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Abstract. We characterize the pairs of operator spaces that occur as pairs of
Morita equivalence bimodules between non-selfadjoint operator algebras in terms of
the mutual relation between the spaces. We obtain a characterization of the operator
spaces which are completely isometrically isomorphic to imprimitivity bimodules
between some strongly Morita equivalent (in the sense of Rieffel) C*-algebras. As
corollaries, we give representation results for such operator spaces.
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1. Introduction and preliminaries. The notion of Morita equivalence is funda-
mental in both Algebra and Analysis. This notion entered the Theory of Operator
Algebras with Rieffel’s paper [5]. In that work, Rieffel defined Morita equivalence
for C*- and W*-algebras and proved various results concerning these notions. After
the formulation of the theory of (abstract) operator spaces (see [4] for a survey and
references), this notion was generalized [2] for non-selfadjoint operator algebras and
obtained an important place in the theory. In this paper we give a characterization of
those pairs (X, Y) of operator spaces, which occur as pairs of Morita equivalence
bimodules between non-selfadjoint (approximately unital) operator algebras, in terms
of the mutual relation between the spaces X and Y. We specialize our result to obtain a
characterization of the operator spaces which are completely isometrically iso-
morphic to imprimitivity bimodules between strongly Morita equivalent (in the sense of
Rieffel [S]) C*-algebras. We call these (abstract) operator spaces ternary operator sys-
tems. The Banach space analogue of these spaces, known as ternary C*-rings have been
studied by Zettl [6] and others. Our result is an operator space version of an implicit
characterization of the imprimitivity bimodules between C*-algebras up to a Banach
space isometry, contained in [6]. According to our result, additional conditions must
be imposed on an operator space which is also a ternary C*-ring, in order to be com-
pletely isometric to a Morita equivalence bimodule between some C*-algebras. Thus, the
similarity beween ternary C*-rings and ternary operator systems is the associativity
property of the triple product; the difference is that the “C*-condition” for a ternary
operator system takes into account its operator space structure as well (see Definition 4).

Finally, we point out versions of the Representation Theorem of [6] for the case
of a ternary operator system.

In order to state and prove our results, we recall some notions and notation. We
have as a main reference the monograph [4]. An operator space is a Banach space X
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endowed with a sequence of norms on the linear space M, (X) of n x n matrices with
entries in X for which the (left and right) actions of M,,(C) on M, (X) are contractive
and the norm of a direct sum of two matrices equals the maximum of their norms. A
map ¢ : X—> Y between the operator spaces X and Y is said to be completely boun-
ded (contractive, isometric), if the map ¢,: M,(X)—M,(Y) given by
©a((x;7)) = ((x;)) (Where (x;;) € M,(X)) is bounded (contractive, isometric) for each
neN and |||l = sup,ey ll@all s finite. If x = (x;), y = (i) € M,(X), then we let
X0y = Qi Xik ®Viy);; € My(X ® Y). If an operator space X is an A4, B-bimodule,
where 4 and B are algebras, we define a ©x = (}_; ai - Xt j and xOb=
(O Xik - bij); j» where a = (a;) € My(A) and b = (b;) € M,(B). The Haagerup tensor
product of the operator spaces X and Y can be described by defining a norm || - ||, on
M,(X ® Y) by setting

