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Abstract. We characterize the pairs of operator spaces that occur as pairs of
Morita equivalence bimodules between non-selfadjoint operator algebras in terms of
the mutual relation between the spaces. We obtain a characterization of the operator
spaces which are completely isometrically isomorphic to imprimitivity bimodules
between some strongly Morita equivalent (in the sense of Rieffel) C*-algebras. As
corollaries, we give representation results for such operator spaces.

2000 Mathematics Subject Classification. Primary 47L25; Secondary 47L30, 46L07.

1. Introduction and preliminaries. The notion of Morita equivalence is funda-
mental in both Algebra and Analysis. This notion entered the Theory of Operator
Algebras with Rieffel’s paper [5]. In that work, Rieffel defined Morita equivalence
for C*- and W*-algebras and proved various results concerning these notions. After
the formulation of the theory of (abstract) operator spaces (see [4] for a survey and
references), this notion was generalized [2] for non-selfadjoint operator algebras and
obtained an important place in the theory. In this paper we give a characterization of
those pairs ðX;Y Þ of operator spaces, which occur as pairs of Morita equivalence
bimodules between non-selfadjoint (approximately unital) operator algebras, in terms
of the mutual relation between the spaces X and Y. We specialize our result to obtain a
characterization of the operator spaces which are completely isometrically iso-
morphic to imprimitivity bimodules between stronglyMorita equivalent (in the sense of
Rieffel [5]) C*-algebras. We call these (abstract) operator spaces ternary operator sys-
tems. The Banach space analogue of these spaces, known as ternary C*-rings have been
studied by Zettl [6] and others. Our result is an operator space version of an implicit
characterization of the imprimitivity bimodules between C*-algebras up to a Banach
space isometry, contained in [6]. According to our result, additional conditions must
be imposed on an operator space which is also a ternary C*-ring, in order to be com-
pletely isometric to a Morita equivalence bimodule between some C*-algebras. Thus, the
similarity beween ternary C*-rings and ternary operator systems is the associativity
property of the triple product; the difference is that the ‘‘C*-condition’’ for a ternary
operator system takes into account its operator space structure as well (see Definition 4).

Finally, we point out versions of the Representation Theorem of [6] for the case
of a ternary operator system.

In order to state and prove our results, we recall some notions and notation. We
have as a main reference the monograph [4]. An operator space is a Banach space X
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endowed with a sequence of norms on the linear space MnðX Þ of n � n matrices with
entries in X for which the (left and right) actions of MnðCÞ on MnðX Þ are contractive
and the norm of a direct sum of two matrices equals the maximum of their norms. A
map ’ : X�!Y between the operator spaces X and Y is said to be completely boun-
ded (contractive, isometric), if the map ’n : MnðX Þ�!MnðY Þ given by
’nððxijÞÞ ¼ ð’ðxijÞÞ (where ðxijÞ 2 MnðX Þ) is bounded (contractive, isometric) for each
n 2 N and k’kcb ¼ supn2N k’nk is finite. If x ¼ ðxijÞ; y ¼ ð yijÞ 2 MnðX Þ, then we let
x 	 y ¼ ð

P
k xik 
 ykjÞi;j 2 MnðX 
 Y Þ. If an operator space X is an A;B-bimodule,

where A and B are algebras, we define a 	 x ¼ ð
P

k aik � xkjÞi;j and x 	 b ¼

ð
P

k xik � bkjÞi;j, where a ¼ ðaijÞ 2 MnðAÞ and b ¼ ðbijÞ 2 MnðBÞ. The Haagerup tensor
product of the operator spaces X and Y can be described by defining a norm k � kn on
MnðX 
 Y Þ by setting

