.5a)

ρ

(
∂v̂

∂ t̂
+ û

∂v̂

∂ r̂
+ v̂

r̂

∂v̂

∂θ
+ ŵ

h

∂v̂

∂ ŝ
+ ûv̂

r̂
+ ŵ2

Rh
sin θ + 2Ω̂ŵ sin θ + Ω̂2Rh sin θ

)
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= −1
r̂

∂ p̂

∂θ
+ μ

h

∂

∂ r̂

[
h

r̂

(
∂

∂ r̂
(r̂ v̂)− ∂ û

∂θ

)]
− μ

r̂ h2

[
∂

∂θ

(
h
∂ŵ

∂ ŝ

)
− r̂

∂2v̂

∂ ŝ2

]
, (2.5b)

ρ

(
∂ŵ

∂ t̂
+ û

∂ŵ

∂ r̂
+ v̂

r̂

∂ŵ

∂θ
+ ŵ

h

∂ŵ

∂ ŝ
+ ûŵ

Rh
cos θ − v̂ŵ

Rh
sin θ

+ dΩ̂

dt̂
(R + r̂ cos θ)+ 2Ω̂ û cos θ − 2Ω̂v̂ sin θ

)

= −1
h

∂ p̂

∂ ŝ
+ μ

r̂2
∂

∂θ

[
1
h

∂

∂θ
(hŵ)− r̂

h

∂v̂

∂ ŝ

]
− μ

r̂

∂

∂ r̂

[
r̂

h

(
∂ û

∂ ŝ
− ∂

∂ r̂
(hŵ)

)]
. (2.5c)

We locate the cupula at arc length position ŝ = 0. As indicated here, our numerical
simulations have shown that the deformation of the cupula is small compared with the tube
radius, suggesting that strains are small and thus that it is sufficient to use a linear equation.
This small strain assumption will be confirmed in § 2.4 through a scaling argument. We
write the equations for the solid deformation of the cupula in cylindrical coordinates, as
the cupula is thin enough that the curvature of the SCC is not important. The cupula
is thus modelled as a solid cylinder 0 � r̂ � â(0), 0 � θ � 2π , −th/2 � ẑ � th/2, with
the centre of mass of the cupula (r̂ = θ = ẑ = 0) located at position r̂ = θ = ŝ = 0 (or
equivalently, ŝ = 2πR) in terms of the toroidal coordinates of the fluid problem (see
figure 2a). The thickness of the cupula th is not assumed to be small when compared
with its radius â(0). The equations for the solid deformation in component form (2.2) are
given in Appendix B.2.

We require boundary conditions for both the fluid problem (2.5) and the elastic problem
(2.2). The walls of the endolymph are assumed to have a no-slip condition, so that in
the rotating frame, û(r̂ = â)= 0. We require a second set of boundary conditions where
the cupula and the endolymph meet. The kinematic boundary condition requires that the
cupular velocity and the endolymph velocity at the surface of the cupula must match. As
the spatial gradients of the cupula’s deformation are small, we can write this as

∂ ûs

∂ t̂
(r̂ , θ, ẑ = th/2, t̂)= û(r̂ , ŝ = th/2, t̂), (2.6a)

∂ ûs

∂ t̂
(r̂ , θ, ẑ = 2πR − th/2, t̂)= û(r̂ , ŝ = 2πR − th/2, t̂). (2.6b)

We also require boundary conditions for the solid problem (2.2). The precise attachment
between the cupula and the utricle is an open area of research and the conditions to
be satisfied are not immediately clear. We opt to implement a straightforward choice
motivated by Rabbitt & Damiano (1992) who model the cupula as a clamped plate, but
we extend this to include thickness effects. In this regime, the forcing for the cupular
displacement is given by the pressure jump across the two sides of the cupula. In particular,
at the flat faces of the cylinder, we impose the following conditions on the stress tensor:

τ̂zz = ±1
2

[
p̂(r̂ , θ, ŝ = 2πR − th/2, t̂)− p̂(r̂ , θ, ŝ = th/2, t̂)

]≡ ±	 p̂

2
, at ẑ = ±th/2,

(2.7a)
τ̂r z = 0, τ̂θ z = 0, at ẑ = ±th/2.

(2.7b)

On the curved face, we impose zero displacement, ûs(r̂ = â(0))= 0. We also require
initial conditions for the velocity, û(x̂, t̂ = 0), and the cupular deflection, ûs(t̂ = 0). Unless
otherwise stated, we assume that the system is initially at rest and is undeformed.
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2.4. Scalings and non-dimensionalisation
The SCCs in mammals are thin and slender: with an aspect ratio ε = a/R between 0.05
and 0.1 (Daocai et al. 2014). It is therefore natural to exploit ε� 1 and use an asymptotic
approach to perform a long wavelength asymptotic analysis similar to lubrication theory.
We also know from the continuity equation that if ŵ∼ U , then û, v̂ ∼ εU . This is required
to have a non-trivial balance and is a typical scaling in lubrication theory (Papageorgiou
1995; Craster & Matar 2006). To make this asymptotic intuition more formal, we non-
dimensionalise, scaling the dimensional variables according to

r̂ = ar, ŝ = Rs, ẑ = az, t̂ = T t, ŵ= RΩ0a2

T ν w,

p̂ = μRU
a2 p, ûs = a2RΩ0

ν
us, τ̂ = EaRΩ0

ν
τ , Ω̂ =Ω0Ω(t).

(2.8)

(‘Unhatted’ variables are therefore dimensionless counterparts of the corresponding hatted
variables.) Here, T is the time scale of variation of the forcing and ν =μ/ρ is the
kinematic viscosity of the endolymph. The velocity scale U = RΩ0a2/(T ν) is chosen
to balance the viscous forces with the Euler force. The deformation scale is chosen to
balance the kinematic condition (2.6a). The pressure scale is chosen viscously to enforce
incompressibility. Note that Ω(t) is the dimensionless angular velocity and Ω̇(t) is the
dimensionless angular acceleration.

2.4.1. Dimensionless equations
Following the rescaling of (2.4)–(2.6a), the dimensionless continuity equation (2.4) reads

∂u

∂r
+ u

r
+ 1

r

∂v

∂θ
+ 1

h

∂w

∂s
− ε

v sin θ
h

+ ε
u cos θ

h
= 0, (2.9)

where the scale factor h can be expressed as h = 1 + εr cos θ . The dimensionless Navier–
Stokes equations (2.5) along the er , eθ and es directions are given respectively by

εSt
∂u

∂t
+ ε3Re

(
u
∂u

∂r
+ v

r

∂u

∂θ
+ w

h

∂u

∂s
− v2

r
− 1
ε

w2

h
cos θ

)
− 2Ω0T StΩ(t)w cos θ −Ω0T Ω(t)2h cos θ

= −1
ε

∂p

∂r
+ ε

rh

[
r

h

∂

∂s

(
ε2 ∂u

∂s
− ∂

∂r
(hw)

)
− ∂

∂θ

(
h

r

∂

∂r
(rv)− h

r

∂u

∂θ

)]
, (2.10a)

εSt
∂v

∂t
+ ε2Re

(
εu
∂v

∂r
+ ε

v

r

∂v

∂θ
+ ε

w

h

∂v

∂s
+ ε

uv

r
+ w2

h
sin θ

)
+ 2Ω0T StΩ(t)w sin θ +Ω0T Ω(t)2h sin θ

= −1
ε

1
r

∂p

∂θ
+ ε

h

∂

∂r

[
h

r

(
∂

∂r
(rv)− ∂u

∂θ

)]
− ε

rh2

[
∂

∂θ

(
h
∂w

∂s

)
− ε2r

∂2v

∂s2

]
, (2.10b)

St
∂w

∂t
+ Ω̇(t)(1 + εr cos θ)+ ε2 St T Ω0Ω(t)(u cos θ − v sin θ)

+ε2Re
(
u
∂w

∂r
+ v

r

∂w

∂θ
+ w

h

∂w

∂s
+ ε

uw

h
cos θ − ε

vw

h
sin θ

)

= −1
h

∂p

∂s
+ 1

r

∂

∂r

[
r

h

(
∂

∂r
(hw)− ε2 ∂u

∂s

)]
+ 1

r2
∂

∂θ

[
1
h

∂

∂θ
(hw)− ε2 r

h

∂v

∂s

]
. (2.10c)
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The dimensionless form of (2.2) is given by

ε
ρs

ρ

1
κ

(
St
∂2us

∂t2 + ∂Ω

∂t
× x + 2StΩ0T Ω × ∂us

∂t
+Ω0T Ω × (Ω × x)

)
= ∇ · τ .

(2.11)

The only inhomogeneous boundary conditions for the solid problem are

τzz(r, θ, z = ±β/2, t)= ±	p(r, θ, t)/(2κ), (2.12)

with β = th/a the dimensionless thickness of the cupula. The non-dimensionalisation
procedure introduces several dimensionless parameters. We shall see that the most
important of these are the stiffness

κ = ET a

Rμ
, (2.13)

which measures the time scale of forcing to the time scale of the cupula’s relaxation, and
the Stokes number

St = a2

νT , (2.14)

which measures the time scale of vorticity diffusion across the channel width, a2/ν, to
the time scale of motion, T . (Note that this version of the Stokes number arises in Stokes’
second problem and is sometimes replaced by the Womersley number, Wm = St1/2.) We
also introduce the Reynolds number of the flow, Re = ρUR/μ, as well as the density
ratio, ρs/ρ, and the time scale ratio, Ω0T . To understand the relative size (and hence
importance) of these parameters, we next discuss characteristic parameter values and
typical sizes of dimensionless parameters.

2.4.2. Parameter values
First, we consider the geometrical parameters, taken from Daocai et al. (2014): R ≈ 3.2 ×
10−3 m and a ≈ 1.6 × 10−4 m, so that the aspect ratio is ε ∼ 0.05. The cupula’s thickness
is usually quoted as th ≈ 400 µm.

The endolymph composition is very close to water, suggesting that the dynamical pa-
rameters are similar to water: ρ = 1000 kg m−3 and the viscosity is μ≈ 10−3 kg m−1 s−1.
Under standard conditions, the cupula is neutrally buoyant, so that the solid density is
ρs = 1000 kg m−3.

The most challenging parameter to identify is E . We can infer the value of the bending
stiffness from the results of Selva et al. (2009), who suggest an extremely low value of
the Young’s modulus, E ∼ 5 Pa. Other authors quote simply an estimate for the bending
stiffness of the cupula when modelled as a thin plate, B = Et3

h/(12(1 − ν2
s ))∼ 10−10 N m

(Rabbitt & Damiano 1992), from which a similar Pa-like Young’s modulus is inferred.
In terms of the motion, usual ranges of operation for humans are Ω̇0 ∼ 1 s−2, and T

can be anywhere between 0.01 and 10 s. We are now in a position to make informed
estimates of the sizes of the dimensionless groups appearing in (2.10)–(2.11). Both the
Stokes number and the relative stiffness κ depend on the forcing time scale T . In particular,
St � 1 for T > 1 s, but the Stokes number may be large for faster movements. Similarly,
κ can acquire a large range of values. More usefully, the solid’s inertia is generally
of size ερs St/(ρκ)= ρ2

s /(ET ) < 10−2 for all physical values of T and hence may be
safely neglected to leading order in ε, with similar statements for all the other inertial
terms in (2.11). We will however include these terms in our computation of the first-order
correction. Similarly, the reduced Reynolds number, ε2Re ≈ 10−3, and nonlinear advection
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terms in (2.10) may be neglected. Finally, the dimensionless thickness of the cupula ranges
from β = 0.1 to β = 2.

The size of the dimensionless groups discussed previously will inform our choices when
neglecting terms in the governing equations (2.9)–(2.10). In particular, we will exploit the
smallness of ε to neglect terms of order ε2Re and the smallness of ερs St/(ρκ) to neglect
inertial terms in the Navier equation (2.11). The last simplification is particularly useful as
it will allow us to simplify the leading order solid problem significantly to ∇ · τ = 0.

We now turn to consider in more detail the behaviour of the model for the typical
parameter values already discussed. Given the broad range of values that may be taken by
the Stokes number, we begin by considering slow movement (i.e. large T ) in § 3 and thus
neglect terms of size St . This will allow us to derive a reduced order equation (an ODE)
for the deflection of the cupula that can be compared with the numerical results in § 4.
However, in § 5, we consider fast movements with finite Stokes numbers, leading to an
integro-differential equation for the deflection of the cupula.

Both the relative stiffness κ and the dimensionless cupular thickness β are treated as
independent parameters. In particular, recalling that κ is a key parameter, capturing the rel-
ative time scales of the imposed motion and the cupular relaxation, a main objective of our
analysis will be to investigate how variations in κ give rise to different solution regimes.

3. Asymptotic solution for negligible Stokes number
Motivated by the small value of the Stokes number St = a2/(νT )∼ 10−2 for natural
movement time scales, T ∼ 1 s, in this section, we assume the Stokes number is negligibly
small and solve the coupled system (2.10) asymptotically, expanding the solution in powers
of the small aspect ratio ε. To this end, we introduce the following formal expansions:

u(r, θ, s, t)= u0(r, θ, s, t)+ εu1(r, θ, s, t)+ ε2u2(r, θ, s, t)+ · · ·,
v(r, θ, s, t)= v0(r, θ, s, t)+ εv1(r, θ, s, t)+ ε2v2(r, θ, s, t)+ · · ·,
w(r, θ, s, t)=w0(r, θ, s, t)+ εw1(r, θ, s, t)+ ε2w2(r, θ, s, t)+ · · ·,
p(r, θ, s, t)= p0(r, θ, s, t)+ εp1(r, θ, s, t)+ ε2 p2(r, θ, s, t)+ · · ·,
τ (r, θ, z, t)= τ 0(r, θ, z, t)+ ετ 1(r, θ, z, t)+ ε2τ 2(r, θ, z, t)+ · · ·,

us(r, θ, z, t)= us0(r, θ, z, t)+ εus1(r, θ, z, t)+ ε2us2(r, θ, z, t)+ · · ·. (3.1)

Substitution of (3.1) into the dimensionless problem (2.10) yields a system of linear
equations; we shall retain terms up to and including O(ε) since they are required to explain
the symmetry breaking phenomenon that was observed numerically (see figure 3).