1Ull, = inf{lIxlllyll : U=xOy,x € Myp(X),y € Mpu(Y),peN}

for each U e M,(X® Y) and n € N and letting X ®;, Y be the completion of X ® Y
with respect to || - ||;. The Haagerup tensor product is associative. Moreover, if
X1, X3, Y1 and Y, are operator spaces and f; : X; — Y| and f5 : X,— Y, are com-
pletely bounded maps, then there is a unique completely bounded map f; ® f> :
X1 ®, Xo— Y ®, Y5 such that f1 @ f2(x1 ® x2) = f1(x1) ® f2(x2), X1 € X, X2 € X>.
We have that || f1 ® f2llcs < Il fillesll/2]l.5- Each multilinear completely bounded map
from the direct product of several operator spaces into an operator space can be
linearized through the Haagerup tensor product of its domain spaces (see [3] for the
theory of multilinear completely bounded maps). An approximately unital Banach
algebra will be a Banach algebra which is not unital but which possesses a contractive
approximate identity. We assume that the norm of the unit in a unital Banach algebra is
1. If an approximately unital or unital Banach algebra is an operator space and its
multiplication is completely contractive (we call such an object an (abstract) operator
algebra), then it is completely isometrically isomorphic to an algebra of operators on a
Hilbert space. Two approximately unital or unital operator algebras 4 and B are said to
be Morita equivalent if there exist operator spaces X and Y, such that

(1) X is an A, B-bimodule, Y is a B, A-bimodule with completely contractive
module actions;

(2) there are completely bounded bimodule maps (-,): X x Y—A4 and
[,-]: Y x X— B such that (x-b,y)=(x,b-y), [y-a,x]=[y,a-x] (that is, these
maps are balanced), (x1,y)-x2=x1-[y,x2], [y1,x]-y2=y1-(x,y2) for each
X, x;,x€X,y,y,2€ Y, ae A, be Band

(3) the linearized maps on the Haagerup tensor product induced by the pairings
are complete quotients (see [2] for the exact definition of this condition). The 6-tuple
(4, B, X, Y, (), [ ] is called a Morita context.

If X is a Banach space, we denote by B(X) the (Banach) algebra of bounded
linear operators on X.

2. Morita pairs between non-selfadjoint operator algebras. In this section we
characterize Morita pairs between non-selfadjoint approximately unital or unital
operator algebras. We give a full proof of the result only in the case in which both
algebras are approximately unital. We then comment on the necessary changes to be
made if one (both) of the algebras is (are) unital.
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THEOREM 1. Let X and Y be operator spaces. Then (X, Y) is a Morita equivalence
pair between some approximately unital operator algebras if and only if there exist
completely bounded maps p: X @, Y, X — X and q: Y Q, X Q®, Y — Y and nets
{ea} CXQ® Y and {fg} C Y ® X with |leyll, < 1 and || fglly < 1 such that

(M) p(p(x1 @Y1 ®@x2) @ y2 ® x3) = p(x1 @ g(y1 ® X2 ® y2) @ X3)
=p(x1 @ y1 @ p(x2 ® y2 @ x3));

(2) 9(g(»1 ® X1 ® 12) @ X2 ® y3) = ¢(y1 ® (X1 ® y2 ® X2) ® y3)
=4q(»1 ®x1 ®q(y2 ® X2 @ y3));

(3) limg p(e, ® x) = x and

(4) limgg(fp @ y) =y
for each x,x;e X and y,y; € Y (i=1,2,3). Moreover, the pairings in the respective
Morita context are completely contractive if and only if the mappings p and q with the
properties (1)~(4) can be chosen to be completely contractive.

We shall give two proofs of the above theorem. The first one is applicable only
for completely contractive pairings, while the second one can be applied in the gen-
eral case.

First proof. Let X and Y be operator spaces, p: X®; Y®;, X - X and
q:Y®, X®,Y — Y completely contractive maps that satisfy conditions (1)—(4) for
some nets {e,} C X ® Yand {fg} C Y ® X with |le,|l., < I and || fgll., < 1. We divide
the proof into several steps.

Step 1. Let Ay = X®;, Y. Foreach a € 4 let L, : X — X be the map given by
L,(x) = p(a® x). It is clear that L, is completely contractive. Let Ay = {a € 4, :
L, = 0}; it is obvious that Ay is a closed subspace of 4;. We define a multiplication
m on A; as follows. If @ € 4; is an arbitrary element and b =), x; @ y; € A is a
finite sum of elementary tensors, then we let m(a, b) = > . p(a ® x;) ® y;. We first
prove associativity: if @, b =3, x; ® yi, ¢ = 3, u; ® v; € Ay, then

m(a’ I’I/l(b, C)) = m(a, Zp(xi ® Vi ® M]) X V/')
ij
=Y pa®p(xi®y; ®u) ® v;
ij
=Y p(pa®x)®yi®u) @
ij