kUkn ¼ inffkxkkyk : U ¼ x 	 y; x 2 Mn;pðX Þ; y 2 Mp;nðY Þ; p 2 Ng

for each U 2 MnðX 
 Y Þ and n 2 N and letting X 
h Y be the completion of X 
 Y
with respect to k � k1. The Haagerup tensor product is associative. Moreover, if
X1;X2;Y1 and Y2 are operator spaces and f1 : X1 ! Y1 and f2 : X2�!Y2 are com-
pletely bounded maps, then there is a unique completely bounded map f1 
 f2 :
X1 
h X2�!Y1 
h Y2 such that f1 
 f2ðx1 
 x2Þ ¼ f1ðx1Þ 
 f2ðx2Þ, x1 2 X1, x2 2 X2.
We have that k f1 
 f2kcb � k f1kcbk f2kcb. Each multilinear completely bounded map
from the direct product of several operator spaces into an operator space can be
linearized through the Haagerup tensor product of its domain spaces (see [3] for the
theory of multilinear completely bounded maps). An approximately unital Banach
algebra will be a Banach algebra which is not unital but which possesses a contractive
approximate identity. We assume that the norm of the unit in a unital Banach algebra is
1. If an approximately unital or unital Banach algebra is an operator space and its
multiplication is completely contractive (we call such an object an (abstract) operator
algebra), then it is completely isometrically isomorphic to an algebra of operators on a
Hilbert space. Two approximately unital or unital operator algebras A and B are said to
be Morita equivalent if there exist operator spaces X and Y, such that

(1) X is an A;B-bimodule, Y is a B;A-bimodule with completely contractive
module actions;

(2) there are completely bounded bimodule maps ð�; �Þ : X � Y�!A and
½�; �� : Y � X�!B such that ðx � b; yÞ ¼ ðx; b � yÞ, ½ y � a; x� ¼ ½ y; a � x� (that is, these
maps are balanced), ðx1; yÞ � x2 ¼ x1 � ½ y; x2�, ½ y1; x� � y2 ¼ y1 � ðx; y2Þ for each
x; x1; x2 2 X, y; y1; y2 2 Y, a 2 A, b 2 B and

(3) the linearized maps on the Haagerup tensor product induced by the pairings
are complete quotients (see [2] for the exact definition of this condition). The 6-tuple
ðA;B;X;Y; ð�; �Þ; ½�; ��Þ is called a Morita context.

If X is a Banach space, we denote by BðX Þ the (Banach) algebra of bounded
linear operators on X.

2. Morita pairs between non-selfadjoint operator algebras. In this section we
characterize Morita pairs between non-selfadjoint approximately unital or unital
operator algebras. We give a full proof of the result only in the case in which both
algebras are approximately unital. We then comment on the necessary changes to be
made if one (both) of the algebras is (are) unital.
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Theorem 1. Let X and Y be operator spaces. Then ðX;Y Þ is a Morita equivalence
pair between some approximately unital operator algebras if and only if there exist
completely bounded maps p : X 
h Y 
h X ! X and q : Y 
h X 
h Y ! Y and nets
fe�g � X 
 Y and f f�g � Y 
 X with ke�kcb < 1 and k f�kcb < 1 such that

(1) pð pðx1 
 y1 
 x2Þ 
 y2 
 x3Þ ¼ pðx1 
 qð y1 
 x2 
 y2Þ 
 x3Þ

¼ pðx1 
 y1 
 pðx2 
 y2 
 x3ÞÞ;
(2) qðqð y1 
 x1 
 y2Þ 
 x2 
 y3Þ ¼ qð y1 
 pðx1 
 y2 
 x2Þ 
 y3Þ

¼ qð y1 
 x1 
 qð y2 
 x2 
 y3ÞÞ;
(3) lim� pðe� 
 xÞ ¼ x and
(4) lim� qðf� 
 yÞ ¼ y

for each x; xi 2 X and y; yi 2 Y (i ¼ 1; 2; 3). Moreover, the pairings in the respective
Morita context are completely contractive if and only if the mappings p and q with the
properties (1)–(4) can be chosen to be completely contractive.

We shall give two proofs of the above theorem. The first one is applicable only
for completely contractive pairings, while the second one can be applied in the gen-
eral case.

First proof. Let X and Y be operator spaces, p : X 
h Y 
h X ! X and
q : Y 
h X 
h Y ! Y completely contractive maps that satisfy conditions (1)–(4) for
some nets fe�g � X 
 Y and f f�g � Y 
 X with ke�kcb < 1 and k f�kcb < 1. We divide
the proof into several steps.