3.1. Expanded solution
Substitution of the formal expansion equation (3.1) into the governing equation (2.10)
yields the following leading order balance:

Ω̇(t)= −∂p0

∂s
+ 1

r

∂

∂r

(
r
∂w0

∂r

)
+ 1

r2
∂2w0

∂θ2 , (3.2a)

∂p0

∂r
= ∂p0

∂θ
= 0, (3.2b)

∂u0

∂r
+ u0

r
+ 1

r

∂v0

∂θ
+ ∂w0

∂s
= 0, (3.2c)

∇ · τ 0 =0, τzz0(r, θ, z = ±β/2, t)= ± 1
2κ
	p0(t). (3.2d)
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We identify the usual lubrication/boundary layer theory result that the leading order
pressure is constant along a cross-section (Craster & Matar 2006; Tavakol et al. 2017).
This has the direct consequence that the pressure difference	p0(t)=

∫ 2π−εβ/2
εβ/2 ∂p0/∂s ds

is only a function of time. Hence, we may seek a solution to the solid problem of
the form us0(r, θ, z, t)=	p0(t)ūs0(r, z)/κ , where ūs0 = (ūs0(r, z), 0, w̄s0(r, z))ᵀ is an
axisymmetric solution to (2.11) satisfying the normalised boundary condition τ̄zz0 = ±1/2
at z = ±β/2. We can thus solve the leading order solid problem independently from the
fluid problem. Moreover, motivated by results from the numerical simulations indicating
ws0(r, z) varies slowly over z, we introduce the depth-averaged cupular deflection
η(r, θ, t)= η0(r, t)+ ε η1(r, θ, t)+ · · · defined as

η(r, θ, t)= 1
β

∫ β/2

−β/2
ws(r, θ, z, t) dz. (3.3)

In Appendix B.2, we show that when St � 1, we can decompose η multiplicatively as

η0(r, θ, t)= 	p0(t)

κ
η̄(r, θ), η̄(r, θ)= 1

β

∫ β/2

−β/2
w̄s(r, z, t) dz, (3.4)

so that, to leading order, the cupular deflection and the pressure jump are proportional. We
may obtain a polynomial approximation for η̄0(r) using techniques from Barber (2010).
The final solution (see Appendix B.2 for details on the calculation) is

η̄0(r; β)= 1
β

∫ β/2

−β/2
ws0(r, z; β) dz = 3

16
1 − ν2

s

β3 (1 − r2)2 + 1
20
(1 + νs)(12 − νs)

β
(1 − r2).

(3.5)

Having obtained a form of solution for the solid problem in terms of the pressure jump,
we turn our attention to the fluid problem. We remark that the differential operators acting
on the continuity and momentum equations are the same as in cylindrical coordinates
(Batchelor 1973), and invoking symmetry, we now seek an axisymmetric solution with
v0 = 0 and leading order terms independent of θ , with w0 =w0(r, s, t). The leading order
kinematic boundary condition may be written as
∂η0

∂t
=w0(r, s = 0, t)=w0(r, s = 2π, t), u0(r, s = 0, t)= u0(r, s = 2π, t)= 0. (3.6)

Our starting point is the continuity equation, which can be integrated over a cross-section
to deduce that the flux Q = ∫ 2π

0

∫ a(s)
0 rw(r, θ, s, t) dr dθ is conserved in the s direction,

i.e. ∂Q/∂s = 0. This means that the flux is exclusively a function of time, a fact we will
exploit to derive a reduced-order equation. Turning our attention to the O(ε) problem, the
equations read

Ω̇(t)r cos θ = −∂p1

∂s
+ r cos θ

∂p0

∂s
+ 1

r

∂

∂r

(
r
∂w1

∂r

)
+ 1

r2
∂2w1

∂θ2 + cos θ
∂w0

∂r
, (3.7a)

∂p1

∂r
=Ω0T Ω(t)2 cos θ,

1
r

∂p1

∂θ
= −Ω0T Ω(t)2 sin θ, (3.7b)

∂u1

∂r
+ u1

r
+ 1

r

∂v1

∂θ
+ ∂w1

∂s
= cos θ

(
r
∂w0

∂s
− u0

)
, (3.7c)

ρs

ρ

1
κ

(
∂Ω

∂t
× x +Ω0T Ω × (Ω × x)

)
= ∇ · τ 1, (3.7d)

τzz1(r, z = ±β/2, t)= ±	p1(r, t)/(2κ), (3.7e)

1022 A40-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
78

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10783


J. Chico-Vazquez, D.E. Moulton and D. Vella

0
.0

5
−1.00 −0.20

−1 10

Normalised axial velocity

−0.05
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Figure 4. Velocity profiles predicted by (3.9) as the torus aspect ratio, ε, and leading-order term vary. Note
how when Ω̇(t) and κ	p/(2π) cancel each other, the asymmetric flow dominates. Moreover, the symmetry
breaking becomes observable earlier for larger values of ε, though we reiterate that our theory is formally valid
only for ε� 1. Note that the horizontal axis may be interpreted as the phase difference between Ω̇ and −	p.

	p1(r, t)=	pouter
1 (t)+	pBL

1 (r, t). (3.7f )
Here, the pressure difference due to the outer flow is 	pouter

1 (t)= ∫ 2π−εβ/2
εβ/2 ∂p1/∂s ds

and 	pBL
1 (r, t) is a contribution from the boundary layer that forms near the cupula (see

Appendix F for details). We note that p1(r, θ, s, t) may be decomposed into a pressure
gradient along the duct axis and an s-independent pressure variation due to centrifugal
effects, so that

p1(r, θ, s, t)= p̄1(s, t)+Ω0T Ω(t)2r cos θ, (3.8)

and as we only require the s component of the pressure gradient in the computation of the
axial velocity, we may safely ignore the s-independent component of p1 and use p̄1(s, t)
in its place. Moreover, the first-order pressure jump across the cupula is 	pouter

1 = p1(s =
2π, t)− p1(s = 0, t)=	 p̄outer

1 .
The solutions giving the first two orders of the axial velocity in terms of the pressure

gradients may be determined directly: w0 is found from (3.2a), under the assumption
of axisymmetry, while w1 may be found by decomposing it into axisymmetric and
asymmetric parts, and using standard methods. We find that

w0(r, s, t)= −1
4

(
Ω̇(t)+ ∂p0

∂s

)
(a(s)2 − r2), (3.9a)

w1(r, θ, s, t)= −1
4
∂ p̄1

∂s
(a(s)2 − r2)− 1

16

(
Ω̇(t)− 3

∂p0

∂s

)
r(a(s)2 − r2) cos θ. (3.9b)

We can get a first hint of the symmetry breaking mechanism observed in figure 3 by
considering when the asymmetric correction term εw1 is of a similar size as the symmetric
leading order solution w0. Indeed, it is easy to verify that this will be the case when the
pressure gradient approximately cancels out the forcing Ω̇(t), such that the modulating
coefficient Ω̇(t)+ (∂p0/∂s) in (3.9a) is close to zero. This is visualised in figure 4, where
we plot the velocityw=w0 + εw1 for several values of ε and Ω̇(t)+ (∂p0/∂s), observing
an asymmetric profile when Ω̇(t)+ (∂p0/∂s)� 1. We note that the above-mentioned
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solutions are only valid far from the cupula, in the slender regions of the SCC (s � ε), and
thus we refer to (3.9) as the outer solution. Closer to the cupula, a boundary layer develops
due to the leading order velocity having to adjust from the outer solution w0(r, s, t) to the
cupular deflection profile ∂η0/∂t as imposed by (3.6) (see the curved streamlines close to
the cupula in figure 3). The velocity adjustment causes the aforementioned pressure jump
	pBL

1 (r, t), which we compute in Appendix F using a matched asymptotic expansion:

	pBL
1 (r, t)= − π

I4

(
Ω̇(t)+ 	p0(t)

2π

)
f3(β)Re

{ ∞∑
n=1

Ān J0(μnr)

}
,

f3(β)= 5(1 − νs)

4β2(12 − νs)+ 10(1 − νs)
,

(3.10)

where Ān ∈C are constants independent of time and cupular thickness, and μn ∈C are the
solutions in the first quadrant of J1(z)2 = J0(z)J2(z) (for details, see Davis 1990). From
the velocities (3.9), we may compute the flux, noting that the asymmetric components of
w1(r, θ, s, t) integrate to zero because of the cos θ term:

Q0 = −2π
16

(
Ω̇(t)+ ∂p0

∂s

)
a(s)4, (3.11a)

Q1 = −2π
16
∂ p̄1

∂s
a(s)4. (3.11b)

Since the flux Q = Q0 + εQ1 + . . . is independent of s, we can now integrate the above
equations along the axis of the duct, obtaining

I4Q0 = −π
8

(
2πΩ̇(t)+	p0

)
, (3.12a)

I4Q1 = −π
8
	pouter

1 , (3.12b)

where we have defined I4 = ∫ 2π
0 a(s)−4 ds and used the fact that 	pouter

1 =	 p̄outer
1 . We

remark that when the thickness of the cupula is appreciable, the integrals should be
performed from s = εβ/2 to s = 2π − εβ/2, leading to a slight modification of (3.12),
as discussed in Appendix E.

To connect the flow to the cupula displacement, we evaluate the flux using the velocity
w at the cupula, where the fluid velocity must equal the velocity of the cupula: w=
(∂η/∂t). Therefore, we may write Qi = ∫ 2π

0

∫ a0
0 r(∂ηi/∂t) dr dθ , where a0 = a(0). In

Appendix B.2, we show that the first-order solid problem may be solved as

η1(r, θ, t)= 	pouter
1 (t)

κ
η̄0(r)+ ρs

ρκ
Ω̇(t)η̄Euler

1 (r)

+ ρsΩ0T
ρκ

Ω(t)2η̄centrif
1 (r) cos θ − π

I4κ

(
Ω̇(t)+ 	p0(t)

2π

)
f3(β)η̄

BL
1 (r),

(3.13)

where η̄0 was defined in (3.5) and other η̄1 are given in Appendix B.2. Computing the flux,
we find

Q0 = 1
κ

d	p0

dt

∫ 2π

0

∫ a(0)

0
r η̄0(r; β) dr dθ = 2πα0(β)

κ

d	p0

dt
, (3.14a)
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Q1 = 2π
κ

[
d	pouter

1
dt

α0(β)+ ρs

ρ
Ω̈(t)αeuler

1 (β)− π

I4

(
Ω̈(t)+ 1

2π
d	p0

dt

)
f3(β)α

BL
1 (β)

]
,

(3.14b)

where the α factors are

α0(β)≡
∫ a(0)

0
r η̄0(r; β) dr = 1 − ν2

s

32β3 + (12 − νs)(1 + νs)

80β
, (3.15)

and similarly for the other contributions, with explicit forms given in Appendix B.2. The
centrifugal term integrates to zero, and we substitute the flux terms Q0, Q1 into (3.12)
from which we obtain a pair of ordinary differential equations for 	p(t):

α0(β)

κ

d	p0

dt
= − 1

16I4

(
2πΩ̇(t)+	p0

)
, (3.16a)

α0(β)

κ

d	pouter
1

dt
= − 1

16I4
	pouter

1 − ρs

ρ

αEuler
1 (β)

κ
Ω̈(t)

+ π

I4κ
αBL

1 (β) f3(β)
d
dt

(
Ω̇(t)+ 	p0

2π

)
. (3.16b)

The boundary layer forcing term can be written in terms of 	 p̈0 using (3.16a), but it will
be more useful to leave it in terms of 	p0. We may solve (3.16a) for any forcing via the
integral

	p0 = − πκ

8α0(β)I4

∫ t

0
Ω̇(τ )e

− κ
16I4α0(β)

(t−τ) dτ. (3.17)

3.1.1. Expressions for the velocities
Once the pressure jump is known from (3.16a), the pressure gradient may be computed
from

∂p0

∂s
= 	p0

I4a(s)4
+ Ω̇(t)

[
2π

I4a(s)4
− 1

]
,

∂ p̄1

∂s
= 	pouter

1
I4a(s)4

. (3.18)

Substitution into the axial velocity (3.9) then yields

w0 = π

2I4a(s)4

[
Ω(t)+ 	p0

2π

] [
r2 − a(s)2

]
, (3.19a)

w1 = r
(
r2 − a(s)2

)
cos θ

16I4a(s)4

[
−3	p0 + (− 6π + 4I4a(s)4

)
Ω(t)

]
+ 	pouter

1
4I4a(s)4

(
r2 − a(s)2

)
.

(3.19b)

The radial and azimuthal velocities can be recovered from the continuity equation,

u0 = π

2I4a(s)5

[
Ω(t)+ 	p0

2π

]
r
[
r2 − a(s)2

]da
ds
, (3.20a)

v0 = 0, (3.20b)

u1 = 2Ω(t)
[
2I4a(s)4 + π

]+	p0

16I4a(s)5
r2[r2 − a(s)2

]
cos θ

da
ds

+ 	pouter
1

4I4a(s)5
r(r2 − a(s)2)

da
ds
,

(3.20c)

v1 = −5
[
2Ω(t)

(
2I4a(s)4 + π

)+	p0
]

16I4a(s)5
r2[r2 − a(s)2

]
sin θ

da
ds
. (3.20d)
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Note that for a perfect, i.e. uniform, torus, a′(s)= 0 and there are no radial or azimuthal
velocities.

3.2. Deformation regimes
For a fixed aspect ratio, the key remaining dimensionless parameter is the relative stiffness
κ (which can be varied by changing the bending stiffness or time scale of forcing). We
shall see that changing κ makes the system sensitive either to the angular acceleration
or the angular velocity. In this section, we analyse how these limiting cases arise by
solving (3.16a). Although (3.16a) can be solved analytically for any forcing through (3.17),
qualitative information may be obtained by considering the large and small κ limits.

When the cupula is soft (κ � 1), the solution to (3.16a) is approximately given by

	p0 ∼ − πκ

8α0(β)I4

∫ t

0
Ω̇(τ ) dτ = − πκ

8I4α0(β)
Ω(t) as κ → 0. (3.21)

At the other extreme, for a stiff cupula, characterised by κ � 1, an approximate solution
of (3.17a) is given by

	p0 ∼ −2πΩ̇(t)+ 32I4πα0(β)

κ
Ω̈ as κ → ∞. (3.22)

In physical terms, the two results in (3.21) and (3.22) represent qualitatively distinct
regimes for the response of the cupular displacement to the imposed rotation of the canal:
for a soft cupula (κ � 1), the pressure difference across the cupula, and thus the cupula
deformation, is proportional to the angular velocity of the imposed rotation, Ω(t), while
for a stiff cupula (κ � 1), the deformation instead follows the angular acceleration ˙Ω(t).
Since the cupular deformation is thought to be what is detected by the nerve cells in the
cupula, this suggests that the cupula can detect either the angular velocity or the angular
acceleration to which it is subject – depending on the value of κ .