=" plm(a, b) ® u) ® v; = mm(a, b), c).
J

By the associativity of the Haagerup tensor product we have that the map m
coincides with the map

po® id : (Al R X) RQpY—X®,Y.
The last map is completely contractive as a tensor product of completely contractive
maps and so m is completely contractive. It follows that m can be extended to all of

A; x A, and the extention, which will be denoted again by m, is associative. Condi-
tion (3) implies that {e,} is an approximate unit for A;. It follows from [1] that 4, is
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an (abstract) operator algebra. Next we point out that A4y is a (two-sided) ideal in
A;. First observe that for each a, b € 4; and z € X we have

p(m(a, b) ® z) = p(a ® p(b ® z)). (1
Indeed, if a = x| ® y; and b = x, ® y, are elementary tensors, then by (1) we have

p(m(a,b) ® z) = p(p(x1 ® y1 ® X2) ® 2 @ 2)
=p(x1 @)1 Q@ p(x2 ® 12 ®2)) = pla® p(b® 2)),

and the general case follows by (bi)linearity and approximation. Now if a € A4,
X®y e A and z € X, then

Lm(u,x@y)(z) = Lp(a®x)®y(z) = p(p(a X X) Y Z) =0

and, using (1),

Linxgy.a(2) = pm(x @y, a) ®z) = p(x ® y @ p(a® 2)) = 0.

This shows that A4 is an ideal in A;. Let 4 = A;/Ag; by [1] we have that 4 is an
(abstract) operator algebra. Similarly we define a multiplication on B = Y ®, X
that turns B; into an (abstract) operator algebra, completely bounded maps
R,:Y— Y, be By, and an ideal By C B;. Let B = By/B, be the quotient operator
algebra.

Step 2. We equip the spaces X and Y with structures of 4, B- and B, A-bimo-
dules respectively. If a € 4| and x € X, let

(a+ Ao) - x =pla® x).

If be A, is such that a — b € Ay, then by the definition of A, we have that
p((a — b) ® x) = 0, which implies that the left action of 4 on X is well defined. From
the fact that p is completely contractive it follows that this action is completely
contractive as well. The right action of B on X is defined by setting, for each b € B
and x € X,

x-(b+ By) = p(x ® b).

To prove that this is a well defined action, suppose that » € By; that is, g(b ® y) =0
foreach y € Y. If x; € X, y; € Y, we have that

P(p(x®b) @Y1 ®@x1) =p(x@qb®y1)®x1) =0

and thus p(p(x ® b) ® d) = 0 for each d € Y ®;, X which, according to (4), implies
that p(x ® b) = 0. It follows that the right action of B on X is well defined and, as
before, completely contractive. In other words, X is endowed with a structure of an
A, B-operator bimodule. The A4, B-operator bimodule structure of the operator
space Y is defined by letting >

(b+By)-y=qb®y)
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and

y-(a+ Ao) = q(y ® a),

for each a € A1, b € B) and y € Y. By symmetry, these actions are well defined and
completely contractive.

Step 3. We define pairings (-,-): X x Y — 4 and [-,-]: Y x X — B by letting
(x, ) =x®y+ A4p and [y, x] = y ® x + By. It is obvious that the pairings (-, -) and
[-, -] are completely contractive.

Step 4. We show that the pairings defined in Step 3 are balanced bimodule
maps. Indeed, if be B, x€X and yeY, then by (1) we have that
P(pxR®D)®y®z)=p(x®qbR®y)®z), for each ze X, which means that
pPxR®b)R®y—xQqb®y)e A4y and thus (x-(b+ By),y) = (x,(b+ By) -y), for
each x € X and y € Y. Similarly one checks that the pairing [, -] is 4-balanced.