Step 1. Let A1 ¼ X 
h Y. For each a 2 A1 let La : X ! X be the map given by
LaðxÞ ¼ pða 
 xÞ. It is clear that La is completely contractive. Let A0 ¼ fa 2 A1 :
La ¼ 0g; it is obvious that A0 is a closed subspace of A1. We define a multiplication
m on A1 as follows. If a 2 A1 is an arbitrary element and b ¼

P
i xi 
 yi 2 A1 is a

finite sum of elementary tensors, then we let mða; bÞ ¼
P

i pða 
 xiÞ 
 yi. We first
prove associativity: if a; b ¼

P
i xi 
 yi; c ¼

P
j uj 
 vj 2 A1, then

mða;mðb; cÞÞ ¼ mða;
X
i;j

pðxi 
 yi 
 ujÞ 
 vjÞ

¼
X
i;j

pða 
 pðxi 
 yi 
 ujÞÞ 
 vj

¼
X
i;j

pð pða 
 xiÞ 
 yi 
 ujÞ 
 vj

¼
X

j

pðmða; bÞ 
 ujÞ 
 vj ¼ mðmða; bÞ; cÞ:

By the associativity of the Haagerup tensor product we have that the map m
coincides with the map

p 
 id : ðA1 
h X Þ 
h Y�!X 
h Y:

The last map is completely contractive as a tensor product of completely contractive
maps and so m is completely contractive. It follows that m can be extended to all of
A1 � A1 and the extention, which will be denoted again by m, is associative. Condi-
tion (3) implies that fe�g is an approximate unit for A1. It follows from [1] that A1 is
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an (abstract) operator algebra. Next we point out that A0 is a (two-sided) ideal in
A1. First observe that for each a; b 2 A1 and z 2 X we have

pðmða; bÞ 
 zÞ ¼ pða 
 pðb 
 zÞÞ: ð1Þ

Indeed, if a ¼ x1 
 y1 and b ¼ x2 
 y2 are elementary tensors, then by (1) we have

pðmða; bÞ 
 zÞ ¼ pð pðx1 
 y1 
 x2Þ 
 y2 
 zÞ

¼ pðx1 
 y1 
 pðx2 
 y2 
 zÞÞ ¼ pða 
 pðb 
 zÞÞ;

and the general case follows by (bi)linearity and approximation. Now if a 2 A0,
x 
 y 2 A1 and z 2 X, then

Lmða;x
yÞðzÞ ¼ Lpða
xÞ
yðzÞ ¼ pð pða 
 xÞ 
 y 
 zÞ ¼ 0

and, using (1),

Lmðx
y;aÞðzÞ ¼ pðmðx 
 y; aÞ 
 zÞ ¼ pðx 
 y 
 pða 
 zÞÞ ¼ 0:

This shows that A0 is an ideal in A1. Let A ¼ A1=A0; by [1] we have that A is an
(abstract) operator algebra. Similarly we define a multiplication on B1 ¼ Y 
h X
that turns B1 into an (abstract) operator algebra, completely bounded maps
Rb : Y ! Y, b 2 B1, and an ideal B0 � B1. Let B ¼ B1=B0 be the quotient operator
algebra.

Step 2. We equip the spaces X and Y with structures of A;B- and B;A-bimo-
dules respectively. If a 2 A1 and x 2 X, let

ða þ A0Þ � x ¼ pða 
 xÞ:

If b 2 A1 is such that a � b 2 A0, then by the definition of A0 we have that
pðða � bÞ 
 xÞ ¼ 0, which implies that the left action of A on X is well defined. From
the fact that p is completely contractive it follows that this action is completely
contractive as well. The right action of B on X is defined by setting, for each b 2 B
and x 2 X,

x � ðb þ B0Þ ¼ pðx 
 bÞ:

To prove that this is a well defined action, suppose that b 2 B0; that is, qðb 
 yÞ ¼ 0
for each y 2 Y. If x1 2 X, y1 2 Y, we have that

pð pðx 
 bÞ 
 y1 
 x1Þ ¼ pðx 
 qðb 
 y1Þ 
 x1Þ ¼ 0

and thus pð pðx 
 bÞ 
 dÞ ¼ 0 for each d 2 Y 
h X which, according to (4), implies
that pðx 
 bÞ ¼ 0. It follows that the right action of B on X is well defined and, as
before, completely contractive. In other words, X is endowed with a structure of an
A;B-operator bimodule. The A;B-operator bimodule structure of the operator
space Y is defined by letting >

ðb þ B0Þ � y ¼ qðb 
 yÞ
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and

y � ða þ A0Þ ¼ qð y 
 aÞ;

for each a 2 A1, b 2 B1 and y 2 Y. By symmetry, these actions are well defined and
completely contractive.