In the latter case, it is easy to verify that the leading order radial and axial velocities
suffer a cancellation, as the prefactor of the leading order velocity (3.9a) is Ω̇(t)+
(	p0/2π)=O(1/κ), and the asymmetric order ε correction w1(r, θ, s, t) dominates for
any ε provided κ is sufficiently large (the symmetric component of w1 also scales as
O(κ−1)). This cancellation accounts for the behaviour observed in figure 3: as the Young’s
modulus is increased, making the cupula stiffer to the point that κ � 1, the flow ceases to
be symmetric. This is intuitive, as a completely rigid cupula does not allow a net flux and
hence the axisymmetric leading order flow must vanish.

We emphasise that although symmetry breaking arises from the breakdown of the
asymptotic ordering between the first and second terms in the series, this does not imply a
loss of asymptotic ordering in the higher-order terms. The symmetry breaking results from
a catastrophic cancellation in the leading-order term, while the first correction remains
O(ε), and the subsequent terms are expected to retain their anticipated scaling – indicating
that the series remains well behaved. We confirm this in the next section by numerically
solving the full nonlinear problem (2.1).

To estimate the critical value of κ where the transition occurs, we may write 	p0 =
Ae2π i t + c.c. and Ω̇(t)= Be2π i t + c.c., with A, B ∈C, and seek the range of κ for which
	p is in phase with Ω . Direct substitution into (3.16a) yields

A = − 2πB
32I4πα(β)i/κ + 1

. (3.23)

Therefore, the transition change occurs at κc = 32π I4α(b). For κ < κc, the phase
difference between A and B is more than (π/4), and it will be less than (π/4) for κ > κc.
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When the phase difference is small, the response is roughly in phase with the forcingΩ(t),
and vice versa.

3.2.1. Sample head rotation
To visualise the different regimes we have identified above, we solve the equation for the
pressure jump (3.16a) with a specific choice for the forcing Ω̇(t). While many forms of
Ω̇(t) could be considered, we are motivated by a clinical head manoeuvre that may be
thought of as modelling a slow rotation of the head from right to left. Although other
clinical models are described by high-order polynomials (Boselli et al. 2009, 2013), we
choose a particular form that facilitates an analytical solution of the equations, namely

Ω̇(t)=
{

sin 2π t t ∈ (0, 1),
0 t > 1.

(3.24)

Solving for the pressure gradient through (3.17) yields

−	p0 = 2πγ κ
∫ t

0
Ω(τ)e−γ κ(t−τ) dτ

=

⎧⎪⎪⎨
⎪⎪⎩

2πγ κ
2πe−γ κt + γ κ sin 2π t − 2π cos 2π t

γ 2κ2 + 4π2 t < 1,

4π2γ κ

4π2 + γ 2κ2 e
−γ κt (1 − e−γ κ) t > 1.

(3.25)

Here, γ = 1/[16α0(β)I4] accounts for domain irregularities and cupular thickness. The
cupular deformation, which in this regime is proportional to the pressure jump, is plotted
in figure 5(a) for different values of κ , from which we can clearly see the transition from
	p tracking the angular velocity Ω(t) for small κ to tracking the angular acceleration
Ω̇(t) for large κ , as expected from the preceding analysis. There is an interesting transition
region for κ ∼ 1, where we can see an ‘overshoot’ region at the end of the manoeuvre that
has not decayed. This is not the case for either of the limiting regions, where the pressure
jump (and cupular displacement) is identically zero after the completion of the head turn.
In figure 5(b), we compare how similar the response is to either the angular velocity or the
angular acceleration by computing the correlation between the respective functions; for
two functions f (t) and g(t), this correlation is defined as

R( f, g)=
∫ T

0 f (t)g(t) dt(∫ T
0 f (t)2 dt · ∫ T

0 g(t)2 dt
)1/2 . (3.26)

As expected from our asymptotic analysis, 	p correlates with the angular velocity for
small to moderate values of κ and the angular acceleration for large values of κ . For the
parameters used in figure 5, we compute κc = 32π ≈ 100, in agreement with the transition
point observed in the plot.

4. Numerical simulations
To test the validity of our asymptotic approach, we return to the numerical simulations
in COMSOL, as presented in § 2.2, but now imposing within the numerical scheme the
forcing given by (3.24) and varying the Young’s modulus of the solid material to change
κ . We perform two direct comparisons, appearing in figures 6 and 7. Figure 6 plots the
cupular pressure jump 	p as a function of time, while figure 7 plots the axial velocity
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Figure 5. Influence of dimensionless stiffness κ on the cupular deformation. (a) As κ is increased, the
deformation (normalised by the maximum) transitions from following the angular velocity to following the
angular acceleration. (b) This transition with κ may be shown by plotting the correlation, R, between the
deformation and the angular velocity Ω(t) (solid curve) or the angular acceleration Ω̇(t) (dashed curve). A
transition between the two regimes occurs at κ ≈ 100. In both plots, colour is used to show the value of κ ,
as indicated in the inset of (a).
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Figure 6. Comparison of the pressure difference across the cupula as predicted by COMSOL simulations
(markers) and the theoretical prediction from (3.25) (Solid line). As expected from the results in § 3.2,
depending on the value of κ , the deformation tracks either the angular velocity or angular deformation of
the forcing (given by (3.24)). The parameter values used are given in the main text, which correspond to
St = 0.0256.

profiles across the cross section, sampled at several time points for different values of κ
in a region of the canal far from the cupula (s = π). In both figures, we observe excellent
agreement between theory and numerics. In particular, the breaking of symmetry in the
flow profile for large κ is easily observed in figure 7, and the theoretical profile captures
the trend and profile shape very well.

The numerical simulations were performed for a = 1.6 × 10−4 m, R = 3.2 × 10−3 m
and T = 1 s. As κ was varied, the Young’s modulus of the cupula E was appropriately
chosen to match the desired relative stiffness. The fluid is taken to be water (μ≈
10−3 kg m−1 s−1 and ρ = 1000 kg m−3). We consider a uniform semicircular canal with
a(s)= 1.

We remark that although the symmetry breaking might suggest a breakdown of the
asymptotic order, with the second term dominating the first in the series, subsequent terms
are well behaved and the series is not divergent. It can be seen from the equations that the
O(εn) equations will be of the same form as (3.2a), but with forcing terms depending on
the O(εm) solutions, with m < n and no division by quantities shrinking to zero as ε→ 0.
This may be inferred from the agreement between the model solution and the numerical
solution to the full nonlinear problem, even for large κ values where the symmetry is
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Figure 7. Numerically obtained velocity profiles (blue markers) and theoretical predictions (black solid curves)
from (3.9a) and (3.9b), sampled at s = π (the furthest location from the cupula). As κ increases, the velocity
profile ceases to be symmetric at κ ≈ 103. The imposed rotation is given by (3.24), with the simulation output
sampled at seven different times. Parameter values are the same as in figure 6.

broken. Moreover, as the symmetry breaking occurs because the leading order term shrinks
and the correction retains its size (rather than growing), we expect higher order terms to
retain their sizes too, preserving the asymptotic order of the solution.

We have thus far considered slow movements, so that T > 1 s and St � 1. However, for
faster movements, typically when T < 1 s, the Stokes number is no longer negligible and
inertial terms must be retained in the analysis (see § 2.4). However, the Stokes number may
also become non-negligible for other reasons – for example, some authors report slightly
thicker semicircular canals (a slightly larger), so that the Stokes number is considerably
larger than expected due to its quadratic dependence on radius. To this end, in the next
section, we consider flows with a finite Stokes number.

5. Effect of fluid inertia
While considering the inertialess limit of St � 1 facilitated analytical progress, there are
several circumstances in which inertia may become important, e.g. faster movements or
larger canals. Therefore, we consider the effect of fluid inertia by retaining the O(St)
terms in the governing equation (3.2a). Proceeding as in the previous section and seeking
a Fourier–Bessel series solution for the leading order axial velocity of the form

w0(r, s, t)=
∞∑
n=1

cn(t, s)φn(r, s), φn(r, s)= J0

(
λn

a(s)
r

)
. (5.1)
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Here, φn are the eigenfunctions for the Laplacian in a cylinder of local radius a(s), subject
to Dirichlet boundary conditions (Batchelor 1973); the λn are the zeros of the Bessel
function of the first kind J0(z), thereby ensuring that the axial velocity satisfies the no-slip
condition at r = a(s) in the rotating frame. Thus, substituting (5.1) into the momentum
equation (2.10c), keeping only the leading order terms, and using the orthogonality
properties of Bessel functions, we find

1
r

∂

∂r

(
r
∂φn

∂r

)
= − λ2

n

a(s)2
φn, (5.2a)

∫ a(s)

0
rφm(r, s)φn(r, s) dr = a(s)2

2
δmn J1(λn)

2,

∫ a(s)

0
rφn(r, s) dr = a(s)2 J1(λn)

λn
,

(5.2b)

St
∂cn
∂t

= − 2
λn J1(λn)

(
Ω̇(t)+ ∂p0

∂s

)
− λ2

n

a(s)2
cn, (5.2c)

cn(t, s)= − 2
λn J1(λn)

∫ t

0

(
Ω̇(τ )+ ∂p0

∂s

)
Kn(t − τ, s; St) dτ,

(5.2d)

where Kn(x, s; St)= St−1e−λ2
nx/[a(s)2St]. The flux may now be computed as

Q0 = 2π
∫ a(s)

0
rw0(r, s, t) dr = 2πa(s)2

∫ 1

0
ρw0(a(s)ρ, s, t) dρ

= −4πa(s)2
∞∑
n=1

[
λ−2
n

∫ t

0

(
Ω̇(t)+ ∂p0

∂s

)
Kn(t − τ, s; St) dτ

]
. (5.3)

From the continuity equation, the flux Q0 is independent of s. Therefore, we can evaluate
it at the location of the cupula, where the fluid velocity is known to be equal to the cupular
velocity (∂η0/∂t); this gives Q0 = 2π

∫ a(0)
0 r(∂η0/∂t) dr and allows us to write a reduced

system of equations for (∂p0/∂s)(s, t) and η0(r, t), namely∫ a(0)

0
r
∂η0

∂t
dr = −2a2 1

St

∞∑
n=1

[
1
λ2
n

∫ t

0

(
Ω̇(t)+ ∂p0

∂s

)
e−λ2

n(τ−t)/(a2St) dτ
]
, (5.4a)

η0(r, t)=	p0
η̄0(r)

κ
, 	p0 =

∫ 2π

0

∂p0

∂s
ds. (5.4b)

Therefore, we may write this as a single equation for the pressure gradient

α0(β)

κ

d	p0

dt
= −2a2 1

St

∞∑
n=1

[
1
λ2
n

∫ t

0

(
Ω̇(t)+ ∂p0

∂s

)
e−λ2

n(τ−t)/(a2St) dτ
]
, (5.5)

where α0(β) is given in (3.15). For an arbitrary inner radius a(s), (5.5) can be solved using
the Laplace transform, as shown in Appendix D. Before tackling the general case, we focus
on the simple case where the tube radius is uniform, a(s)≡ 1.

5.1. A simple example
For the special case when a(s)≡ 1, i.e. the tube radius is constant, the pressure gradient
can be assumed to be independent of s, that is, (∂p0/∂s)= (	p0/2π), and (5.4a)
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Figure 8. (a) Solution to (5.7), when Ω̇(t)= 0 and 	p0(t = 0)= 1 for different values of the Stokes number,
showing underdamped dynamics for large enough St . (b) Bifurcation diagram, showing the evolution of Re(ω̄)
(blue) and Im(ω̄) (red). Markers represent the numerically obtained solution from (5.8) and dashed lines the
analytical approximation (5.9). (c) Bifurcation diagram for Ω̇(t)∼ eit, showing how the transition between the
three regimes depends on both κ and St . Colour represents the complex angle of χ , with purple representing
arg(χ)= 0, green is arg(χ)= π/2 and yellow is arg(χ)= π , as described in the colourbar to the right.

simplifies to

α0(β)

κ

d	p0

dt
= −2

∞∑
n=1

[
λ−2
n

∫ t

0

(
Ω̇(τ )+ 	p0

2π

)
Kn(t − τ ; St) dτ

]
. (5.6)

To transform this equation into a more manageable form, we define a complete kernel
K(x; St)= St−1 ∑∞

n=1 λ
−2
n e−λ2

nx/St .

α0(β)

κ

d	p0

dt
= −2 ¯̇Ω(t)− 1

π

∫ t

0
	p0(τ )K(t − τ ; St) dτ, (5.7)

where we have introduced ¯̇Ω(t)= ∫ t
0 Ω̇(τ )K(t − τ ; St) dτ . Equation (5.7) may be

efficiently solved numerically by truncating the infinite series in the kernel and
transforming the integral equation into a system of ordinary differential equations (ODEs).
This is a standard calculation, with details given in Appendix C.

5.2. Fluid inertia can make the cupula underdamped
To understand the effect of inertia in the cupular response, we first consider the case of a
cupula that is initially stretched by a pressure jump 	p0(t = 0)= 1 in a frame rotating at
constant speed, so that Ω(t)= 0.