Leta; =x1 ®y1, a0 =x2 ® y» € Ay and z € X. Then by (1) we have

(P ®X)®q(y,a2) ®2) = p(p(pla1 @ X) QY @ X2) ® 12 ® z2)

which means that

P(ar ®x)®q(y Q@ ay) — p(pla; @ X) @y ® x2) @ 2 € Ay,

for each x € X and y € Y and so (a; - x,y - a2) = ai1(x, y)ay. Similarly, the pairing
[-, -] is a B-bimodule map.

Step 5. We have that (x1, ) -x2 = x; -[y, x2] and [y, x]-y2 = y1 - (x, y2) for
each x1,x, € X and yq, y, € Y. These identities are direct consequences of the defi-
nitions of the pairings and the module actions.

Step 6. The projection maps 7 : 4, — A4 and p : B — B are complete quotients.
This is an immediate consequence of conditions (3) and (4) and Lemma 2.9. of [2].

Steps 1-6 above ensure that (4, B, X, Y, (-,-),[-,]) is a Morita context with
completely contractive pairings.

For the converse direction, suppose that (4, B, X, Y, (-, -), [+, -]) is a Morita con-
text with completely contractive pairings. Define p: X x ¥Yx X — X and
g:YxXxY— Y by letting

P(x1, . x2) = (x1,p) - X2
and

4y, % y2) = (y1, X) - »2.
It is obvious that p and ¢ are completely contractive trilinear maps. If
p:XR®,Y®,X— Xand ¢q: Y®, X®;, Y — Y are their linearizations through the

Haagerup tensor product, then it is easily seen from the definition of a Morita con-
text that Properties (1), (2) (3) and (4) hold.
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Second proof. Assume that X and Y are operator spaces, p: X ®, Y ®, X - X
and ¢ : Y ®, X ®; Y — Y completely contractive maps which satisfy conditions (1)—
(4) for some families {e,} C X ® Y and {f3} C Y ® X with |le,|l., < 1 and || fgll, < 1.
We recall that L,: X — X and R, : Y — Y are the operators given by L,(x) =
pla®x) and Ry(y)=¢q(b®y), where a€ X®, Y and be Y®;X. Further
Loe B X)and Rye B(Y). Let L={L,:ae X®, Y} and R={R,:b e Y ®; X},
the closures being taken in the norm topology of B(X). As in the first proof, we shall
only point out the “left”” considerations in constructing the Morita context whenever
the “right” ones follow either by symmetry or in a similar way. First note that £ is a
subalgebra of B(X). Indeed, we have that

Lx]®y1 Lx1®y1 (Z) = p(X] ® 1 ®P(x2 ® » ® Z)
=p(p(x1 ® y1 ® X2) ® 12 ® 2) = Ly(x,0y,0x2)01,(2)

for each z € X, and it follows that L,L, € £ whenever a,b € X ®;, Y. Next observe
that £ is approximately unital according to (3). Indeed, if z € X, |z|| <1 and
a=x®y e X®,Y, then

| Le,La(2) — LoDl = Ip(plea ®X) @y ®2) = p(x @y ® 2)||
= [p((plea @ X) = X) @y ® 2)|| < [Ipea ® x) — x|yl

and clearly ||p(eq ® x) — x|[[[y]l—>« 0.

Endow the operator space X with the structure of an £, R-bimodule, by letting
L,-x=pla® x) and x - Ry, = p(x ® b). In a similar way, endow the operator space
Y with the structure of an R, £-bimodule.

Let ne N. We define a norm |-, on M,(L), letting, for an element
L = (L) € M,(L), |L]l, to be the maximum of the numbers

sup{|IL © x|, : x = (x;) € My(X), |Ix]l, < 1}

and

sup{[ly © L, : y = (yy) € Mu(Y), Iyl < 1}

it is clear that ||L]|,, < || pll,- It is easy to observe that the sequence {|| - ||},en defines
an operator space structure on £. We show that £ is actually an operator algebra
with respect to this operator space structure by checking that the multiplication on

L is completely contractive. Indeed, if (Ty), (S;) € M, (L), then

(T © (Si) © Ceilly = 1O TSkl < T LIS Ll Cei
k.l

and, similarly. () © (T)) @ (Sl < WISyl which proves the
assertion. It follows that £ is an operator algebra with respect to the defined
sequence of matrix norms. Similarly, R is an operator algebra with respect to an
analogous sequence of matrix norms. From the definition of the matrix norms of £ it
follows that the module actions of R and £ on X and Y are completely contractive.