Step 3. We define pairings ð�; �Þ : X � Y ! A and ½�; �� : Y � X ! B by letting
ðx; yÞ ¼ x 
 y þ A0 and ½ y; x� ¼ y 
 x þ B0. It is obvious that the pairings ð�; �Þ and
½�; �� are completely contractive.

Step 4. We show that the pairings defined in Step 3 are balanced bimodule
maps. Indeed, if b 2 B1, x 2 X and y 2 Y, then by (1) we have that
pð pðx 
 bÞ 
 y 
 zÞ ¼ pðx 
 qðb 
 yÞ 
 zÞ, for each z 2 X, which means that
pðx 
 bÞ 
 y � x 
 qðb 
 yÞ 2 A0 and thus ðx � ðb þ B0Þ; yÞ ¼ ðx; ðb þ B0Þ � yÞ, for
each x 2 X and y 2 Y. Similarly one checks that the pairing ½�; �� is A-balanced.

Let a1 ¼ x1 
 y1, a2 ¼ x2 
 y2 2 A1 and z 2 X. Then by (1) we have

pð pða1 
 xÞ 
 qð y; a2Þ 
 zÞ ¼ pð pð pða1 
 xÞ 
 y 
 x2Þ 
 y2 
 zÞ

which means that

pða1 
 xÞ 
 qð y 
 a2Þ � pð pða1 
 xÞ 
 y 
 x2Þ 
 y2 2 A0;

for each x 2 X and y 2 Y and so ða1 � x; y � a2Þ ¼ a1ðx; yÞa2. Similarly, the pairing
½�; �� is a B-bimodule map.

Step 5. We have that ðx1; yÞ � x2 ¼ x1 � ½ y; x2� and ½ y1; x� � y2 ¼ y1 � ðx; y2Þ for
each x1; x2 2 X and y1; y2 2 Y. These identities are direct consequences of the defi-
nitions of the pairings and the module actions.

Step 6. The projection maps � : A1 ! A and 	 : B1 ! B are complete quotients.
This is an immediate consequence of conditions (3) and (4) and Lemma 2.9. of [2].

Steps 1–6 above ensure that ðA;B;X;Y; ð�; �Þ; ½�; ��Þ is a Morita context with
completely contractive pairings.

For the converse direction, suppose that ðA;B;X;Y; ð�; �Þ; ½�; ��Þ is a Morita con-
text with completely contractive pairings. Define ~pp : X � Y � X ! X and
~qq : Y � X � Y ! Y by letting

~ppðx1; y; x2Þ ¼ ðx1; yÞ � x2

and

~qqð y1; x; y2Þ ¼ ð y1; xÞ � y2:

It is obvious that ~pp and ~qq are completely contractive trilinear maps. If
p : X 
h Y 
h X ! X and q : Y 
h X 
h Y ! Y are their linearizations through the
Haagerup tensor product, then it is easily seen from the definition of a Morita con-
text that Properties (1), (2) (3) and (4) hold.

MORITA EQUIVALENCE PAIRS 539

https://doi.org/10.1017/S0017089502030161 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502030161


Second proof. Assume that X and Y are operator spaces, p : X 
h Y 
h X ! X
and q : Y 
h X 
h Y ! Y completely contractive maps which satisfy conditions (1)–
(4) for some families fe�g � X 
 Y and f f�g � Y 
 X with ke�kcb < 1 and k f�kcb < 1.
We recall that La : X ! X and Rb : Y ! Y are the operators given by LaðxÞ ¼
pða 
 xÞ and Rbð yÞ ¼ qðb 
 yÞ, where a 2 X 
h Y and b 2 Y 
h X. Further
La 2 BðX Þ and Rb 2 BðY Þ. Let L ¼ fLa : a 2 X 
h Yg� and R ¼ fRb : b 2 Y 
h Xg�,
the closures being taken in the norm topology of BðX Þ. As in the first proof, we shall
only point out the ‘‘left’’ considerations in constructing the Morita context whenever
the ‘‘right’’ ones follow either by symmetry or in a similar way. First note that L is a
subalgebra of BðX Þ. Indeed, we have that