The numerical solution to (5.7) for a range of Stokes numbers is given in figure 8(a).
Notice that for sufficiently large St , 	p(t) exhibits decaying oscillatory behaviour,
meaning that the cupula is underdamped; this is in contrast to smaller values of St , in
which the cupula dynamics show an exponential decay whose rate of decay increases with
St . To understand this change in behaviour as St is increased, we seek an exponential
ansatz to solve (5.7), with 	p0 ∼ e−ωt in the simple case when Ω̇(t)= 0. Direct
substitution yields the following condition:

α0(β)π

κSt
ω̄=

∞∑
n=1

1
λ2
n

1
λ2
n − ω̄

, (5.8)
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where the rescaled growth rate is ω̄= St ω. Equation (5.8) provides an equation
for ω̄ depending on the parameter q = α0(β)π/(κSt)= α0(β)πρν

2R/(Ea3), which is
independent of the forcing time scale T . Analytical progress can be made by truncating
the sum at n = 1, i.e. considering only the first term. This leads to

ω̄= λ
2
1

2

⎡
⎣1 ±

(
1 − 4

qλ6
1

)1/2
⎤
⎦ . (5.9)

From this, we can identify the critical value for the parameter q at which the transition to
underdamped dynamics occurs: qc = 4/(λ1)

6 ≈ 0.0207.
A natural question to ask now is if fluid inertia can alter the development of the two flow

regimes outlined previously in § 3.2? Proceeding as before, we assume a forcing Ω̇(t)=
Beit and try an ansatz 	p0 = Aeit . Substitution into the integral (5.7) and neglecting
contributions from the initial conditions yields

iα0(β)A

κ
= −

∞∑
n=1

2B + A/π

λ2
n(i St + λ2

n)
. (5.10)

It is convenient to define the function G :R→C, given by G(St)=∑∞
n=1 λ

−2
n /(i St + λ2

n).
We find that the response (characterised by A) is related to the forcing (characterised by
B) through

A = −2BG(St)
iα0(β)/κ + G(St)/π . (5.11)

Therefore, we see that the angle of the complex quantity

χ = −G(St)
π iα0(β)+ κG(St) = −1

κ + π iα0(β)/G(St)
(5.12)

will determine if the deformation follows the angular velocity (if the angle is close to π/2)
or the angular acceleration (when the angle is close to 0 or multiples of π). To achieve
analytical progress, we truncate the sum in G, keeping only the first term, and we find

Re(χ)
Im(χ)

= −κ − πα0(β)λ
2
1St

πλ4
1α0(β)

. (5.13)

Therefore, the curve in the parameter space (κ, St) separating the two regimes is given
implicitly by ∣∣∣∣∣ κ

πλ4
1α0(β)

− St

λ2
1

∣∣∣∣∣= 1. (5.14)

In figure 8(c), we plot the argument of χ as a function of κ and St , indicating as well the
approximate bifurcation curves given by (5.14). This diagram indicates where in the κ–St
phase space the cupula deflection follows the angular acceleration, angular velocity or the
angular displacement. For small values of the Stokes number St , we recover the previous
picture, where κ � 1 indicates the deformation follows the angular velocity (arg(χ)=
π/2) and κ � 1 indicates the response is guided by the angular acceleration (arg(χ)= π).
However, we also find a dependence on St for non-small Stokes numbers. For given κ
less than approximately 100, a transition to angular displacement tracking occurs for St
greater than approximately 1, meaning that the cupula system may be tuned to follow
angular displacement even for small cupula stiffness if the Stokes number is high enough
(characterised by arg(χ)= 0 in figure 8c). This transition point increases for larger κ ,
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as indicated by the blue wedge region in figure 8(c), meaning that an orders of magnitude
higher κ is possible with cupular deflection still tracking angular velocity, if the Stokes
number is accordingly increased in a very particular way. In the new regime for St � 1
(and moderate κ), we find the pressure jump is approximately

	p0(t)= − κ

2α0(β)St

∫ t

0
Ω(τ) dτ, (5.15)

and indeed proportional to the angular displacement.
We may interpret the effect of high fluid inertia by considering the response of

the cupula as the forcing frequency is increased. For small forcing frequencies, the
deformation will follow the angular acceleration, and as the forcing frequency is increased,
the cupula will start deforming in phase with the angular velocity, as expected from § 3.2;
this is well known in the vestibular literature (Benson 1990). However, our results from
this section suggest that when the forcing frequency is further increased (in humans,
to approximately 100 Hz), the cupular deformation will be in phase with angular
displacement. This sort of high frequency motion could be expected for example during
impacts or equipment malfunction.

5.3. Non-uniform channel widths
As noted in § 1, an advantage of our theoretical formulation is that it is also compatible
with a non-uniform and arbitrary channel width, described by the function a(s), so long
as the small aspect ratio between channel width and length is maintained. This case is
more delicate than the one we saw in § 5.2, as the pressure gradient is no longer constant
but depends on a(s), and must be integrated along the channel to obtain the pressure
jump across the cupula. In Appendix D, a method based on the Laplace transform and
the convolution theorem is developed, through which we obtain an approach to solving
the problem for both non-uniform channel widths and St > 0. The main result is that we
obtain the same form of (5.7) for the deflection η0(r, t), with the kernel K(x; St) given by
the (temporal) inverse Laplace transform of

K̃(σ ; St)= 2π

(∫ 2π

0

ds

a(s)4
∑∞

n=1 λ
−2
n
[
a(s)2Stσ + λ2

n

]−1

)−1

. (5.16)

For a given canal profile a(s), the Kernel may be numerically obtained by fixing a
discretisation of σ into a finite number of points. For each point, the integral can be
populated for a(s) and computed using standard quadrature methods. This will yield
K̃(σ ; St) for a finite number of σ . The equation for the pressure jump (5.7) can then
be either solved in Laplace space, inverting the transformed solution using an efficient
algorithm (Kuhlman 2013), or in real space using a trapezoidal method.

We have developed a general framework that allows us to solve for the cupular
displacement and pressure jump for complicated canal geometries allowing also for the
possibility of fluid inertia. As an example of the scenarios in which this approach might
be useful, we now reconsider some of the numerical results presented in figure 4.

5.4. Fluid inertia explains discrepancies between numerics and model
Figure 4 generally shows excellent agreement between the St = 0 model presented in § 3
and our COMSOL numerics, especially at the scale of the largest velocities, which were
used for comparison in figure 4. However, if we zoom-in to situations where the velocity
is small, such as when t = 0.5, then we might expect to observe differences caused by
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Figure 9. Velocity profiles for t = 0.5, including the finite fluid inertia correction. Numerical results (blue
markers) are compared with the theories for St = 0 (dashed black line) and St > 0 (solid red line). The
parameter values are the same as in figure 7.

small errors in the phase of the motion. Figure 9 shows just such an effect: the agreement
between the predictions of the St = 0 asymptotics (dashed black curves) and COMSOL
simulations (blue markers) is no longer satisfactory for small and moderate values of the
stiffness κ � 1: while the absolute error is small, the relative error is very large. This is
because even for small Stokes numbers, the exact time at which the velocity vanishes is
different from that predicted by the St = 0 asymptotics of § 3, which essentially assume
that the motion is quasi-steady.

Figure 9 also shows the predictions of the leading-order in St asymptotic results
presented in this section. As might be expected, we see much better agreement between
the prediction accounting for St > 0 via (5.2d) and (5.7) (shown by solid red curves in
figure 9) and the results of COMSOL simulations (points) than with the earlier result,
which neglected the effects of fluid inertia entirely. We emphasise that this finite inertia
case requires the numerical calculation of the integrals in (5.2d) and (5.7).

We now consider if domain irregularities can give rise to interesting flow phenomena,
in particular, unexpected symmetry breaking and vortical flows when κ � 1, which have
been reported previously (Boselli et al. 2013).

6. Analytical description of vortical flow
As a final point of analysis, we turn our attention to the possibility of vortical flow: several
authors have reported the existence of vortical structures in computational studies of flow
in the utricle, the enlarged portion of the semicircular canal (see Boselli et al. 2009;
Goyens et al. 2019, for example). Vortices appear to occur even in the analogue of our
limit κ � 1, when the flow in the slender portion of the canals is largely symmetric. In this
section, we use our asymptotic analysis to give an analytical description of such vortical
flow structures and determine the geometrical conditions required for their emergence.

Mathematically, the reason why we might expect enlarged regions of the canal to
experience symmetry breaking may be seen from the form of the leading order and O(ε)
axial velocity terms in (3.19). In particular, in regions where a(s) > 1, the magnitude of
the leading order velocity w0 is proportional to 1/[I4 a(s)4], while the correction is of
order ε, the Ω̇(t) term in (3.19b) remains O(ε) even as a(s)4 becomes large. (We retain
the I4 term here, since it is also dependent on a(s).) Hence, we might expect noticeable
asymmetry in the flow to develop in regions where 1/[I4a(s)4] is comparable to ε. Note
that this can be achieved in this way without requiring that we are in the stiff cupula regime
κ � 1 that led to the symmetry-breaking discussed in § 3.2.

To demonstrate this possibility, we consider the predictions of our asymptotic theory for
a canal with a localised bulge by taking the radius a(s) to be the sum of a constant and a
Gaussian:
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am = 1.0  am = 2.0

−1 0

Normalised axial velocity

1

am = 3.0 am = 4.0

Figure 10. Analytical reconstruction of vortical flow in the utricle as the maximum channel radius, am ,
increases. The channel has a largely uniform radius, but is wider in the vicinity of the utricle – see (6.1)
for the detailed profile of the tube. Here, we observe how as the size of the utricle is augmented the vortex
develops. The forcing is given by (3.24) and we show the solution at time t = 0.25. The parameters used are
ε = 0.05, and κ = 0.1. Furthermore, we use the solution from § 3 that assumes the fluid inertia is vanishingly
small, i.e. St = 0.

a(s)= 1 + (am − 1)e−γ s2
. (6.1)

Here, the cupula and utricle are located at s = 0, γ is a parameter controlling the width of
the enlargement and am is the maximum inner radius of the tube. This choice is motivated
by the qualitative agreement with the imaging from Daocai et al. (2014). In figure 10, we
plot the velocity distribution for several channel geometries, in particular, a top view of
the mid plane of the flow around the canal, with colour indicating the magnitude of the
axial velocity. The size of the enlarged region is increased from left to right (with γ = 1
and am = 1, 2, 3, 4), and the appearance of the vortical flow is clear. The forcing is given
by (3.24) and we visualise the solution at time t = 0.25. Here, we have used a small value
of κ = 0.1 so that the flow in the slender regions is predicted to remain largely symmetric,
a feature that we will verify in the following.

6.1. Conditions required for the formation of the utricular vortex
As noted previously, symmetry breaking in the utricle occurs when the first-order
correction εw1 is comparable with the leading order velocity w0. Within a cross-section,
the maximum value of w0 is attained at r = 0, and is given by

|w∗
0(s, t)| =

π

2I4a(s)2

∣∣∣∣Ω̇(t)+ 	p0

2π

∣∣∣∣∼ π

2I4a(s)2
|Ω̇(t)|, (6.2)

where the last approximation follows when κ � 1. The maximum value of w1 is attained
at r = (a(s)/

√
3) and θ = 0, π , and is given by

|w∗
1 | = 1

24
√

3I4a(s)

∣∣− 3	p0 + (− 6π + 4I4a(s)4
)
Ω̇(t)

∣∣. (6.3)

The symmetric component of w1 scales as ε	pouter
1 /a(s)2, and since it is much smaller

than both the asymmetric component of w1 and the leading-order flow w0, it is neglected
in the present analysis (we set 	pouter

1 = 0). Focusing on the utricle, where a(s) is largest,
|w∗

1 | is dominated by

|w∗
1 | ∼ a3

m

6
√

3

∣∣Ω̇(t)∣∣ . (6.4)

1022 A40-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
78

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10783


Journal of Fluid Mechanics

0.2

(a) (b)

1.0

0.8

0.6

0.4

0.2

0

1 2 3 4

Slender flow

Symmetric corr. (model)

Asymmetric corr. (model)

Symmetric corr. (COMSOL)

Asymmetric corr. (COMSOL)

Flow profiles in the utricle Emergence of vortical flow in the utricle

0

−0.2

−1.0 −0.5 0

Scaled duct radius, r/am

A
x
ia

l 
v
el

o
ci

ty
, 
w

C
o
rr

el
at

io
n

0.5 10−1 100 1011.0

am

ξ = (ε/3�3π) I4a5
m

Figure 11. (a) Analytical reconstruction of flow profiles in the wide region of the channel (representing the
utricle),w(r, θ, s = π, t) for different values of the maximum enlargement am . The inset shows the flow profiles
in the thin region of the flow w(r, θ, s = 0, t); these remain symmetric, confirming the symmetry breaking
mechanism is not the same as the global symmetry-breaking mechanism discussed in § 3.2. (b) Correlation (as
defined in (6.6a)) between the axial velocity in the utriclew(r)=w0(r)+ εw1(r, θ), and the symmetric (solid)
and asymmetric flow profile (dashed). Curves show the results of the analytical computation and triangles and
stars show the correlations computed from the COMSOL solution. We find that the transition occurs when
ξ = a5

m I4ε/(3
√

3π)∼ 1, as predicted by our analysis.

Comparing w0 and the next term in the expansion, εw1, we conclude that noticeably
asymmetrical flow in the utricle first emerges when

π

2I4a2
m

∼ ε
a3
m

6
√

3
,⇐⇒ 3

√
3π
ε

∼ a5
m

∫ 2π

0

ds
a(s)4

. (6.5)

This motivates the introduction of a transition parameter ξ = a5
m I4ε/(3

√
3π). The

transition can be seen qualitatively in the left panel of figure 10, where the flow in the
utricle (bottom half of the torus) transitions from symmetric to asymmetric as the bulge
is increased. In figure 11, this transition is analysed quantitatively. In the left panel, the
flow profile in the utricle is plotted for varying am . Observe that for large am , the utricle
flow is asymmetric, while the flow in the slender part of the canal remains symmetric.
To quantify the transition to noticeably asymmetrical flow, we compute the correlation
between the velocity profile w=w0 + εw1, and the symmetric (w0) and asymmetric (w1)
solutions.

The correlations may be written as

C(w, w0)= R(w, w0)√
R(w, w)R(w0, w0)

, C(w, w1)= R(w, w1)√
R(w, w)R(w1, w1)

, (6.6a)

R(u(r, θ), v(r, θ))=
∫ 2π

0

∫ am

0
u(r, θ)v(r, θ)r dr dθ, (6.6b)

and we find

C(w, w0)=
√

R0

R0 + ε2R1
, C(w, w1)=

√
ε2R1

R0 + ε2R1
, (6.7a)

R0 = R(w0, w0)= 2π
∫ am

0
w0(r)

2r dr = π3

12I 2
4 a

2
m

(
Ω̇(t)+ 	p0

2π

)2

, (6.7b)
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R1 = R(w1, w1)=
∫ 2π

0
cos2 θ dθ

∫ am

0

[
r(r2 − a2

m)(−3	p0 + (4a4
m I4 − 6π)

16I4a4
m

]2

r dr

= π

24 · 162 I 2
4

(− 3	p0 + (4a4
m I4 − 6π)Ω̇(t)

)2
. (6.7c)

Here, we have assumed that 	pouter
1 = 0 and used the fact that R(w0, w1)= 0, which

is trivial since w0w1 ∼ cos θ . The correlation C(w, w0) will be close to 1 when the flow
is largely symmetrical, and closer to zero when the flow is noticeably asymmetrical. The
opposite is true of the correlation C(w, w1). In figure 11(a), we plot the symmetrical
correlation C(w, w0) (solid line) and the asymmetrical correlation C(w, w1) (dashed line)
as predicted from our analytical model.