Define pairings (-,) : X x ¥ — Land [, -] : ¥ x X — R by setting (x, y) = Lygy
and [y, x] = Rygx, Wwhere x € X and y € Y. The fact that the pairings are balanced
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bimodule maps and the “linking” properties between the two pairings are verified
readily as in the first proof.
The converse direction is established as in the first proof. ]

In the case in which one (both) of the algebras in the Morita context is (are)
unital, some changes in conditions (3) or (and) (4) in Theorem 1 must be made. For
example, suppose that we want to characterize those pairs (X, Y) of operator spaces
for which there exist operator algebras 4 and B such that A is unital, B is approxi-
mately unital and 4, B are Morita equivalent with an equivalence pair (X, Y). Then,
from Lemma 2.8 in [2] it follows that the existence of the family {e¢,} and condition
(3) must be replaced by the following condition.

(3’) For each € > 0 there exists an element e, € X ®; Y such that e, <1+ ¢
and p(e. ® x) = x for each x € X.

Similar changes must be made in the characterizations of Morita pairs (X, Y)
between some algebras 4 and B when both 4 and B are unital or A4 is approximately
unital and B is unital.

Theorem 1 has the following immediate consequence.

COROLLARY 2. Let X and Y be operator spaces with the properties (1)~(4) of
Theorem 1. Then there exist completely isometric representations ¢ : X — B(H, K)
and 1 Y — B(IC, H) (where H and K are Hilbert spaces) such that o(X)Y(Y)p(X) C
(X) and Y(Y)p(X)Y(Y) < ¥ (Y).

3. The selfadjoint case. In this section we consider the consequences of Theorem
1 when the operator algebras in the Morita context are C*-algebras. If (X, {]| - ||,,} is
an operator space, then we are able to form its conjugate space X*. As a group with
respect to the addition, X* coincides with X, the scalar multiplication is given by
Ax* = (Ax)* (where x* is x viewed as an element of X*). The operator space structure
on X* is given by assigning to an n x n matrix (x}),; with entries in X* the norm
(i) jll.- Note that, with respect to these norms, there is a natural identification
between M,(X*) and M,(X)*.

Recall that an imprimitivity bimodule between two C*-algebras 4 and B is a
Banach space X which is an 4, B-bimodule and which is equipped with sesquilinear
forms 4(-,-): X x X — A and (-, )5 : X x X — B, such that 4(-, -) is conjugate lin-
ear on the second variable, (-, -} is conjugate linear on the first, (4, X, 4 (-, -)) and
(B, X, (-, -)p) are Hilbert A-modules, 4(x,y)z = x(y,z)p, and the linear spans of
{40,y 1 x,y € X} and {(x,y)p: X,y € X} are dense in A and B respectively. If A4
and B are C*-algebras and X is an imprimitivity bimodule between 4 and B, then we
are able to form an imprimitivity B, A-bimodule X* in the natural way, letting
3(x*,3%) = (v, x)5 and (x*, ") =4 (v, x)*. The set

4 X
o=(+ 3)

can be endowed with a norm turning it into a C*-algebra under the multiplication
performed using the respective module actions and pairings. Since a C*-algbera has
a canonical operator space structure, the inclusion
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endows X with a canonical operator space structure. We consider an imprimitivity
bimodule as an operator space with respect to this canonical operator space structure.
Now we are ready to establish the following theorem.