Lx1
y1
Lx1
y1

ðzÞ ¼ pðx1 
 y1 
 pðx2 
 y2 
 zÞ

¼ pð pðx1 
 y1 
 x2Þ 
 y2 
 zÞ ¼ Lpðx1
y1
x2Þ
y2
ðzÞ;

for each z 2 X, and it follows that LaLb 2 L whenever a; b 2 X 
h Y. Next observe
that L is approximately unital according to (3). Indeed, if z 2 X, kzk � 1 and
a ¼ x 
 y 2 X 
h Y, then

kLe�LaðzÞ � LaðzÞk ¼ kpð pðe� 
 xÞ 
 y 
 zÞ � pðx 
 y 
 zÞk

¼ kpðð pðe� 
 xÞ � xÞ 
 y 
 zÞk � kpðe� 
 xÞ � xkkyk

and clearly kpðe� 
 xÞ � xkkyk�!� 0.
Endow the operator space X with the structure of an L;R-bimodule, by letting

La � x ¼ pða 
 xÞ and x � Rb ¼ pðx 
 bÞ. In a similar way, endow the operator space
Y with the structure of an R;L-bimodule.

Let n 2 N. We define a norm k � kn on MnðLÞ, letting, for an element
L ¼ ðLaij

Þ 2 MnðLÞ, kLkn to be the maximum of the numbers

supfkL 	 xkn : x ¼ ðxijÞ 2 MnðX Þ; kxkn � 1g

and

supfky 	 Lkn : y ¼ ð yijÞ 2 MnðY Þ; kykn � 1g;

it is clear that kLkn � k pkn. It is easy to observe that the sequence fk � kgn2N defines
an operator space structure on L. We show that L is actually an operator algebra
with respect to this operator space structure by checking that the multiplication on
L is completely contractive. Indeed, if ðTijÞ; ðSijÞ 2 MnðLÞ, then

kðTijÞ 	 ðSijÞ 	 ðxijÞkn ¼ kð
X
k;l

TikðSklðxljÞÞÞi;jkn � kðTijÞknkðSijÞknkðxijÞkn

and, similarly, kðð yijÞ 	 ðTijÞ 	 ðSijÞk � kðTijÞknkðSijÞknkð yijÞkn, which proves the
assertion. It follows that L is an operator algebra with respect to the defined
sequence of matrix norms. Similarly, R is an operator algebra with respect to an
analogous sequence of matrix norms. From the definition of the matrix norms of L it
follows that the module actions of R and L on X and Y are completely contractive.

Define pairings ð�; �Þ : X � Y ! L and ½�; �� : Y � X ! R by setting ðx; yÞ ¼ Lx
y

and ½ y; x� ¼ Ry
x, where x 2 X and y 2 Y. The fact that the pairings are balanced
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bimodule maps and the ‘‘linking’’ properties between the two pairings are verified
readily as in the first proof.

The converse direction is established as in the first proof. &

In the case in which one (both) of the algebras in the Morita context is (are)
unital, some changes in conditions (3) or (and) (4) in Theorem 1 must be made. For
example, suppose that we want to characterize those pairs ðX;Y Þ of operator spaces
for which there exist operator algebras A and B such that A is unital, B is approxi-
mately unital and A, B are Morita equivalent with an equivalence pair ðX;Y Þ. Then,
from Lemma 2.8 in [2] it follows that the existence of the family fe�g and condition
(3) must be replaced by the following condition.

(30) For each 
 > 0 there exists an element e
 2 X 
h Y such that ke
k < 1 þ 

and pðe
 
 xÞ ¼ x for each x 2 X.