Based on the definition of ξ , we expect a transition when ξ ∼ 1. Figure 11 confirms this
expectation, showing that a transition indeed occurs at this point when the geometry a(s)
satisfies (6.1). We note that for times when Ω̇(t)= 0, our analysis does not apply and the
flow remains symmetric, even for large utricles. This follows from (6.4), as it is clear that
w1 = 0 when Ω̇(t)= 0.

Our analysis of the onset of vortical flow is further supported by numerical simulations,
represented by triangles and stars in figure 11(b). These simulations were conducted using
COMSOL, modelling the utricle as an ellipsoidal expansion of the toroidal geometry.
We find good agreement between the analytical predictions and COMSOL simulations
regarding the emergence of vortical flow. (We attribute the small discrepancy between the
COMSOL and analytical model to the fact that the geometry is not identical in both cases,
and furthermore, because the analytical result does not have a solid obstacle disrupting
the flow.) Furthermore, the consistency between the numerical simulations and analytical
solutions suggests that, although the first-order correction may be larger than the leading-
order term, the subsequent terms in the series remain well behaved, ensuring that the
asymptotic ordering is preserved.

7. Discussion and conclusion
In this study, we developed a mathematical framework to model fluid flow in the
semicircular canals of the vestibular system, focussing in particular on the interaction
between the fluid motion and cupular deformation. Through a systematic analytical and
numerical investigation, we identified distinct physical regimes and key mechanisms that
govern the fluid–structure response to an imposed rotation. Our results not only advance
the understanding of flow dynamics in these biologically relevant systems, but also provide
a simple framework with the potential for analysing vestibular function and dysfunction in
response to head movements.

Our analytical approach consisted in solving the Navier–Stokes equations via an
asymptotic series in the small aspect ratio of the semicircular canals. Through asymptotic
analysis and by connecting the fluid flow at the cupula to the cupular deformation, we
reduced the vestibular dynamics to an ODE system for the cupular pressure jump, whose
behaviour could easily be characterised. In this way, we established three primary regimes
of flow–cupula interaction, depending on the value of the relative stiffness parameter κ:

(i) Soft cupula regime, κ � 1: when the cupular stiffness is relatively low, the
deformation of the cupula closely follows the angular velocity of the head.
In this regime, the flow in the canal exhibits symmetry about the centreline
and in dimensional terms, the magntiude of the cupular deformation scales as
η̂∼ a2RΩ0/ν.
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(ii) Stiff cupula regime, κ � 1: as the stiffness of the cupula increases, the deformation
transitions to follow the angular acceleration of the head. In this regime, the
symmetry of the fluid flow about the centreline is broken, creating distinct zones of
differential flow. This transition highlights the importance of structural properties of
the cupula in shaping the dynamic response of the vestibular system. The magnitude
of the cupular deformation scales as η̂∼ a2RΩ0/(νκ)= aR2Ω0ρ/(ET ) in this
regime.

(iii) High-frequency regime, St � max{κ, 1}: if the forcing frequency increases
substantially, inertial effects in the fluid must be considered and the deformation
follows the angular displacement of the head. This type of motion could be expected
when e.g. driving over an uneven surface at speed, or in a collision. In this regime,
the magnitude of the deformation is η̂∼ R2Ω0μ/(Ea).

In this work, the cupula was modelled as an elastic solid of finite thickness, th > 0, in
contrast to previous analytical models that either treated it as a plate of vanishing thickness
(Rabbitt & Damiano 1992) or that did not include the cupula as a physical solid structure
(Obrist 2008). Experimental observations indicate that the cupula is not thin (Selva et al.
2009), motivating the inclusion of thickness as a parameter to more accurately capture
its deformation in an analytically tractable framework. Our theoretical model suggests the
following.

(i) For small thickness ratios β = th/a, the deformation resembles that of a clamped plate
(a quartic profile). In this case, the cupular deformation scales as β−3 for β � 1.

(ii) Increasing β leads to a transition towards a quadratic deformation that matches the
radially symmetric leading-order velocity profile w0. In this case, the deformation is
smaller, scaling with β−1.

To verify the analytical findings, we conducted numerical simulations of the reduced
equations using COMSOL Multiphysics. The numerical results showed excellent
agreement with the asymptotic predictions, confirming the validity of the analytical
approximations across a wide parameter space. Importantly, the numerical approach
enabled us to also account for the influence of complex fluid–solid interaction boundary
conditions and the nonlinear, advection, term in the Navier–Stokes equations that are
otherwise intractable analytically, and comparison with the analytical solution points to
their influence being small (and Re not being a relevant parameter in the problem).

When the inertial terms were incorporated into the governing equations via inclusion
of a finite Stokes number, St , we observed important modifications to the system’s
behaviour. For small Stokes numbers and in studying the relaxation of the cupula to
an initial deformation, the system exhibited overdamped dynamics. This behaviour is
also predicted when inertia is neglected and is consistent with the low-Reynolds-number
assumption inherent to the vestibular fluid dynamics. However, for sufficiently large Stokes
numbers, the system exhibited underdamped oscillations, with the cupular deformation
following angular displacement even in the soft cupula regime for sufficiently high St .
This transition highlights the interplay between inertial and viscous forces in shaping the
dynamic response of the system. Physiologically, this finding suggests that under certain
conditions, such as during rapid head movements (e.g. during an impact), the vestibular
system may exhibit enhanced sensitivity to displacement due to inertial effects.

The assumption of an idealised toroidal geometry allowed for significant analytical
simplifications, but is also a significant simplification of the true anatomy of the
semicircular canals, which exhibit variations in cross-sectional shape. To address this, we
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extended our analysis to more realistic geometries, focusing on domains with a single
enlarged region that deviates from the perfect torus. In these regions, we found that
significant deviation in radius gives another mechanism for the breaking of flow symmetry
(in addition to the rigidity-induced effect already discussed). These results provide new
insights into the functional implications of anatomical variability in the semicircular
canals. For example, variations in canal geometry across species or due to developmental
differences may influence the sensitivity and response characteristics of the vestibular
system.

In each of the scenarios considered, our analytical approach enabled us to derive
explicit expressions for the transition point between physical regimes, that is, we obtained
formulae for the critical values of the relevant system parameters at which the transition
between different regimes occurs. These formulae lend insight into the fine balance
between different components of the system, and enable us to speculate on how the
vestibular system may have been fine tuned by evolution in different organisms and/or
key considerations in engineering an artificial vestibular system. We turn to such
considerations next.

7.1. Implications and applications
The findings of this study have several implications for both biology and engineering. In
the context of vestibular physiology, our results contribute to a deeper understanding of
how the semicircular canals transduce head motion into neural signals. The distinction
between velocity-sensitive and acceleration-sensitive regimes suggests that while the
mechanical properties of the cupula, combined with canal geometry, enable the system
to function under a wide range of motion frequencies (Bronstein, Golding & Gresty
2013), it emphasises that what is sensed differs markedly across this parameter space.
This flexibility of sensing may be useful for maintaining balance and spatial orientation
across diverse locomotor activities (Golding & Gresty 2005, 2015).

Here, it is worth considering the distinction between the soft cupula (κ � 1) and stiff
cupula (κ � 1) regimes in terms of dimensional quantities. Recall that κ is defined as κ =
ET a/(Rμ), where T is the time scale for the head motion, a and R are respectively the
small and large radii defining the canals, and E is the cupula’s Young’s modulus. We see
that the soft cupula regime may be attained for fast movements (small T ), highly viscous
media (μ large) and of course soft cupulas in absolute terms (small E). The converse holds
for the stiff cupula regime. Inserting parameter values for a, R, E and μ into the transition
value predicted by our model, κc = 32π I4α0(β), we obtain a critical value

T = κcRμ

Ea
, (7.1)

which may be interpreted as a critical timescale of head motion below which the system
responds to angular velocity, and above which the system responds to angular acceleration.
Inserting typical values for a human adult, we compute a transition frequency of 0.27 Hz.
Interestingly, human experiments with controlled oscillation frequencies have reported
a maximum motion sickness when the frequency is approximately 0.2 Hz (Golding,
Mueller & Gresty 2001). Our analysis suggests an intriguing possible explanation for
this maximal sickness at intermediate frequencies: intermediate frequencies correspond
to motion for which the response of the cupular system follows neither the angular
acceleration nor velocity. The ‘neural mismatch’ hypothesis predicts that motion sickness
is induced in situations where there is a disagreement between visual or vestibular cues
and the information anticipated by the nervous system (Benson 1990). Since the vestibular
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system may be expected to provide information that matches neither the true acceleration
nor the true velocity around the transition point, we suggest that it may be the transition
point between small and large κ that causes motion sickness.

Evidence suggests that susceptibility to motion sickness peaks at a higher frequency for
animals smaller than humans Javid & Naylor (1999), Golding & Gresty (2016). Given the
preceding discussion, this is a little surprising: if we assume that the size scales of the
vestibular system scale in proportion, then (7.1) shows that the critical frequency should
remain the same. If the preceding hypothesis is correct, it would suggest that either the
material parameters of the cupula change or that some non-trivial allometric scaling of
the dimensions of the canal must occur. (We are unaware of any data on the allometric
scaling.)

In § 3.2, we also mentioned that in the transition region (when κ is nether large nor
small), the response develops an overshoot at the end of the manoeuvre: the deformation,
and hence a sensing signal persists after the motion has concluded. This feature
seems undesirable (the ‘neural mismatch’ hypothesis would predict a high likelihood of
experiencing motion sickness, as the vestibular input will disagree with the visual input),
but also in line with an everyday experience of dizziness.

A natural question to ask is whether a similar system could be conceived to detect linear
acceleration, rather than rotational motion. This might be expected, for instance, in the
limiting case where ε = 0, in which the velocity profile must remain exactly symmetric. In
this case, the dimensional cupular deflection can be expressed as

η̂∼ a2RΩ0/ν = ε2R3Ω0/ν→ 0, as ε→ 0 (7.2)

for fixed R (which must remain fixed to maintain physiological realism). Thus, in the limit
ε = 0, the semicircular canals become ineffective at detecting angular motion. Consistent
with this prediction of our model, linear motion of the head is indeed detected by a
different component of the vestibular system – the otolith organs – which rely on solid
inertia (Rabbitt et al. 2004).

Ageing significantly impairs balance and vestibular function, as evidenced by
widespread declines in vestibulo-ocular reflexes, hair cell counts and neural processing
with advancing age (Anson & Jeka 2016). While the hypothesis that cupular stiffening
contributes to vestibular decline is plausible, no direct physiological or medical evidence
currently links ageing to such mechanical changes. Instead, clinical data indicate that
balance deficits in older adults are more often driven by hormonal or neurochemical
modulation and sensory cell loss (Iwasaki & Yamasoba 2014 report 25 % fewer hair cells
in non-agenarians versus individuals in their 50s). Nonetheless, the idea of altered cupular
mechanics remains an interesting direction for future research, and the model we have
presented forms an attractive framework for investigating hypotheses and linking with
clinical observations.

From an engineering perspective, the insights gained from this study could
inform the design of biomimetic sensors, prosthetics and systems, for example, the
microelectromechanical systems prototype from Raoufi et al. (2019). For instance,
understanding the interplay between fluid dynamics and flexible structures in the
semicircular canals could inspire the development of flow sensors or inertial measurement
devices that mimic the sensitivity and robustness of the vestibular system, for instance,
biologically inspired inertial navigation systems. Additionally, the analytical framework
developed here could be extended to other biological systems involving thin fluid-filled
structures, such as the cochlea or cardiovascular vessels.

1022 A40-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
78

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10783


J. Chico-Vazquez, D.E. Moulton and D. Vella

7.2. Limitations and future directions
Our model has been based on a number of approximations that have facilitated the analysis
that we have presented here. Of these, perhaps the most important is our use of a disk-
shaped model of the cupula – this is mathematically convenient, but is likely to be an over-
simplification of the true geometry of the cupula (Selva et al. 2009). Related to the previous
point, the semicircular canals (SCCs) are modelled with circular cross-sections, although
anatomical observations indicate they are elliptical (Curthoys & Oman 1987). While the
leading-order equations can be readily adapted to more general cross-sectional geometries,
this is not straightforward at O(ε). At the same time, we note that our existing analysis
assumes that the cupula’s thickness is constant, but photographic evidence suggests this is
likely not the case (Rabbitt et al. 2004). In particular, the cupula seems to be thinner in the
centre and thicker towards the edge. Whilst this will influence the shape of the deflection
profile of the cupula, it is unlikely to give rise to new phenomena.

Another simplification in our model is that that the cupula is uniformly clamped to the
crista and canal walls. However, previous results based on this assumption required a very
small Young’s modulus, close to 5 Pa, to match experimentally observed deformations
(Selva et al. 2009). This is an extremely low value, perhaps indicating the softest material
in the human body, and is unrealistic when compared with other ‘soft’ biological tissues
(Goriely 2017). We suggest that this anomalous stiffness of the cupula may be a result of
the clamped boundary conditions on all sides of the cupula, as used here and as usual in
the vestibular literature (Rabbitt & Damiano 1992), may be incorrect; typical anatomical
drawings suggest that the cupula is only clamped on a part of its boundary and is free to
move on other regions of the boundary. This would increase the apparent flexibility of the
cupula, creating similar system behaviour without requiring an unusually small Young’s
modulus. Moreover, materials with similarly low Young’s moduli are often viscoelastic
(see, for example, hydrogels of Ahearne et al. 2005). Incorporating a viscoelastic term
into our linear model of cupular deformation is, in principle, straightforward. However,
the absence of specific data on the cupula and its material properties would significantly
complicate parameter tuning. Additionally, since the system already includes a source of
damping through fluid viscosity, disentangling the respective contributions of fluid and
solid damping would be non-trivial.