THEOREM 3. Let X be an operator space. Then X is (completely isometrically
isomorphic to) an imprimitivity bimodule between certain strongly Morita equivalent
(in the sense of Rieffel) C*-algebras if and only if there exists a completely contractive
map p: X @y X* ®y X — X such that

(@) p(p(x1 ® X5 ® X3) ® Xj ® x5) = p(x) @ plxs ® X ® x2)" ® X5) =

p(x1 ® x5 ® p(x3 ® x; ® x5)) and
(b) lIpa((x) © (xp)* © (x)lly = (xpIl;» for each n € N.

Proof. Suppose that an operator space X and a map p are given such that (a)
and (b) are satisfied. Let ¢ : X* ®; X ®;, X* — X* be the map given by

Xy =pRy* x)* xyzelX

An immediate verification shows that p and ¢ satisfy conditions (1) and (2) of
Theorem 1. As in the second proof of Theorem 1 we construct the operator spaces £
and R, which are also algebras with a completely contractive multiplication. Note
that we are not able to conclude directly that £ and R are operator algebras since
they are not a priori approximately unital or unital. We shall show, however, that £
and R are C*-algebras and that their operator space structure, whose sequence of
matrix norms will be denoted by {|| - ||,,}, coincides with their canonical C*-algebra
operator space structure. Actually, we will directly show that M, (£) (and so M,(R)
as well) is a C*-algebra with respect to || - ||,,. First we define involutions on £ and R:
if x,y e X, we let L},,. = Lyg and R}.o = Ryg,. The fact that the mappings

XQy* *Qx
L— L*and R — R* iie indeed involutibr?s on £ and R follows easily from condi-
tion (a).
Let ay =Y \" | x4 @y, L =(Ly,);; € My(L) and z = (z;);; € M,(X). Then by
(b) we have

IL © zlly = 12a((Lay) © ) © (Lay) © )" © ((Lay) © )
= lpa(Q_ plai ® zi))i; © O plan ® 21)), © O pletrm @ zu)), )
k / m

= || (( Z p(P(a[k ® ij) ®p(as/ ® Zl/)* ®p(asr ® er))) ”n

Julk,r.s,u

= < D p(plar ® z) ® p(3 ® X ® play ® z))* ® Z) Il

Jilk,r.s,u iv

On the other hand,
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L*o(Loz)=(L]),0 0 plag® ),
!

= (Z LZW(Z plag ® sz)))
s !

.t

s, lu

= (ZP(J’?,A ® X, ® plag ® th)))
r,t

and thus

P((LO2)O L O(LO(2) 02)

= pn( Z p(aik ® ij) ®p(y1:r b2 x?;k ®p(a5/ ® le))* (24 er) .
Jilk,rs,u iv

We conclude that

ILOz|} = Ip(LO2) O (L* O (L O (2)* @2,
< IL Ozl IL* © (L O @) [zl

Since the involution is isometric, it follows that
Loz < I(L* o L) oz
Similarly, we obtain that
IZ oLl <l 0@ o)
for each z/ € M,(Y). It follows that

ILI2 < IL* o LI|,

which implies that || - ||, is a C*-norm on M, (L). For n = 1, we obtain that £ is a
C*-algebra. Since M, (L) has a unique C*-norm, it follows that || - ||, coincides with
the norm on M, (£) “inherited” from the C*-structure of L.

Thus we have shown that (L,R, X, Y,(,,),[:,]) is a Morita context. From
Theorem 6.2 of [2] it follows that there exists a complete isometry i : X*— X* such
that X becomes an imprimitivity bimodule between £ and R under the pairings
c{x, ¥y = (x,i(y*)) and (x, y)r = [i(x*), ], x,y € X. It follows that, as a Banach
space, X is an imprimitivity bimodule in the sense of Rieffel. It only remains to be
checked that the operator space structure of X coincides with the canonical impri-
mitivity bimodule operator space structure {|| - ||/} on X. By Lemma 5.6 of [2] we
have that there are completely isometric representations o, 7, ¢, ¥ of £, R, X, X* on
appropriate Hilbert spaces such that if p is the respective two by two matrix repre-
sentation formed by o, 7, ¢ and v, then p is completely isometric and o((x, y*)) =
o(x)Y(y*), for each x, y € X. Let x € X. Then
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1012 = Il e, iGN = o (G, i)
= [lpIYEC) = llp(x)p(x)* | = llp(x)II* = llx)1?.