Similar changes must be made in the characterizations of Morita pairs ðX;Y Þ

between some algebras A and B when both A and B are unital or A is approximately
unital and B is unital.

Theorem 1 has the following immediate consequence.

Corollary 2. Let X and Y be operator spaces with the properties (1)–(4) of
Theorem 1. Then there exist completely isometric representations ’ : X ! BðH;KÞ

and  : Y ! BðK;HÞ (where H and K are Hilbert spaces) such that ’ðX Þ ðY Þ’ðX Þ �

’ðX Þ and  ðY Þ’ðX Þ ðY Þ �  ðY Þ.

3. The selfadjoint case. In this section we consider the consequences of Theorem
1 when the operator algebras in the Morita context are C*-algebras. If ðX; fk � kng is
an operator space, then we are able to form its conjugate space X�. As a group with
respect to the addition, X� coincides with X, the scalar multiplication is given by

x� ¼ ð
xÞ� (where x� is x viewed as an element of X�). The operator space structure
on X� is given by assigning to an n � n matrix ðx�

ijÞi;j with entries in X� the norm
kðxjiÞi;jkn. Note that, with respect to these norms, there is a natural identification
between MnðX

�Þ and MnðX Þ
�.

Recall that an imprimitivity bimodule between two C*-algebras A and B is a
Banach space X which is an A;B-bimodule and which is equipped with sesquilinear
forms Ah�; �i : X � X ! A and h�; �iB : X � X ! B, such that Ah�; �i is conjugate lin-
ear on the second variable, h�; �iB is conjugate linear on the first, ðA;X;A h�; �iÞ and
ðB;X; h�; �iBÞ are Hilbert A-modules, Ahx; yiz ¼ xhy; ziB, and the linear spans of
fAhx; yi : x; y 2 Xg and fhx; yiB : x; y 2 Xg are dense in A and B respectively. If A
and B are C*-algebras and X is an imprimitivity bimodule between A and B, then we
are able to form an imprimitivity B;A-bimodule X� in the natural way, letting

Bhx
�; y�i ¼ hy; xi�B and hx�; y�iA ¼A hy; xi�. The set

C ¼
A X
X� B

� �

can be endowed with a norm turning it into a C*-algebra under the multiplication
performed using the respective module actions and pairings. Since a C*-algbera has
a canonical operator space structure, the inclusion
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x,!
0 x
0 0

� �

endows X with a canonical operator space structure. We consider an imprimitivity
bimodule as an operator space with respect to this canonical operator space structure.

Now we are ready to establish the following theorem.

Theorem 3. Let X be an operator space. Then X is (completely isometrically
isomorphic to) an imprimitivity bimodule between certain strongly Morita equivalent
(in the sense of Rieffel) C*-algebras if and only if there exists a completely contractive
map p : X 
h X� 
h X ! X such that

(a) pð pðx1 
 x�
2 
 x3Þ 
 x�

4 
 x5Þ ¼ pðx1 
 pðx4 
 x�
3 
 x2Þ

�

 x5Þ ¼

pðx1 
 x�
2 
 pðx3 
 x�

4 
 x5ÞÞ and
(b) kpnððxijÞ 	 ðxijÞ

�
	 ðxijÞÞkn ¼ kðxijÞk

3
n, for each n 2 N.

Proof. Suppose that an operator space X and a map p are given such that (a)
and (b) are satisfied. Let q : X� 
h X 
h X� ! X� be the map given by

qðx� 
 y 
 z�Þ ¼ pðz 
 y� 
 xÞ�; x; y; z 2 X:

An immediate verification shows that p and q satisfy conditions (1) and (2) of
Theorem 1. As in the second proof of Theorem 1 we construct the operator spaces L
and R, which are also algebras with a completely contractive multiplication. Note
that we are not able to conclude directly that L and R are operator algebras since
they are not a priori approximately unital or unital. We shall show, however, that L
and R are C*-algebras and that their operator space structure, whose sequence of
matrix norms will be denoted by fk � kng, coincides with their canonical C*-algebra
operator space structure. Actually, we will directly show that MnðLÞ (and so MnðRÞ

as well) is a C*-algebra with respect to k � kn. First we define involutions on L and R:
if x; y 2 X, we let L�

x
y� ¼ Ly
x� and R�
y�
x ¼ Rx�
y. The fact that the mappings

L ! L� and R ! R� are indeed involutions on L and R follows easily from condi-
tion (a).