Our model may also allow for other phenomena within the vestibular system to be
investigated. An interesting avenue using the techniques developed here is the light
cupula phenomenon (see Lee et al. 2024, for a review of the concept), as well as related
concepts such as the buoyancy hypothesis to explain balance loss after alcohol intake
(Nieschalk et al. 1999). These essentially state that when alcohol is consumed, ethanol
diffuses faster into the cupula than the surrounding endolymph, changing their density
ratio (which, under normal functioning, is very close to one, so that the cupula is neutrally
buoyant). As ethanol is less dense than water, the cupula would then become negatively
buoyant, deforming differently than ordinarily and sending incorrect signals to the nervous
system. This can be accounted for in our model by including a buoyancy term so that
the cupula can float or sink through the endolymph. An analysis along these lines is
presented in Appendix G, where we show that even a small density change (of the order
of 1 %) might lead to a cupular deformation comparable to that induced by a rotation of
Ω0 ≈ 0.3 rad s−1 – this estimate suggests that alcohol intake may indeed lead to additional
cupular deflections (and hence, sensory mismatch) consistent with the observed effects of
alcohol on balance (Hegeman et al. 2010).
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Appendix A. Angular velocity of the SCC
We consider the motion of a (rigid-body) human standing vertically on a rotating object,
such that the person (and hence, the SCC) are not positioned on the axis of rotation. For
instance, we could have in mind being on a merry-go-round or going around a corner in a
vehicle (which are common situations that lead to motion sickness). In this appendix, we
show that the angular velocity of the SCC is the same as that of the rotating object.

The centre of the human head has position R(t)= Rer measured from the centre of the
rotating object (see figure 12). The human is rotating with angular velocity Ω(t)=Ω(t)ez
about this point, so that Ṙ = Ω × R. Then, Ṙ = RΩ eθ . Now, we consider a horizontal
semicircular canal, whose central location is at position R + r , where r is a position
vector from the centre of the head to the canal centre (see figure 12). We can write
r = r(cos ϕer + sin ϕeθ ) for some ϕ. If the body is rotating with the moving object, then
it is effectively rigid body rotation, so that ṙ = ϕ̇ = 0. Since the frame {er , eθ } rotates with
angular velocity Ω(t)ez , it follows that

ṙ =Ωez × r, (A1)

meaning that the vector r undergoes rotation with the same angular velocity as the rotating
object in which it sits. Similarly, if we define x as a vector pointing from the centre of
the semicircular canal to a point inside the canal (see figure 12), we have ẋ = Ω × x.
Writing the position of a part of the semicircular canal as measured from a lab frame as
p = R + r + x, we find

ṗ = Ṙ + ṙ + ẋ = Ω × p, (A2)

and hence, there is no additional linear velocity.
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Figure 13. Numerically obtained deformation of the solid material at t̂ = 0.25 s, normalised by the maximum
deformation. (a) Deformation along the direction perpendicular to the canal centreline (in the model’s
coordinate system, this is along r ). (b) Deformation in the direction parallel to the centreline (i.e. along z).
(c) Deformation at the centre of the cupula plotted as a function of the Young’s modulus. All deformations
shown have been averaged over the azimuthal direction θ .

Appendix B. On the deformation of the cupula
In this section, we discuss the details for the numerical simulations from figure 3 and
present a method to obtain a polynomial approximation for the deformation of the cupula.

B.1. Details for numerical solutions
The governing equations from § 2 were solved in COMSOL for different values of the
Young’s modulus. The equations were solved on a moving grid, without neglecting the
geometric nonlinearity and including the nonlinear terms in the Navier–Stokes equations.
As mentioned previously, the cupula is modelled as a full three-dimensional solid, without
assuming it is a thin structure and with a finite thickness, th .

In figure 13, we plot the deformation of the cupula, by showing the deformation of the
cupula in the direction normal to the flow (panel a) and the deformation of the cupula in
the direction along the flow (panel b). In the first case, we observe that the deformation
is large in the centre of the structure and zero on the edges, as expected, moreover, we
observe all curves collapse. This indicates the deformation regime is linear. In the second
plot, we see that the deformation only varies by approximately 2 % in the direction parallel
to the centreline. Again, this indicates the use of a depth-averaged measure for the cupula’s
deformation, i.e. η(r, t)= β−1 ∫ β/2

−β/2 ws(r, z, t) dz is appropriate. (The forcing used to
generate figure 13 is that given by (3.24).) Finally, we note that the magnitude of the
deformation is inversely proportional to the stiffness E , as can be seen in figure 13(c).

B.2. Solid deformation of non-slender cupulas
The cupula is a moderately thick elastic solid and, hence, we require a full linearly elastic
model to compute its deformation. Here, we compute the deformation of the cupula for
O(1) and O(ε), and compare our analytical approximation with a numerically obtained
deformation using the finite element method. The dimensionless equations for the solid
deformation in component form are

ε

κ

ρs

ρ

[
St
∂2us
∂t2 −Ω0T Ω(t)2 cos θ − 2StΩ0T Ω(t)

∂ws

∂t
cos θ

]

= 1
r

∂

∂r
(rτrr )+ 1

r

∂τrθ

∂θ
+ ∂τr z

∂z
− τθθ

r
, (B1a)
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ε

κ

ρs

ρ

[
St
∂2us
∂t2 +Ω0T Ω(t)2 sin θ + 2StΩ0T Ω(t)

∂ws

∂t
sin θ

]

= 1
r

∂

∂r
(rτrθ )+ 1

r

∂τθθ

∂θ
+ ∂τθ z

∂z
+ τrθ

r
, (B1b)

ε

κ

ρs

ρ

[
St
∂2ws

∂t2 + dΩ
dt

+ 2StΩ0T Ω(t)
(
∂us
∂t

cos θ − ∂vs

∂t
sin θ

)]

= 1
r

∂

∂r
(rτr z)+ 1

r

∂τθ z

∂θ
+ ∂τzz

∂z
, (B1c)

with the constitutive law,

τrr = λs
E

∇ · us + 2
μs

E

∂us
∂r
, τrθ = μs

E

(
1
r

∂us
∂θ

+ ∂vs

∂r
− vs

r

)
, (B2a)

τθθ = λs
E

∇ · us + 2
μs

E

1
r

(
∂vs

∂θ
+ us

)
, τr z = μs

E

(
∂us
∂z

+ ∂ws

∂r

)
, (B2b)

τzz = λs
E

∇ · us + 2
μs

E

∂ws

∂z
, τθ z = μs

E

(
1
r

∂vs

∂θ
+ ∂ws

∂z

)
, (B2c)

and boundary conditions,

τzz = 	p

2κ
, τr z = τθ z = 0, z = β/2, (B3a)

τzz = −	p

2κ
, τr z = τθ z = 0, z = −β/2, (B3b)

us = vs =ws = 0, r = a(0). (B3c)

For the purpose of computing the pressure difference across the cupula, it suffices to use
the equations for the solid deformation in cylindrical coordinates. The additional terms
due to the toroidal curvature can be shown to be ∝ sin θ or cos θ , and therefore do not
contribute to the flux when integrated over a cross-section. In this appendix, we will solve
the solid equations up to and including O(ε) using the polynomial method presented by
Barber (2010). To keep the algebra more palatable, we will take a(0)= 1 without loss of
generality, but results for important volume displacement coefficients α can be obtained
for general a(0) by multiplying by a(0)3.

B.2.1. Leading order solution
From lubrication theory, we know that 	p0 is a function of time only. Accordingly,
we seek an axisymmetric solution to the Navier equations, independent of θ . This is
an assumption of our model: although a spatially uniform pressure could, in principle,
generate circumferential instabilities such as wrinkling, we assume such effects do not
arise in this context. Moreover, since the precise attachment of the cupula to the canal
walls (and hence, the associated boundary conditions) remains poorly understood, our
assumption yields the simplest plausible solution that retains physiological realism. The
axisymmetric Navier equations to leading order are

0 = 1
r

∂

∂r
(rτrr0)+ 1

r

∂τrθ0

∂θ
+ ∂τr z0

∂z
− τθθ0

r
, (B4a)

0 = 1
r

∂

∂r
(rτr z0)+ 1

r

∂τθ z0

∂θ
+ ∂τzz0

∂z
, (B4b)
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with boundary conditions,

τzz0 = 	p0

2κ
, τr z0 = 0, z = β/2, (B5a)

τzz0 = −	p0

2κ
, τr z0 = 0, z = −β/2, (B5b)

us0 = vs0 =ws0 = 0, r = 1. (B5c)
Here, β = th/a is the dimensionless thickness of the cupula and κ = ET a/(Rμ) is the
relative stiffness for a cupula of arbitrary thickness. As this is an axisymmetric problem,
we take vs = 0. As the problem is linear, it suffices to solve it for 	p/κ = 1. We proceed
by using the technique from Barber (2010), writing potentials φ and ω as

φ0 =
5∑
j=1

A j Pj (r, z), ω0 =
4∑
j=1

Bj Pj (r, z), (B6)

where the harmonic polynomials are (Barber 2010)

P1(r, z)= z, P2(r, z)= (2z2 − r2)/2, P3(r, z)= (2z3 − 3zr2)/2,

P4(r, z)= (8z4 − 24z2r2 + 3r4)/8, P5(r, z)= (8z5 − 40z3r2 + 15zr4)/8.
(B7)

Following example 25.2.1 and Table 21.1 from Barber (2010), we compute the stresses
τrr0, τr z0, τzz0 and τθθ0, and formulate the (strong) boundary conditions at z = ±β/2, as
in the example. Instead of using simply supported boundary conditions at r = 1, we use
the following (weak) boundary conditions to fix the displacement at r = 1:∫ β/2

−β/2
us0(r = 1, z) dz =

∫ β/2

−β/2
zus0(r = 1, z) dz =

∫ β/2

−β/2
ws0(r = 1, z) dz = 0. (B8)

Following Barber (2010), we formulate a linear system of eleven equations for the nine
unknowns {A1, A2, A3, A4, A5, B1, B2, B3, B4}; however, these conditions are not all
independent: the coefficient matrix has rank 9, which allows us to solve for the unknowns
uniquely. Once the constants are known, we find the solution for the deformation profile,

η̄0(r; β)= 1
β

∫ β/2

−β/2
ws0(r, z; β) dz = 3

16
1 − ν2

s

β3 (1 − r2)2 + 1
20
(1 + νs)(12 − νs)

β
(1 − r2).

(B9)

The first term dominates for β → 0+ when the cupula is very thin and is exactly the
deformation profile for a thin clamped plate under uniform loading. The second term
dominates when the cupula is thick and β ∼ 1, leading to a quadratic deformation profile
for thick cupulas. Here, η̄(r; β) may be used to compute the coefficient α0(β),

α0(β)=
∫ 1

0
r η̄0(r; β) dr = 1 − ν2

s

32β3 + (12 − νs)(1 + νs)

80β
. (B10)

B.2.2. Comparison with numerics and thick cupula limit
In figure 14, we present numerically computed deformation profiles η∗(r), obtained using
COMSOL, for a range of dimensionless thicknesses β ∈ [0.04, 3]. The results reveal a
clear qualitative transition in the deformation behaviour. For small values of β (panel a),
corresponding to a thin cupula, the deformation resembles that of a clamped elastic plate,
exhibiting a characteristic fourth-order polynomial profile with vanishing radial slope at
the edge, i.e. dη/dr = 0. As the thickness increases, the profile progressively approaches
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Figure 14. (a) Numerically obtained cupular deformation η(r) for β < 0.5, scaled by deformation of a plate,
and plate deformation (black dashed line) for reference. (b) Numerically obtained cupular deformation η(r) for
β � 0.5, scaled by deformation of a plate, and the thick cupula limit (B15) (black dotted line) for reference.
Colour indicates the dimensionless thickness of the cupula for both panels.
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Figure 15. (a) Evolution of the maximum deformation (at r = 1) as a function of the thickness for numerically
obtained profiles (black markers), analytical solution obtained using weak boundary conditions (solid red line)
and composite solution obtained by summing the thin and thick cupula limits (dashed green line). (b) Relative
error between the weak boundary conditions and numerics (solid red line) and composite solution and numerics
(dashed green line).

a quadratic form, consistent with the analytical prediction given by (B9). In panel (a),
the deformation is non-dimensionalised using the plate scaling Et3

h/	p, while in panel
(b), it is scaled using the membrane-like scaling Eth/	p. To examine the influence of
thickness on the magnitude of deformation, figure 15(a) plots the maximum deformation
ηm(β)= η(r = 1, β) as a function of the dimensionless thickness β. The numerical results
(black markers) are compared with the analytical solution from Barber (2010) (solid red
line). For a thin cupula (β � 1), the numerical results exhibit the expected plate-like
scaling ηm ∼ β−3, while for a thick cupula (β � 1), the deformation follows the scaling
ηm ∼ β−1, consistent with the prediction from (B9). However, the agreement with the
analytical solution deteriorates for larger values of β, which can be attributed to the
weak enforcement of boundary conditions at r = 1. This discrepancy is quantified in
figure 15(b), where we plot the relative error between the analytical solution ηm and the
numerical result η∗

m (red line). The relative error remains small for β � 1, but exceeds
10 % for β > 1.

To improve our analytical solution for larger β � 1, we seek an averaged deformation
straight from the Navier equations. Starting from the axial stress balance,
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1
r

∂

∂r
(rτr z0)+ ∂τzz0

∂z
= 0, (B11)

we integrate from z = −β/2 to z = β/2, labelling 〈 f (r)〉 = β−1 ∫ β/2
−β/2 f (r, z) dz,

1
r

∂

∂r
(r〈τr z0〉)+ 	p0

βκ
= 0, (B12)

where we have used the boundary conditions for τzz at z = ±β/2. The averaged shear
stress is thus

τ
�

r z0
βκ

(B13)

and from the constitutive law, we find that

τ τ
μ μ

w wz z z
β

β
(B14)∂ ∂ ∂

where we have used symmetry of the displacing mode to cancel the us terms. Thus, using
the zero displacement condition ws(r = a0)= 0, we obtain

η0(r)= w̄s(r)= E	p0

4μsβκ

(
a2

0 − r2)= 	p0(1 + νs)

2βκ

(
a2

0 − r2), (B15)

where we observe the required scaling β−1 from figure 15. Comparing this result with the
large β limit of (3.5),

η̄0(r)∼ 1
20
(12 − νs)(1 + νs)

β

(
a2

0 − r2), (B16)

we see that they differ by a factor of (12 − νs)/20 ≈ 0.57 versus 1/2. This is because
we are only enforcing boundary conditions in the weak sense at r = a0, which is a good
approximation for β � 1, but looses accuracy for thicker cupulas. Hence, an argument
could be made that a better solution to the leading order solid problem is actually

η0(r)= 3
16

(
1 − ν2

s

)
β3

(
a2

0 − r2)2 + 1 + νs

2β

(
a2

0 − r2), (B17)

as it agrees better with the numerics (see figure 15, dashed green line) and has the correct
asymptotic dependence (and not just the scaling) for both β � 1 and β � 1.