Thus, || - ||/ = || - ||. Note that for each n € N the pair (M, (X), M, (X*)) is a Morita
equivalence pair between the C*-algebras M, (L) and M,(R). Just as above we con-
clude that || - ||, = | - [l

The converse direction is obtained as the converse direction in Theorem 1. []

Note that there was no need to impose a condition about existence of approx-
imate units in Theorem 3: as we saw, the non-degeneracy condition (b) ensures that
the algebras we construct are C*-algebras; a posteriori they are approximately unital
or unital.

Theorem 3 leads us to the following definition.

DEFINITION 4. A ternary operator system is an operator space X equipped with a
triple product [+, -, -] : X x X x X— X, linear on the first and the third variable and
conjugate linear on the second such that

(@) [[x1, x2, x3], x4, x5] = [x1, [X4, X3, X2], X5] = [x1, X2, [X3, X4, x5]] and

(b) 1) © () © (x)l, Il = (x5, for each (xy) € Mu(X), n € N.

Recall that a ternary C*-ring is a Banach space endowed with a contractive tri-
ple product [-, -, ] : X X X x X— X, linear on the first and the third variable and
conjugate linear on the second, satisfying conditions (a) and (b) in Definition 4 for
n = 1. A consequence of Zettl’s results is that the Banach spaces which are impri-
mitivity bimodules between certain C*-algebras are, up to isometry, precisely the
ternary C*-rings. But, as we pointed out, an imprimitivity bimodule has a canonical
structure of an operator space. Theorem 3 gives an operator space version of the
above result: it states that the operator spaces which are imprimitivity bimodules
bewteen certain C*-algebras are, up to a complete isometry, precisely the ternary
operator systems. The conditions (a) and (b) for n=1 are not sufficient to ensure
that the operator space is completely isometric to an imprimitivity bimodule - we
must require moreover that condition (b) is fulfilled for every n € N. An example of
an operator space X which is a ternary C*-ring but not a ternary operator system is
a C*-algebra equipped with some non-canonical operator space structure.

Ternary C*-rings and ternary operator systems are the linear space analogue of
the C*-algebras. A concrete version of these objects are the so called ternary rings of
operators (TRO). Recall [6] that a TRO is a subspace V' C B(H, K) of operators
between two Hilbert spaces H and K, closed under the (canonical) triple product
(a, b, c)—>ab*c. Note that, as a concrete operator space, a TRO has a natural
operator space structure. It is clear that a TRO is a ternary C*-ring and a ternary
operator system with respect to the canonical triple product. A result analogous to
the Gelfand-Naimark Theorem is proved in [6]: each ternary C*-ring X has a
decomposition X = X, @ X_ such that X, is (isometrically) isomorphic to a TRO
while X_ is (isometrically) anti-isomorphic to a TRO. Of course, a morphism
between ternary C*-rings is defined as a bounded linear map that preserves the triple
product. Similarly, a morphism between ternary operator systems is a completely
bounded linear map that preserves the triple product. Theorem 3 has the following
consequences.
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COROLLARY 5. Let X be a ternary operator system. Then there exist ternary
operator sub-systems Xy and X_ such that X = X, & X_ and X is completely iso-
metrically isomorphic to a TRO while X_ is completely isometrically anti-isomorphic
to a TRO.

Thus, one is able to decompose a ternary operator system into parts on which
the triple product can be given a concrete expression through Hilbert space opera-
tions. The triple product on the space X above is given, up to complete isometry,
by (a, b, c)—>ab*c while the triple product on X_ is given, again up to complete
isometry, by (a, b, c)—> — ab*c.

If we are not interested in preserving the triple products, we can achieve the
following representation.

COROLLARY 6. Let X be a ternary operator system. Then X is completely iso-
metric to a TRO.
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