Let aij ¼
Pvij

u¼1 xu
ij 
 yu�

ij , L ¼ ðLaij
Þi;j 2 MnðLÞ and z ¼ ðzijÞi;j 2 MnðX Þ. Then by

(b) we have

kL 	 zk3
n ¼ kpn ððLaij

Þ 	 ðzijÞÞ 	 ððLaij
Þ 	 ðzijÞÞ

�
	 ððLaij

Þ 	 ðzijÞÞ
� �

k

¼ kpnðð
X

k

pðaik 
 zkjÞÞi;j 	 ð
X

l

pðatl 
 zlsÞ
�
Þs;t 	 ð

X
m

pðarm 
 zmvÞÞr;vÞk

¼ k ð
X

j;l;k;r;s;u

pðpðaik 
 zkjÞ 
 pðasl 
 zljÞ
�

 pðasr 
 zrvÞÞ

 !
i;v

kn

¼ k
X

j;l;k;r;s;u

pð pðaik 
 zkjÞ 
 pð yu
sr 
 xu�

sr 
 pðasl 
 zljÞÞ
�

 zrv

 !
i;v

kn:

On the other hand,
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L� 	 ðL 	 zÞ ¼ ðL�
aji
Þi;j 	 ð

X
l

pðasl 
 zltÞÞs;t

¼
X

s

L�
asr
ð
X

l

pðasl 
 zltÞÞ

 !
r;t

¼
X
s;l;u

pð yu
sr 
 xu�

sr 
 pðasl 
 zltÞÞ

 !
r;t

and thus

pnððL 	 zÞ 	 ðL� 	 ðL 	 ðzÞÞÞ� 	 zÞ

¼ pn

X
j;l;k;r;s;u

pðaik 
 zkjÞ 
 pðyu
sr 
 xu�

sr 
 pðasl 
 zljÞÞ
�

 zrv

 !
i;v

:

We conclude that

kL 	 zk3
n ¼ kpnððL 	 zÞ 	 ðL� 	 ðL 	 ðzÞÞÞ� 	 zÞkn

� kL 	 zknkðL
� 	 ðL 	 ðzÞÞ�knkzkn:

Since the involution is isometric, it follows that

kL 	 zk2 � kðL� 	 LÞ 	 zk:

Similarly, we obtain that

kz0 	 Lk2 � kz0 	 ðL� 	 LÞk

for each z0 2 MnðY Þ. It follows that

kLk2
n � kL� 	 Lkn

which implies that k � kn is a C*-norm on MnðLÞ. For n ¼ 1, we obtain that L is a
C*-algebra. Since MnðLÞ has a unique C*-norm, it follows that k � kn coincides with
the norm on MnðLÞ ‘‘inherited’’ from the C*-structure of L.

Thus we have shown that ðL;R;X;Y; ð�; �Þ; ½�; ��Þ is a Morita context. From
Theorem 6.2 of [2] it follows that there exists a complete isometry i : X��!X� such
that X becomes an imprimitivity bimodule between L and R under the pairings

Lhx; yi ¼ ðx; ið y�ÞÞ and hx; yiR ¼ ½iðx�Þ; y�, x; y 2 X. It follows that, as a Banach
space, X is an imprimitivity bimodule in the sense of Rieffel. It only remains to be
checked that the operator space structure of X coincides with the canonical impri-
mitivity bimodule operator space structure fk � k0ng on X. By Lemma 5.6 of [2] we
have that there are completely isometric representations �; �; ’;  of L;R;X;X� on
appropriate Hilbert spaces such that if 	 is the respective two by two matrix repre-
sentation formed by �; �; ’ and  , then 	 is completely isometric and �ððx; y�ÞÞ ¼
’ðxÞ ð y�Þ, for each x; y 2 X. Let x 2 X. Then
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kxk
02
1 ¼ kLhx; iðx