B.2.3. First-order solution
The first-order problem for τ 1(r, θ, z, t) is

ε

κ

ρs

ρ

[−Ω0T Ω(t)2 cos θ
]= 1

r

∂

∂r
(rτrr1)+ 1

r

∂τrθ1

∂θ
+ ∂τr z1

∂z
− τθθ1

r
, (B18a)

ε

κ

ρs

ρ

[
Ω0T Ω(t)2 sin θ

]= 1
r

∂

∂r
(rτrθ1)+ 1

r

∂τθθ1

∂θ
+ ∂τθ z1

∂z
+ τrθ1

r
, (B18b)

ε

κ

ρs

ρ

[
dΩ
dt

]
= 1

r

∂

∂r
(rτr z1)+ 1

r

∂τθ z1

∂θ
+ ∂τzz1

∂z
, (B18c)

with boundary conditions,

τzz1 = 	pouter
1 (t)

2κ
+ 	pBL

1 (r, t)

2κ
, τr z1 = 0, z = β/2, (B19a)
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τzz1 = −	pouter
1 (t)

2κ
− 	pBL

1 (r, t)

2κ
, τr z1 = 0, z = −β/2, (B19b)

us1 = vs1 =ws1 = 0, r = 1. (B19c)

The Navier equations at this order have a conservative body force that may be written as
the gradient of the following potential:

V (r, θ, z, t)= Veuler(z, t)+ Vcentrifugal(r, θ, t),

Veuler(z, t)= − ρs

ρκ
Ω̇(t)z, Vcentrifugal(r, θ, t)= ρsΩ0T

κρ
Ω(t)2r cos θ.

(B20)

We first consider the solution for 	pBL
1 = 0. To this end, we introduce three pairs of

potentials: {φu1 , ωu
1} to deal with 	pouter

1 (this is the same as the leading order problem),
{φe1, ωe

1} an axisymmetric potential to deal with Veuler and {φc1, ωc
1}, a non-axisymmetric

potential to deal with Vcentrifugal. The potentials for Veuler and Vcentrifugal are used with
homogeneous boundary conditions, and we use weak boundary conditions on r = a as in
the leading order problem:∫ β/2

−β/2
us1(r = 1, z) dz =

∫ β/2

−β/2
zus1(r = 1, z) dz =

∫ β/2

−β/2
ws1(r = 1, z) dz = 0. (B21)

Therefore, we may recycle the leading order solution for {φu1 , ωu
1}, giving us

ηu1(r, t)=
	p1(t)

κ
η̄0(r; β). (B22)

Barber (2010) shows that for a conservative body force, a potential φ must satisfy ∇2φ =
(1 − 2νs)V/(1 − νs), from where we deduce particular solutions for φe1 and φc1, which
allows us to write

φe1 = − ρs

ρκ

(1 − 2νs)
1 − νs

Ω̇(t)
z3

6
+

5∑
j=1

A j Pj (r, z), ωe
1 =

4∑
j=1

Bj Pj (r, z). (B23)

Using the strong and weak boundary conditions to formulate a linear system for the nine
constants, we find

ηe1(r, z, t)= 1
β

∫ β/2

−β/2
we
s1(r, z, t) dz = ρs

ρκ
Ω̇(t)η̄e1(r), (B24a)

η̄e1(r)=
1
20
(12 − νs)(1 + νs)(1 − r2)+ 3

16
(1 − ν2

s )

β2 (1 − r2)2, (B24b)

αe1(β)=
∫ 1

0
r η̄e1(r; β)dr = (1 − ν2

s )

32β3 + (12 − νs)(1 + νs)

80β
. (B24c)

The solution for Vcentrifugal is more convoluted, as it involves a non-axisymmetric
deformation. Although it is possible to find the deflection, it is sufficient for us to
note that the solution is of the form wc

s1, u
c
s1, τ

a
rr1, τ

c
θθ1, τ

c
zz1, τ

c
r z1 ∼ cos θ and vcs1, τ

c
rθ1,

τ cθ z1 ∼ sin θ . Therefore, we have

ηc1(r, θ, t)=
1
β

∫ β/2

−β/2
wc
s1(r, θ, z, t) dz = ρsΩ0T

ρκ
Ω(t)2η̄c1(r) cos θ (B25)
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for some function η̄c1(r). The contribution to the flux is thus

Qc
1 =

∫ 2π

0

∫ 1

0
rηc1(r, θ, t) dr dθ ∼

∫ 2π

0
cos θ dθ = 0. (B26)

Therefore, the non-axisymmetric solution does not contribute to the fluid–solid coupling.
Cupular deflection due to the boundary layer pressure jump. In Appendix F, we

show the pressure jump due to the presence of a cupular boundary layer is of the form

	pBL
1 (r, t)= f1(t)g1(β)Re

{ ∞∑
n=1

Ān J0(μnr)

}
, (B27)

where the complex eigenvalues satisfy J2(μn)J0(μn)− J1(μn)
2 = 0, and the constants Ān

are independent of t and β (for details, see Appendix F). The precise functional form of
f1(t) and g1(β) is not relevant here, as the solid problem is linear, so it suffices to solve
the problem for η̄BL

1n (r; β) with boundary condition

τzz|z=−β/2 = J0(μnr), (B28)

and the full solution can be obtained by invoking superposition,

ηBL
1 (r, t; β)= f1(t)g1(β)Re

{ ∞∑
n=1

Ān η̄
BL
1n (r; β)

}
. (B29)

An approach using potentials to account for the cupular thickness is complicated for this
radially dependent pressure jump, but motivated by the success of the artificial solution in
Appendix B.2.2, we may solve the problem in the β � 1 and β � 1 limits, and obtain an
approximate solution for arbitrary thickness by combining both solutions. The thin-cupula
regime is given by a plate equation, which under our dimensionless variables reads

β3

12(1 − ν2
s )

1
r

d
dr

(
r

d
dr

[
1
r

d
dr

(
r

dη̄BL
1

dr

)])
= J0(μnr), (B30)

which has a clamped (η= dη/dr = 0 at r = 1) solution:

η̄BL
1n (r; β)=

12(1 − ν2
s )

β3

[
(r2 − 1)J1(μn)

2μ3
n

+ 1
μ4
n
(J0(μnr)− J0(μn))

]
. (B31)

In the thick cupula regime, following § B.2.2, we have

1
r

∂

∂r

(
r τ̄BL

r z1

)
+ J0(μnr)

β
= 0, =⇒1

r

∂

∂r

(
r
∂η̄BL

1n
∂r

)
= − E

μsβ
J0(μnr), (B32)

with solution

η̄BL
1n (r; β)=

2(1 + νs)

βμ2
n

[J0(μnr)− J0(μn)] . (B33)

Therefore, we may write the solution for ηBL
1 (r, t; β) by combining the thin and thick

cupula solutions additively:
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ηBL
1 (r, t; β)= f1(t)g1(β)η̄

BL
1 (r; β),

η̄BL
1 (r; β)= 12(1 − ν2

s )

β3 η̄
BL,thin
1 (r)+ 2(1 + νs)

β
η̄

BL,thick
1 (r),

η̄
BL,thin
1 (r)= Re

{ ∞∑
n=1

Ān

[
(r2 − 1)J1(μn)

2μ3
n

+ 1
μ4
n
(J0(μnr)− J0(μn))

]}
,

η̄
BL,thick
1 (r)= Re

{ ∞∑
n=1

Ān

μ2
n

[J0(μnr)− J0(μn)]

}
.

(B34)

More importantly, the coefficient αBL
1 (β)= ∫ 1

0 r η̄BL
1 (r)dr is

αBL
1 (β)= 12(1 − ν2

s )

β3 α
BL,thin
1 + 2(1 + νs)

β
α

BL,thick
1 ,

α
BL,thin
1 = Re

{ ∞∑
n=1

Ān

[
J2(μn)

2μ4
n

− J1(μn)

8μ3
n

]}
≈ 0.00408,

α
BL,thick
1 = Re

{ ∞∑
n=1

Ān
J2(μn)

2μ2
n

}
≈ 8.5525 × 10−9,

(B35)

where we have used the Ān computed in Appendix F to compute αBL,thin
1 and αBL,thick

1 .

Appendix C. Numerical procedure for integro-differential equations
When the Stokes number of the flow is no longer negligible, the deformation of the
cupula satisfies (5.7), which is a Volterra integro-integral equation (Polianin & Manzhirov
1998), and so may be solved numerically using the trapezoidal method. For small values
of the Stokes number, this solution procedure requires an increasingly fine temporal
discretisation, making the problem computationally intensive. Therefore, an alternative
numerical scheme is required.

Integral equations with exponential kernels can be transformed into systems of ODEs
by introducing additional variables (Wazwaz 2011); although the kernel K(x, St) in (5.7)
is not strictly exponential, it may be seen as a linear combination of exponential Kernels.
To this end, we may define a sequence of auxiliary variables

zn(t)= 1
Stλ2

n

∫ t

0

(
Ω̇(t)+ 1

2π
	p0

)
e−λ2

n(t−τ)/St dτ, n = 0, . . . , N − 1. (C1)

Upon truncation of the infinite series, (5.7) reads

α0(β)
1
κ

d	p0

dt
= −2

N−1∑
n=0

zn. (C2)

Considering (dzn/dt) and differentiating under the integral sign, we find that

1
κ

dzn
dt

= 1
Stλ2

n

(
Ω̇(t)+ 1

2π
	p0

)
− λ

2
n

St
zn. (C3)

Therefore, we have a system of N + 1 differential equations for the N + 1 unknowns,
which may be solved efficiently for any value of the Stokes number.
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Appendix D. Laplace transform approach for finite Stokes number
The general equation determining the shape of the cupular deflection is (5.4), which we
Laplace transform in time to obtain∫ a0

0
rσ η̃0dr = −2a(s)2

1
St

∞∑
n=1

1
λ2
n

(
Ω̃(σ )σ + ∂ p̃0

∂s

)
1

σ + λ2
n/(a

2St)
, (D1a)

η̃0(r, σ )=	 p̃0(σ )/κη̄0(r). (D1b)

(Here ,the convolution theorem has been used to compute the transform of the convolution
integral.) We may now isolate the pressure gradient in the first equation as it may be
factored out of the sum

Ω̃(σ )σ + ∂ p̃0

∂s
= − Stσ

2a2

∫ a0

0
r η̃0 dr

1∑∞
n=1 λ

−2
n
(
σ + λ2

n/(a
2St)

)−1 . (D2)

Hence, after integrating along the length of the duct,

2πΩ̃(σ )σ +	 p̃0 = −σ
2

∫ a0

0
r η̃0 dr

∫ 2π

0

ds

a(s)4
∑∞

n=1 λ
−2
n
[
a(s)2Stσ + λ2

n

]−1 . (D3)

Substituting the pressure jump using (D1b) leads to a single equation for 	 p̃0,

2πΩ̃(σ )σ +	 p̃0 = −σ
2
α0(β)	 p̃0

κ

2π

K̃(σ ; St) , (D4)

where the transformed kernel is

K̃(σ ; St)= 2π

(∫ 2π

0

ds

a(s)4
∑∞

n=1 λ
−2
n
[
a(s)2Stσ + λ2

n

]−1

)−1

, (D5)

and α0(β) is given in (3.15). Multiplication by the transformed kernel, followed by the
inversion of the transform and the application of the convolution theorem, leads to

1
κ
α0(β)

d	p0

dt
= −2

∫ t

0

(
Ω̇(τ )+ 1

2π
	p0(τ )

)
K(t − τ ; St) dτ, (D6)

where K(t; St)=L−1[K̃(σ ; St)] is the kernel.
This calculation is crucial because it systematically reduces the governing equation

for the cupular deflection into a solvable integral equation by leveraging the Laplace
transform. By transforming the original time-dependent equations, the problem is
converted into an algebraic form where the pressure gradient can be explicitly isolated
and integrated in space to obtain the pressure jump. Furthermore, inverting the transform
and applying the convolution theorem ultimately yields an explicit time-domain equation
governing the evolution of η0. This final equation is particularly useful, as it expresses
the cupular deflection in terms of a convolution integral. This approach allows for the
computation of the solution in arbitrary domains, linking the problem to that solved in a
simpler domain via the transformed kernel.

Appendix E. A thick cupula experiences a first-order correction
We can estimate the effect of the cupula’s thickness on the leading order pressure jump by
removing the cupula from the integrations along the duct. In particular, the pressure jump
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is now defined as

	p =
∫ 2π−εβ/2

εβ/2

∂p

∂s
ds = p(s = 2π − εβ/2)− p(s = εβ/2), (E1)

where β = th/a is the dimensionless cupular thickness. We treat εβ as its own asymptotic
scale in the expansion, so that 	p0 = ∫ 2π−εβ/2

εβ/2 (∂p0/∂s) ds and similar for higher order,
without considering the integration bounds for the asymptotic series. We show here the
modifications for the leading order problem for 	p0(t). Equation (3.11a) is modified to

Ĩ4Q0 = −π
8
(Ω̇(t)(2π − εβ)+	p0). (E2)

The remainder of the calculation is the same as in the main text, leading to an alternate
form for (3.16a),

α

κ

d	p0

dt
= − 1

16 Ĩ4
(Ω̇(t)(2π − εβ)+	p0). (E3)

Hence, we have obtained (slightly) modified reduced order equations for the pressure
jump that account for the cupular thickness, εβ, and we still find the correction vanishes,
	p1(t)= 0.

Appendix F. Boundary layer calculation
Close to the cupula, the leading order velocity field w0 (a quadratic in r ) has to adjust to
the axially averaged profile of the cupula, ∂η/∂t . This gives rise to a boundary layer close
to the cupula, first studied by Damiano & Rabbitt (1996). The pressure gradient required
to adjust to the cupular flow profile in a distance ∼ ε gives rise to an O(ε) correction to
the pressure jump.