�Þik ¼ k�ððx; iðx�ÞÞÞk

¼ k’ðxÞ ðiðx�ÞÞk ¼ k’ðxÞ’ðxÞ�k ¼ k’ðxÞk2 ¼ kxk2:

Thus, k � k0 ¼ k � k. Note that for each n 2 N the pair ðMnðX Þ;MnðX
�ÞÞ is a Morita

equivalence pair between the C*-algebras MnðLÞ and MnðRÞ. Just as above we con-
clude that k � k

0

n ¼ k � kn.
The converse direction is obtained as the converse direction in Theorem 1. &

Note that there was no need to impose a condition about existence of approx-
imate units in Theorem 3: as we saw, the non-degeneracy condition (b) ensures that
the algebras we construct are C*-algebras; a posteriori they are approximately unital
or unital.

Theorem 3 leads us to the following definition.

Definition 4. A ternary operator system is an operator space X equipped with a
triple product ½�; �; �� : X � X � X�!X, linear on the first and the third variable and
conjugate linear on the second such that

(a) ½½x1; x2; x3�; x4; x5� ¼ ½x1; ½x4; x3; x2�; x5� ¼ ½x1; x2; ½x3; x4; x5�� and
(b) k½ðxijÞ 	 ðxjiÞ 	 ðxijÞ�nk ¼ kðxijÞk

3
n, for each ðxijÞ 2 MnðX Þ, n 2 N.

Recall that a ternary C*-ring is a Banach space endowed with a contractive tri-
ple product ½�; �; �� : X � X � X�!X, linear on the first and the third variable and
conjugate linear on the second, satisfying conditions (a) and (b) in Definition 4 for
n ¼ 1. A consequence of Zettl’s results is that the Banach spaces which are impri-
mitivity bimodules between certain C*-algebras are, up to isometry, precisely the
ternary C*-rings. But, as we pointed out, an imprimitivity bimodule has a canonical
structure of an operator space. Theorem 3 gives an operator space version of the
above result: it states that the operator spaces which are imprimitivity bimodules
bewteen certain C*-algebras are, up to a complete isometry, precisely the ternary
operator systems. The conditions (a) and (b) for n=1 are not sufficient to ensure
that the operator space is completely isometric to an imprimitivity bimodule - we
must require moreover that condition (b) is fulfilled for every n 2 N. An example of
an operator space X which is a ternary C*-ring but not a ternary operator system is
a C*-algebra equipped with some non-canonical operator space structure.

Ternary C*-rings and ternary operator systems are the linear space analogue of
the C*-algebras. A concrete version of these objects are the so called ternary rings of
operators (TRO). Recall [6] that a TRO is a subspace V � BðH;KÞ of operators
between two Hilbert spaces H and K, closed under the (canonical) triple product
ða; b; cÞ�!ab�c. Note that, as a concrete operator space, a TRO has a natural
operator space structure. It is clear that a TRO is a ternary C*-ring and a ternary
operator system with respect to the canonical triple product. A result analogous to
the Gelfand-Naimark Theorem is proved in [6]: each ternary C*-ring X has a
decomposition X ¼ Xþ � X� such that Xþ is (isometrically) isomorphic to a TRO
while X� is (isometrically) anti-isomorphic to a TRO. Of course, a morphism
between ternary C*-rings is defined as a bounded linear map that preserves the triple
product. Similarly, a morphism between ternary operator systems is a completely
bounded linear map that preserves the triple product. Theorem 3 has the following
consequences.
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Corollary 5. Let X be a ternary operator system. Then there exist ternary
operator sub-systems Xþ and X� such that X ¼ Xþ � X� and Xþ is completely iso-
metrically isomorphic to a TRO while X� is completely isometrically anti-isomorphic
to a TRO.

Thus, one is able to decompose a ternary operator system into parts on which
the triple product can be given a concrete expression through Hilbert space opera-
tions. The triple product on the space Xþ above is given, up to complete isometry,
by ða; b; cÞ�!ab�c while the triple product on X� is given, again up to complete
isometry, by ða; b; cÞ�!� ab�c.

If we are not interested in preserving the triple products, we can achieve the
following representation.

Corollary 6. Let X be a ternary operator system. Then X is completely iso-
metric to a TRO.
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