Here, we present a simpler method for obtaining the correction due to the boundary
layer when St � 1. We introduce rescaled arc length coordinates S+ = ε−αs and S− =
ε−α(s − 2π) (on one side of the cupula, S+ � 0, while, on the other, S− � 0). Following
Damiano & Rabbitt (1996), we find the distinguished limit for α = 1. For notational
convenience, we use the letter S to refer to S± interchangeably; the boundary layer
equations will be identical and the context makes it clear which we mean. For example,
taking the limit as S → ∞ means S+ → ∞, and conversely S → −∞ means S− → −∞.
We either focus on the case of a perfect torus or locate the cupula at the point of
maximum enlargement of the canal. Under those conditions, a(s)= a(0)+O(ε2) close
to the cupula, so that the canal radius changes slowly. For the purpose of this calculation,
we take a(0)= 1 without loss of generality. Moreovoer, we consider a thin cupula β → 0,
so that the matching conditions simplify

w0(r, s = εβ + δη, t)=w0(r, s = 2π − εβ + δη, t)=
∫ β/2

−β/2
∂ws0

∂t
(r, z, t) dz = ∂η

∂t

=⇒w0(r, s = 0, t)=w0(r, s = 2π, t)= ∂η

∂t
, (F1)

where we have used δ = a2Ω0/ν� 1 and εβ → 0 (if the latter is not satisfied, it is
not a problem for the leading order computation that follows, as we only consider the
leading order equations). We further note that for consistency with the weak boundary
conditions used to obtain the solid solution, the matching involves axially averaged solid
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deformations. Similarly, for the radial velocity,

u0(r, s = 0, t)= u0(r, s = 2π, t)=
∫ β/2

−β/2
us0(r, z, t) dz = 0. (F2)

The scalings for the boundary layer are

u = 1
ε
(U0(r, θ, S, t)+ εU1(r, θ, S, t)+ · · ·),

v = 1
ε
(V0(r, θ, S, t)+ εV1(r, θ, S, t)+ · · ·),

w= W0(r, θ, S, t)+ εW1(r, θ, S, t)+ · · ·,
p = P0(r, θ, S, t)+ εP1(r, θ, S, t)+ ε2P2(r, θ, S, t)· · ·.

(F3)

The ε−1 scaling for the cross-sectional velocities is informed by the continuity (2.9). We
will focus on the leading order matching, for which we require the following matching
between layers for the velocities

lim
S±→±∞

U0(r, S, t)= 0, lim
S±→±∞

V0(r, S, t)= 0, (F4)

lim
S±→±∞

W0(r, S, t)=w0(r, s = 0, t)= π

2I4a(0)4

[
Ω̇(t)+ 	p0

2π

] (
a(0)2 − r2). (F5)

Substituting (F3) into (2.10), we find that the O(ε−1) equations, ∂r P0 = ∂θ P0 = ∂S P0 = 0,
imply that the pressure is spatially constant across the boundary layers and, in particular,

P0(S
+ = 0, t)= P0(S

+ = ∞, t)= p0(s = 0, t), (F6a)

P0(S
− = 0, t)= P0(S

− = −∞, t)= p0(s = 2π, t), (F6b)

and, in particular, the leading order pressure jump is the same, i.e. 	P0(t)= P0(S− =
0, t)−	P0(S+ = 0, t)=	pouter

0 (t), in agreement with Damiano & Rabbitt (1996).

F.1. Boundary layer equations
At the following order, substitution of (F3) into the Navier–Stokes equations (2.10) after
incorporating the identically zero term ∇(∇ · u) yields (see Damiano & Rabbitt 1996,
where the equations are given with different scalings)

0 = 1
r

∂

∂r
(rU0)+ 1

r

∂V0

∂θ
+ ∂W

∂S
, (F7a)

∂P1

∂r
= 1

r

∂

∂r

(
r
∂U0

∂r

)
+ 1

r2
∂2U0

∂θ2 + ∂2U0

∂S2 − 2
r2
∂V0

∂θ
− U0

r2 , (F7b)

1
r

∂P1

∂θ
= 1

r

∂

∂r

(
r
∂V0

∂r

)
+ 1

r2
∂2V0

∂θ2 + ∂2V0

∂S2 + 2
r2
∂U0

∂θ
− V0

r2 , (F7c)

Ω̇(t)+ ∂P1

∂S
= 1

r

∂

∂r

(
r
∂W0

∂r

)
+ 1

r2
∂2W0

∂θ2 + ∂2W0

∂S2 . (F7d)

We recognise the Stokes equations in cylindrical coordinates. As the outer
solution is axisymmetric, we seek an axisymmetric boundary layer velocity profile,
with V0 = 0 and ∂θ = 0 for all other variables. We remove the inhomogeneous
S → ±∞ matching by introducing W̄0 = W0 −w0(r, s = 0, t)= W0 + (1/4)(Ω̇(t)+
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∂p/∂s|s=0)(a(0)2 − r2), so that the axial momentum (F7d) reads

− ∂p

∂s

∣∣∣∣
s=0

+ ∂P1

∂S
= 1

r

∂

∂r

(
r
∂W̄0

∂r

)
+ ∂2W̄0

∂S2 . (F8)

The conditions at the wall of the cupula transform to

W̄0(r, S = 0, t)= ∂η0

∂t
−w0(r, s = 0, t), U0(r, S = 0, t)= 0, (F9)

alongside homogeneous matching conditions, W̄0,U0 → 0 as S → ±∞. It is convenient
to introduce a Stokes streamfunction ψ(r, S, t) such that (Davis 1990)

U0 = −1
r

∂ψ

∂S
, W̄0 = 1

r

∂ψ

∂r
, (F10a)

L−1(L−1ψ)= 0, (F10b)

L1 = ∂2

∂r2 − 1
r

∂

∂r
+ ∂2

∂S2 , (F10c)

with L−1 sometimes known in the literature as the Stokes operator (Payne & Pell 1960).

F.2. Eigenfunction expansion
Seeking a separable solution of (F10b) that decays as |S| → ∞ of the form ψ(r, S)=
ψn(r)e−±μn S , we find a family of solutions which satisfies the no-slip condition ψ =
∂rψ = 0 at the walls, r = 1, while (ψ/r) and (∂rψ/r) are bounded as r → 0. Katopodes,
Davis & Stone (2000) computed these functions:

ψn(r)= J2(μn)

2μn

[
r J1(μn)

J1(μn)
− r2 J2(μnr)

J2(μn)

]
, (F11)

where the eigenvalues μn ∈C are solutions of the transcendental equation located in the
first quadrant (see Davis 1990; Katopodes et al. 2000, for details),

J1(μn)
2 = J0(μn)J2(μn), (F12)

and we express the streamfunction ψ as a superposition of eigenfunctions,

ψ±(r, S, t)= Re

{ ∞∑
n=0

An(t; β)ψn(r)e
∓μn S

}
, (F13)

where Re{·} denotes the real part and An(t; β) ∈C. We can determine the coefficients by
enforcing the velocities at the cupula are as required:

U0(r, S = 0, t)= −1
r

∂ψ

∂S
= ∓Re

{ ∞∑
n=0

μn An(t)
ψn(r)

r

}
= 0, (F14a)

W̄0(r, S = 0, t)= 1
r

∂ψ

∂r
= Re

{ ∞∑
n=0

An(t)
ψ ′
n(r)

r

}
= ∂η0

∂t
−w0(r, s = 0, t). (F14b)

F.3. Boundary layer forcing
Before computing the An(t), it is informative to write the forcing in (F14b) as

∂η0

∂t
−w0(r, s = 0, t)= d	p0

dt
η̄0(r)

κ
−w0(r, s = 0, t). (F15)
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Substituting d	p0/dt from (3.16a), then (F15) simplifies to

η̄0(r)

κ

κ

16I4α0(β)
(2πΩ̇(t)+	p0)− π

2I4a(0)4

[
Ω̇(t)+ 	p0

2π

]
(a(0)2 − r2)

= π

2I4

(
Ω̇(t)+ 	p0

2π

) [
η̄0(r; β)
4α0(β)

+ 1
a(0)4

(
r2 − a(0)2

)]≡ f1(t) f2(r) f3(β, νs).

(F16)

This means we have decomposed ∂η/∂t −w0(r, s = 0, t)= f1(t) f2(r) f3(β, νs) multi-
plicatively in a fashion that is valid for all values of the relative stiffness κ , with

f1(t)= π

2I4

(
Ω̇(t)+ 	p0

2π

)
, (F17a)

f2(r)= 1 − 4r2 + 3r4, (F17b)

f3(β, νs)= 5(1 − νs)

4β2(12 − νs)+ 10(1 − νs)
, (F17c)

where we have used the solution for using the solution for η̄0(r; β) from Appendix B.2.

F.4. Computation of coefficients
The above-mentioned decomposition and the linearity of the Stokes equations implies that
it suffices to compute the coefficients An(t; β) once say for f1(t)= 1 and f3(β, νs)= 1,
obtaining Ān . The coefficients for other values of f1(t) and f3(β, νs) are simply An(t)=
f1(t) f3(β, νs) Ān , where

∞∑
n=1

Ān
ψ ′
n(r)

r
= f2(r)= 1 − 4r2 + 3r4. (F18)

For convenience, we can integrate (F18) once in r to obtain

∞∑
n=1

Ānψn(r)= −
∫ 1

r
r f2(r) dr = +1

2
r2(1 − r2)2

. (F19)

To avoid the convergence issues associated with biorthogonality relationships as discussed
by Spence (1983), we find Ān by evaluating (F14a) and (F19) at a discrete set of points
and performing a linear regression for Ān ∈C. Details for the least squares fit and the
convergence of Ān are given in figure 16(a,b) for a representative fit where the series are
truncated at N = 20. We remark that the coefficients are the same for either side of the
cupula and for any value of the thickness β.

F.5. Boundary layer pressure contribution
Once they have been obtained, we can compute the axial velocity at either side of the
cupula as

W̄±
0 (r, S, t)=

1
r

∂ψ±

∂r
= 1

r
Re

{ ∞∑
n=1

An(t)ψ
′
n(r)e

∓μn S

}
. (F20)
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Figure 16. (a) Least squares error for (F14a) and (F19), with the series truncated at N = 20. (b) Convergence
of the coefficients an and bn . (c) Plot of 	pBL

1 (r) as given in (F28) for f1(t)= g1(β)= 1.

Substitution into (F8) yields (Davis 1990)

− ∂p

∂s

∣∣∣∣
s=0

+ ∂P±
1

∂S
= 1

r

∂

∂r

(
L−1ψ

±)= Re

{ ∞∑
n=1

An(t)e
∓μn SΓn(r)

}
,

Γn(r)≡ 1
r

(
ψ ′′′
n (r)−

ψ ′′
n (r)

r
+ ψ ′

n(r)

r2 +μ2
nψ

′
n(r)

)
.

(F21)

Computing Γn(r) and simplifying using the recurrence relation for Bessel functions,
J2(z)= 2/z J1(z)− J0(z), we find

Γn(r)= −μn J0(μnr). (F22)

Following Damiano & Rabbitt (1996), we define 	P1(r, |S|, t)= P1(r, S−, t)−
P1(r, S+, t), so that integrating (F21) and subtracting

	P1(r, |S|, t)−	P1(r, |0|, t)= −2Re

{ ∞∑
n=1

An(t)

μn
(1 − e−μn |S|)Γn(r)

}
. (F23)

The variable of interest here is 	P1(r, |0|, t), as this is the O(ε) pressure jump across the
cupula and will thus induce a similarly sized correction to its deformation. To isolate it,
we take the limit |S| → ∞, yielding

	P1(r, |∞|, t)−	P1(r, |0|, t)= −2Re

{ ∞∑
n=1

An(t)

μn
Γn(r)

}
. (F24)

We identify 	P1(r, |∞|, t) as the pressure jump from the outer flow, namely

	P1(r, |∞|, t)≡	pouter
1 (r, t)=

∫ 2π−εβ/2

εβ/2

∂p1

∂s
ds, (F25)

which is in fact a function of t only. Therefore, the first-order pressure jump across the
cupula is

	p1(r, t)=	P1(r, |0|, t)=	pouter
1 (t)+ 2Re

{ ∞∑
n=1

An(t)

μn
Γn(r)

}
(F26)

=	pouter
1 (t)+ 2 f1(t) f3(β, νs)Re

{ ∞∑
n=1

Ān

μn
Γn(r)

}
=	pouter

1 (t)+	pBL
1 (r, t),

(F27)
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with the boundary layer contribution to the pressure jump,

	pBL
1 (r, t)= − π

I4

(
Ω̇(t)+ 	p0

2π

)
f3(β, νs)Re

{ ∞∑
n=1

Ān J0(μnr)

}
. (F28)

Therefore, we find an r -dependent correction to the cupular pressure jump, and we give a
plot of this r dependence in figure 16(c), where we can see	pBL

1 is positive (compressive)
in the centre of the cupula and negative (tensile) in regions close to the canal walls. The
total pressure jump across the cupula up O(ε2) is thus

	p =	p0(t)+ ε	pouter
1 (t)− ε

π

I4

(
Ω̇(t)+ 	p0

2π

)
f3(β, νs)Re

{ ∞∑
n=1

Ān J0(μnr)

}
,

(F29)

where the leading order pressure jump satisfies (E3), repeated here for convenience,

α0

κ

d	p0

dt
= − 1

16 Ĩ4
(Ω̇(t)(2π − εβ)+	p0). (F30)

It may be seen that f3(β, νs)∝ 1/β2 as β → ∞, so that the correction due to the presence
of the boundary layer decreases in magnitude as the thickness is increased. This is because
the deformation profile η0(r, t) of the cupula is a quadratic in r for large β and due to the
kinematic condition, it must be the same quadratic as the leading order outer floww0(r, t),
so that there is no adjustment to the flow close to the cupula. Conversely, the correction
will be greatest for a thin cupula (β � 1), when the leading order deformation profile is a
quartic in r , inconsistent with the outer flow.

Appendix G. Light cupula hypothesis/buoyant cupula
The body force due to gravity is f =	ρg, where 	ρ = ρs − ρ, so that the vectors f and
g have the same sense when the cupula is heavier than the surrounding endolymph (i.e.
	ρ > 0). For a stationary human (Ω̂(t̂)≡ 0), the leading order solid problem is

0 =	ρg + ∇ · τ̂ . (G1)

Therefore, the deflection will scale as ûs ∼ a2	ρg cosΦ/E , with Φ the angle between
the normal vector to the cupula’s flat faces and gravity (i.e. g cosΦ = g · ez). When
we compare this to the rotation-induced deflection (which is highest when κ � 1) of
characteristic size a2RΩ0/ν, we find that the ‘equivalent rotation rate’ for a density change
of size 	ρ is

Ω0 ∼ 	ρ

ρ

μg

ER
cosΦ. (G2)

For a conservative estimate 	ρ cosΦ/ρ of 1 %, we find Ω0 ≈ 0.3 rad · s−1 for
characteristic values of μ= 10−3 kg · m−1 · s−1, g = 9.81 m · s−1, R = 1.6 × 10−3 m and
E = 20 Pa.

The full solution to (G1) may be found using the techniques from Appendix B.2. In
particular, the deformation will have a radially symmetric component in the vertical
direction of the same form as ηe

1(r, t), and a component ∼ cos θ which does not contribute
to the flux computation.
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